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Abstract—Determining the pose of a three-dimensional ob-
ject under unknown lighting conditions is a challenging prob-
lem. Eigenspace methods represent one computationally efficient
method for doing illumination invariant pose estimation, and have
been applied in a variety of application domains. Unfortunately,
determining the appropriate eigenspace dimension, as well as the
eigenspace itself, is computationally prohibitive for real-world
applications. This paper presents a method to reduce this expense
by using results from spectral theory. In particular, this paper
shows that a set of images of an object under a wide range
of illumination conditions and a fixed pose can be significantly
reduced by projecting this data on to a few low-frequency
spherical harmonics, producing a set of “harmonic images”. It is
then shown that the dimensionality of the set of harmonic images
can be further reduced by utilizing the Fast Fourier Transform.
An eigendecomposition is then applied in the spectral domain
thus relieving the computational burden. Experimental results
are presented to compare the proposed algorithm to the true
eigendecomposition, as well as assess the computational savings.

Index Terms—Eigenspace Decomposition, pose estimation, il-
lumination variation, spherical harmonics, Fourier transforms.

I. INTRODUCTION

Over the last several decades, classification of three-
dimensional (3-D) objects from two-dimensional (2-D) images
under a wide range of illumination conditions has become an
important issue in the computer vision community. Specific
examples include face recognition, target tracking, automated
assembly and inspection, robot localization, and human robot
interaction. Subspace methods represent one computationally
efficient approach for dealing with this class of problems.
Subspace methods, also referred to as eigenspace methods,
principal component analysis, or the Karhunen-Loeve transfor-
mation [1], [2], have been applied in a variety of application
domains. All of these applications are based on the fact
that a set of highly correlated images can be approximately
represented by a small set of eigenimages [3]–[5]. Once the
principal eigenimages of an image data set have been deter-
mined, using these eigenimages is computationally efficient for
the on-line classification of 3-D objects.

Unfortunately, the off-line calculation for determining the
appropriate subspace dimension, as well as the principal eigen-
images themselves is computationally expensive. This draw-
back has been addressed using several different approaches
based on either iterative power methods, conjugate gradient

algorithms, or eigenspace updating [6]–[8]. A fundamentally
different approach was proposed by Chang et al. [9] where
the authors show that the Fourier transform can be used
to approximate the desired subspace dimension, as well as
the principal eigenimages if the image data set is correlated
in one-dimension. This result has recently been extended to
correlation in two and three-dimensional orientations under
ambient lighting conditions by utilizing spherical harmonics
and Wigner-D functions in place of the Fourier transform [10]–
[12].

It has been shown empirically that the set of images
of a convex largely diffuse object under a wide range of
illumination conditions and a fixed pose approximately lies
within a nine-dimensional (9-D) linear subspace [13], [14].
This result was analytically verified in [15], [16] by expanding
the Lambertian kernel in a series of spherical harmonics.
The principle eigenmodes of the set of images can then be
calculated by evaluating a set of spherical harmonics at the
surface normals of the object and applying standard ray-
tracing techniques. In the current work, we present an efficient
method to compute the principal eigenimages when the set of
images contains variation in both illumination and pose of the
object. We treat each image of the object under a different
illumination condition and fixed pose as a sample on the
surface of the 2-sphere (S2) and utilize spherical harmonics to
reduce the dimensionality. Rather than attempting to evaluate
the spherical harmonics at the surface normals however, we
expand the image data itself in a series of spherical harmonics,
resulting in a set of “harmonic images”. We show that for most
objects, a significant amount of the energy in a set of images
of an object under a wide range of illumination conditions
and a fixed pose is captured by the first few low-frequency
spherical harmonics. Furthermore, we place no restriction on
the convexity or reflectance model of the object. We then show
that the eigendecomposition of the entire data set (variation in
illumination and pose) can be efficiently computed by applying
Chang’s eigendecomposition algorithm to the resulting set of
harmonic images.

The remainder of this paper is organized as follows. In
Section II, the fundamentals needed to apply an eigende-
composition to a related image data set is explained, much
of which is discussed in [9]. Section II also gives a brief
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overview of related previous work. In Section III, we give
a brief introduction to spherical harmonics and discuss the
problem of reducing the dimensionality of the image data in
the illumination dimension. In Section IV a brief overview of
Chang’s eigendecomposition algorithm is provided. We then
use this to develop a computationally efficient algorithm for
estimating the principle eigenimages of a data set due to
variation in illumination and pose in Section V. Section VI
provides some experimental results with conclusions and future
work discussed in Section VII.

II. PRELIMINARIES

A. Mathematical Description

In this work, a gray-scale image is described by an h×v ar-
ray of square pixels with intensity values normalized between 0
and 1. Thus an image is represented by a matrix X ∈ [0, 1]h×v .
The image X is then “row-scanned” to obtain the image vector

f of length m = hv, i.e., f = vec(X T ) ∈ R
hv×1. The image

data matrix of a set of images X1, . . . ,Xn is an m×n matrix,
denoted X , and defined as X = [f1, · · · , fn], where typically
m > n with fixed n [9].

In this paper, we consider sets of images of a known (rigid)
object under different pose and illumination conditions. The
objects are placed at the center of an illumination sphere,
while the camera is moved to discrete locations on a line
of constant co-latitude. At each of the discrete locations,
images of the object are captured under a dense but finite
set of illumination conditions generated from a single point
light source at infinity arriving from a distinct illumination
direction. Under these assumptions, the image vector can be
parameterized by f = f(ξi, r) where r ∈ {0, . . . , a − 1}
represents the rth pose of the object and ξi, i ∈ {0, . . . , b−1},
is the unit vector pointing at the angle of co-latitude βi ∈ (0, π)
measured down from the upper pole, and the angle of longitude
αi ∈ [0, 2π), which is the parameterization of the ith direction
of the point light source at each pose. An example of this
procedure is shown in Fig. 1 where the illumination directions
are determined using the Hierarchical Equal Area isoLatitude
Pixelization (HEALPix) sampling pattern [17]. Using this
notation, the image data matrix is constructed as

X = [f(ξ0, 0), f(ξ1, 0), . . .f(ξb−1, 0),
f(ξ0, 1),f(ξ1, 1), . . . ,f(ξb−1, 1), . . . ,
f(ξ0, a − 1), f(ξ1, a − 1), . . . ,f(ξb−1, a − 1)],

(1)
where the first b columns of X correspond to a single pose
of the object under b different illumination conditions. The
average image vector is then subtracted from the image data
matrix X to generate the zero mean image data matrix X̂ ,
which has the interpretation of an “unbiased” image data
matrix.

One approach to computing the eigenimages of X̂ is to
utilize the singular value decomposition (SVD). The thin SVD
of X̂ is given by X̂ = Û Σ̂V̂ T where Û ∈ R

m×n is right
orthogonal, i.e., ÛT Û = I , V ∈ R

n×n is orthogonal, and Σ =
diag(σ1, · · · , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The columns
of Û , denoted ûi, i = 1, . . . , n, are the left singular vectors or

Fig. 1. A graphical depiction of the proposed method of acquiring images
from a dense set of illumination conditions at each pose. The object is placed
at the center of the illumination sphere with the camera moving along a
line of constant co-latitude. The black dots on the sphere represent different
illumination conditions. As the camera moves along the line of co-latitude,
an image of the object is captured under each of the distinct illumination
conditions.

eigenimages of X̂ , while the columns of V̂ , denoted v̂i, i =
1, . . . , n are referred to as the right singular vectors of X̂ . The
left singular vectors of X̂ are computed as the eigenvectors
of the covariance matrix X̂X̂T . In practice, the left singular
vectors ûi are not known or computed exactly, and instead
estimates ˜̂u1, . . . , ˜̂uk, denoted ˜̂

Uk that form a k-dimensional
basis, are used. The accuracy of a practical implementation of
subspace methods then depends on three factors: the properties
of X̂ , the dimension k, and the quality of the estimates ˜̂

Uk.
The measure we will use for quantifying the quality of these
estimates is referred to as the energy recovery ratio and defined
as [9], [18]

ρ(X̂, Ûk) =

k∑
i=1

||˜̂uT
i X̂||2

‖X̂‖2
F

. (2)

Note that if the ˜̂ui are orthonormal, ρ ≤ 1.

B. Related Work

The principal calculation required with subspace methods
is the precomputation of estimates of the left singular vectors
˜̂
Uk of the m × n matrix X̂ . This is a very computationally
expensive operation when m and n are large. This drawback
has been addressed using several different approaches based on
either iterative power methods, conjugate gradient algorithms,
or eigenspace updating [6]–[8]. A fundamentally different
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approach was proposed by Chang et al. [9] where the authors
showed that if the image data matrix was correlated in one-
dimension, then the right singular vectors are approximately
spanned by a few low frequency Fourier harmonics. As a
result, the Fourier transform of the image data matrix along
the temporal dimension may be used to estimate the desired
subspace dimension k, as well as the principal eigenimages Ûk

(refer to Section IV). When variation in pose under ambient
lighting conditions is considered, the results of [9] can be
extended to correlation in higher dimensions by replacing
Fourier harmonics with spherical harmonics and Wigner-D
functions [10]–[12]. In the current work, we are interested
in computing the eigenimages of a set of images containing
variation on both pose as well as illumination conditions. To
this end, we first show that the set of images of an object
under different illumination conditions and a fixed pose can
be represented by a small set of harmonic images using
the spherical harmonic transform (SHT). An introduction to
spherical harmonics and the SHT along with dimensionality
reduction in the illumination dimension is presented in the
next section.

III. SPHERICAL HARMONICS

A. Introduction

Spherical harmonics, and the SHT, have been applied to a
variety of application domains over the last several decades.
Specific examples include solving PDE’s for weather and
climate models [19], geophysics [20], [21], quantum mechan-
ics [22], 3-D model retrieval [23], as well several applications
in computer vision [10]–[12], [15], [16], [24]–[27].

B. Discrete Spherical Harmonic Transform

The development of a fast discrete SHT has been an active
research area over the last decade [17], [19], [28], [29].
Analogous to the Fourier basis for functions defined on the
line or circle, under proper normalization, spherical harmonics
satisfy

∫ π

0

∫ 2π

0

Yp1,q1(Yp2,q2)
∗dα sin(β)dβ = δp1p2δq1q2 , (3)

where the superscript ∗ is the complex conjugate, i.e., they
provide an orthonormal basis for functions defined on S2.
Therefore, a real valued band-limited function f(ξi, r) whose
domain is L2(S2) may be may be expanded in a series of
spherical harmonics as

f(ξi, r) =
pmax∑
p=0

∑
|q|≤p

fr
p,qYp,q(ξi), (4)

where L2(·) is the Hilbert space of square integrable functions,
f(ξi) ∈ [0, 1] is a single pixel of the image data vector
f(ξi, r), Yp,q(ξi) is the spherical harmonic of degree p and
order q, fr

p,q is the corresponding harmonic coefficient at pose
r, and lmax is related to the bandwidth of the function. Recall
that f(ξi, r) is an image of the object under a illumination

condition ξi and pose r. The harmonic coefficients fr
p,q are

calculated using

fr
p,q =

4π

b

b−1∑
i=0

wif(ξi, r)Yp,q(ξi), (5)

where wi is a quadrature weight and Yp,q(ξi) is the real-valued
spherical harmonic defined by

Yp,q(ξi)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2κp,qcos(qαi)Pp,q(x) if q > 0

√
2κp,qsin(|q|αi)Pp,|q|(x) if q < 0

κp,0Pp,0(x) if q = 0

. (6)

In (6), Pp,q(x) is the associated Legendre polynomial of degree
p and order q, x = cos(βi), and κp,q is a normalization factor.

C. Dimensionality Reduction in the Illumination Dimension

As mentioned in Section I, we first reduce the dimensional-
ity of the image data due to variation in illumination conditions
under a fixed pose. For this development, notice that fr

p,q

is the harmonic coefficient for a single pixel in the set of
images due to a change in illumination conditions at the rth

pose. If all m pixels of the set of images due to a change in
illumination conditions at the rth pose are expanded using (5),
then fr

p,q ∈ R
m×1 represents a “harmonic image” of degree p

and order q at pose r.
As discussed in [13]–[16], the set of images of a (largely

diffuse) convex object under variations in illumination con-
ditions and fixed pose approximately lie within a 9-D linear
subspace. While we place no restrictions on the convexity or
reflectance model of the objects in this work, we show that
most of the energy of a set of images of an arbitrary object
under variations in illumination conditions and fixed pose is
captured by a small set of spherical harmonics. Therefore, by
truncating the harmonic transform in (5) to p = 2, we obtain a
set of nine harmonic images. These nine harmonic images are
capable of recovering a significant amount of the total energy
in the set of images when only variations in the illumination
conditions are considered.

To illustrate this, CAD generated ray-traced images of
20 different objects were captured from 90 different poses
with 48 different light source locations at each pose. An
example image of each object is shown in Fig. 2 (the CAD
models were provided by [30]). For each of the 90 different
poses, the harmonic transform in (5) was used to reduce the
dimensionality of the data from 48 images to 9, 16, 25, and
36 harmonic images, i.e., p = 2, 3, 4, and 5 respectively. The
harmonic images were then orthonormalized and the energy
recovery ratio defined in (2) was used to compute how much
energy each of the four subspaces are capable of recovering at
each pose. The minimum amount of energy recovered across
all 90 poses for all 20 objects is depicted in Fig. 3. Notice that
with the exception of objects 17, 18, and 20, over 95% of the
energy is recovered by the 9-dimensional subspace for all 90
poses. Furthermore, adding additional harmonic images does
not significantly increase the amount of energy recovered.
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Fig. 2. Ray-traced CAD models courtesy of Kator Legaz [30]. Each object is
sampled as discussed in Section II at a resolution of 128 × 128. The objects
are ordered from left to right, then top to bottom.

Fig. 3. The minimum amount of energy recovered by 9, 16, 25, and 36
orthonormalized harmonic images for each object under all 90 test poses. With
the exception of objects 17, 18, and 20, over 95% of the energy is recovered
by the 9-D linear subspace for all 90 poses.

IV. AN OVERVIEW OF CHANG’S ALGORITHM

A. Introduction

This section gives an overview of one of the fastest known
algorithms for estimating the first k eigenimages of an image
data set correlated in one-dimension, the details of which can
be found in [9]. Consider capturing images of the object as
discussed in Section II, under a single illumination condition
at each pose. Capturing images in this manner results in a one-
dimensionally correlated image data matrix X . Consider the
special case where X is constructed such that the image f i+1

is obtained from f i by a planar rotation of 2π/n, then the
correlation matrix XT X is a circulant matrix with circularly
symmetric rows. For this special case, the eigendecomposition
of XT X is given by the Discrete Fourier Transform (DFT),
and an unordered SVD of X can be obtained for this special
case by letting V = H , where H is the “real” Fourier matrix.

In other words, the right singular vectors of X in this case are
given by pure sinusoids of frequencies that are multiples of
2π/n radians. The left singular vectors (eigenimages) can then
be obtained by computing XH = UΣ which can be computed
efficiently using Fast Fourier Transform (FFT) techniques [9].

B. Chang’s Eigendecomposition Algorithm

While the above analysis does not hold for arbitrary image
data sets, it has been shown in [9] that the analytical expres-
sions for planar rotations serve as a good approximation for
the eigendecomposition of image data sets correlated in one-
dimension. In general, for image sequences correlated in one-
dimension, the following two properties can be observed [9],
[18].

1) The right singular vectors of X are well-approximated
by sinusoids of frequencies that are multiples of 2π/n
radians, and the power spectra of the right singular vec-
tors consist of a narrow band around the corresponding
dominant harmonics.

2) The dominant frequencies of the power spectra of the
(ordered) singular vectors increase approximately lin-
early with their index.

These two properties indicate that the right singular vectors
of an image data set correlated in one-dimension are approx-
imately spanned by the first few low frequency harmonics.
Therefore, by projecting the image data set X onto these first
few low frequency harmonics and computing the eigendecom-
position in the spectral domain, the computational expense as-
sociated with computing the SVD can be significantly reduced.

Chang’s algorithm makes use of the above two properties
to estimate the subspace dimension k as well as the principal
eigenimages Ũk of the image data matrix X . It was shown
in [9] that if the power spectra of the first j right singular
vectors of X are restricted to the band [0, 2πj/n], then for
ρ(XT , Hj) ≥ μ, the quantity ρ(X, Ũk) will exceed μ for
some k ≤ j, where Hj is the matrix containing the first j
columns of H , and μ is a user specified value. This inequality
shows that the energy recovery ratio as computed using the first
few low frequency harmonics of H provides a lower bound
on the energy recovery ratio as computed using the estimated
eigenimages. Furthermore, this bound is shown to be extremely
tight in most cases [9], with a tight upper bound given by the
energy recovery ratio as computed by the “true” eigenimages.
In other words, the first k estimated eigenimages Ũk of the
matrix product XHj are shown to be very good estimates of
Uk.

V. FAST EIGENDECOMPOSITION ALGORITHM

Our objective is to estimate the first k principal eigenimages
˜̂
Uk of X̂ such that ρ(X̂,

˜̂
Uk) ≥ μ, where μ is the user

specified energy recovery ratio. To this end, we make use of
two observations, the first is that reducing the dimensionality
of the data in the illumination dimension can be efficiently
done using the analysis provided in Section III resulting in
a set of harmonic images f r

p,q at each pose. Note that each
harmonic image corresponds to a spherical harmonic of degree
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p and order q at each of the a poses. Therefore, each set of
harmonic images corresponding to a given value of p and q
across all r can be concatenated to form the matrix

X̂p,q = [f0
p,q, f

1
p,q, · · · ,fa−1

p,q ]. (7)

Furthermore, because the harmonic expansion is truncated,
there will be nine such matrices in total, each of size R

m×r.
Each of the nine matrices in (7) now only contain variations

due to a change in pose for a given spherical harmonic
coefficient, and thus are correlated in a single dimension.
Therefore, the second observation that can be made is that
the dimensionality of the data in the temporal dimension can
be reduced by applying the results observed by Chang et al. to
each of the nine matrices X̂p,q . In other words, we can assume
that the right singular vectors of X̂p,q are well-approximated
by a few low-frequency Fourier harmonics, and the FFT can
be used to determine ρ(X̂T

p,q, Hji) ≥ μt for each of the nine
p, q combinations, where μt is a user specified value for the
energy recovery along the temporal dimension for each of the
nine harmonics. Notice that ji, i = 1, 2, . . . , 9, corresponds
to the number of Fourier harmonics required for the ith (p, q)
combination to achieve the user specified energy recovery ratio
μt. Let Zp,q

ji
denote the matrix X̂p,qHji ∈ R

m×ji for each
(p, q) combination, and construct the reduced order matrix

X̄ = [Z0,0
j1

, Z1,−1
j2

, Z1,0
j3

, Z1,1
j4

, Z2,−2
j5

, · · · , Z2,2
j9

], (8)

that effectively recombines the image data due to variation
in both illumination and pose into a single matrix. Note that
the matrix X̄ has considerably fewer columns than that of X̂ .
Furthermore, because most SVD algorithms require O(mn2)
flops, computing the dominant left singular vectors ˜̂

Uk of X̄
by means of the SVD results in excellent estimates of Ûk at
a significant computational savings. The entire algorithm is
summarized as follows:

EIGENDECOMPOSITION ALGORITHM SUMMARY

1) Use the SHT to compute the matrices
Pr = [fr

0,0, f
r
1,−1, f

r
1,0, f

r
1,1, f

r
2,−2, · · · ,fr

2,2] for all r.
2) Construct the matrices X̂p,q by concatenating each of the

harmonic images fr
p,q in Pr for each r as shown in (7).

3) For each of the nine matrices X̂p,q , determine the small-
est number ji such that ρ(X̂T

p,q, Hji
) ≥ μt, where μt is

the user specified energy recovery ratio in the temporal
dimension, and i = 1, 2, . . . , 9 corresponds to the ith

matrix X̂p,q .
4) Let Zp,q

ji
denote the matrix X̂p,qHji and construct the

matrix X̄ defined in (8). Note that the matrices Zp,q
ji

can
be efficiently computed using the FFT.

5) Compute the SVD of X̄ = ˜̂
U

˜̂Σ ˜̂
V .

6) Return ρ(X̂,
˜̂
Uk) ≥ μ. Where μ is the user specified

energy recovery ratio.

VI. EXPERIMENTAL RESULTS

A. Test Data

The proposed algorithm detailed in Section V was tested on
each of the objects in Fig. 2. Recall that each of the objects
was sampled at a resolution of 128 × 128 from 90 different
poses under 48 different light source locations at each pose.
To accurately represent real objects using CAD models, the
reflectance model used accounts for material properties such
as surface roughness and surface hardness, and incorporates a
mix of diffuse and specular reflection using the Cook-Torrance
reflectance model [31]. The mean image was then subtracted
to construct the image data matrix X̂ . The parameters used in
the algorithm were μt = 0.95 for the temporal reduction and
μ = 0.8 for the total energy recovered. The true SVD of the
image data matrix X̂ was also computed using MATLAB for
a ground truth comparison. The quality measures outlined in
Section II were used to evaluate the accuracy of the estimated
subspace.

B. Performance and Computational Savings

Table I shows the required subspace dimension k and the
time required to estimate the first k left singular vectors ˜̂

Uk

for each object in Fig. 2 to meet the user specified energy
recovery ratio μ = 0.8. This result is compared to the true
SVD as computed by MATLAB. Table I also shows the column
dimension of X̄ in step 5 of the proposed algorithm. Note
that for the current test data, the number of columns in X̂
is 4320, whereas for all 20 objects in Fig. 2, the number of
columns in X̄ never exceeds 576, thus resulting in significant
computational savings.

TABLE I
THE REQUIRED SUBSPACE DIMENSION k AND THE TIME REQUIRED TO

ESTIMATE THE FIRST k LEFT SINGULAR VECTORS FOR EACH OBJECT TO
MEET THE USER SPECIFIED ENERGY RECOVERY RATIO μ = 0.8. THE

RESULTS ARE COMPARED AGAINST THE TRUE SVD USING MATLAB. THE
TABLE ALSO SHOWS THE COLUMN DIMENSION OF X̄ .

Object Dim. k Time [min.] Col. Dim. of X̄True Proposed True Proposed
1 17 17 31.274 0.111 378
2 9 9 25.528 0.070 162
3 13 13 32.342 0.116 379
4 15 15 29.955 0.137 474
5 10 10 31.564 0.076 229
6 14 15 30.954 0.181 576
7 16 17 27.874 0.099 239
8 31 31 31.551 0.152 446
9 19 19 30.842 0.162 502
10 14 14 31.597 0.154 448
11 22 22 31.736 0.117 356
12 20 20 31.825 0.188 561
13 8 8 21.117 0.114 254
14 12 12 30.830 0.107 270
15 23 23 30.776 0.153 472
16 27 27 21.272 0.109 249
17 196 217 22.857 0.183 552
18 20 20 15.501 0.093 173
19 25 25 21.489 0.152 439
20 33 46 21.433 0.099 209

Mean 27.616 0.129 368.400
Min. 15.501 0.070 162
Max. 32.342 0.188 576
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Fig. 4 shows the difference in energy recovered by the true
SVD and the proposed algorithm for all objects in Fig. 2.
As can be seen from the figure, with the exception of object
20, there is less than a 1% difference in how much energy
the proposed algorithm is capable of recovering compared to
the true SVD. The subspace dimension used for the energy
calculation is outlined in column 2 of Table I. As is apparent
from Table I and Fig. 4, the estimates ˜̂

Uk using the proposed
algorithm, are very good approximations to the left singular
vectors Ûk at a significant computational savings.

Fig. 4. The difference in energy recovered by the true SVD and the proposed
algorithm for all objects in Fig. 2. The subspace dimension used for the
calculation is listed in column 2 of Table I

VII. SUMMARY

This paper has presented a new algorithm to efficiently
estimate the eigendecompositon of an image data set generated
due to a change in both illumination and pose. The algorithm
is based on using the spherical harmonic transform to reduce
the dimensionality of the data due to a change in illumination
conditions, generating a set of harmonic images. The harmonic
images are then projected onto a few low-frequency Fourier
harmonics for a reduction in data due to a change in pose.
In addition to significant computational savings as compared
to the direct SVD approach, it has been shown that the
estimated eigenimages are very close to the true eigenimages
as computed by the direct SVD.
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