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Abstract— Genetic  algorithm  (GA)  applied  to  feature 
selection and model optimization improved the performance of 
robust  mathematical  models  such  as  Bayesian-regularized 
neural  networks  (BRANNs)  and  support  vector  machines 
(SVMs)  on  different  drug  design  datasets.  The  selection  of 
optimum  input  variables  and  the  adjustment  of  network 
weights  and biases  to  optimum values to  yield generalizable 
predictors were optimized by combining Bayesian training and 
GA  based-variable  selection.  Similarly,  kernel  and 
regularization parameters of SVMs were properly set by GA 
optimization.  The predictors were more accurate and robust 
than  previous  published  models  on  the  same  datasets.  In 
addition,  feature  selection  over  large  pools  of  molecular 
descriptors  allowed  determining  the  structural  and  atomic 
properties  of  the  ligands  that  are  ruling  the  biological 
interactions with the target. 

Keywords—kernel-based methods, feature selection, enzyme 
inhibition, structure-activity relationship, in silico drug design.

I. INTRODUCTION

One of the main challenges in today’s drug design is the 
discovery  of  new  biologically  active  compounds  on  the 
basis  of  previously  synthesized  molecules.  Quantitative 
structure-activity relationship (QSAR) is an indirect ligand-
based  approach  which  models  the  effect  of  structural 
features  on  biological  activity.  This  knowledge  is  then 
employed  to  propose  new  compounds  with  enhanced 
activity  and  selectivity  profile  for  a  specific  therapeutic 
target  [1].  QSAR  methods  are  based  entirely  on 
experimental  structure–activity  relationships  for  enzyme 
inhibitor  or  receptor  ligands.  In  comparison  to  direct 
receptor-based  methods,  which include  molecular  docking 
and  advanced  molecular  dynamics  simulations,  QSAR 
methods do not strictly require the 3D-structure of a target 
enzyme  or  even  a  receptor–effector  complex.  They  are 
computationally not demanding and allow establishing an in 

silico  tool  from  which  biological  activity  of  newly 
synthesized molecules can be predicted.

3D-QSAR  methods,  especially  comparative  molecular 
field  analysis  (CoMFA)  [2]  and  Comparative  Molecular 
Similarity  Indices  Analysis,  (CoMSIA)  [3]  are  nowadays 
used widely in drug design. The main advantages of these 
methods are that they are applicable to heterogeneous data 
sets, and they bring a 3D mapped description of favorable 
and unfavorable interactions, according to physico-chemical 
properties.  In this sense, they provide a solid platform for 
retrospective hypotheses by means of the interpretation of 
significant  interaction  regions.  However,  some 
disadvantages  of  these  methods  are  related  to  the  three-
dimensional  information  and  alignment  of  the  molecular 
structures,  since  there  are  uncertainties  about  different 
binding  modes  of  ligands,  and  uncertainties  about  the 
bioactive conformations [4]. 

CoMFA and CoMSIA have emerged as the 3D-QSAR 
methods most embraced by the scientific community today; 
however, current reports on QSAR encompass the use of too 
many  forms  of  the  molecular  information  and  statistical 
correlation  methods.  The  structures  can  be  described  by 
physico-chemical parameters [5], topological descriptors [6] 
or  quantum chemical  descriptors  [7],  etc.  The  correlation 
can be obtained by linear methods or non-linear predictors 
such  as  artificial  neural  networks  (ANNs)  [8]  and  radial 
basis function-based support vector machines (RBF-SVM) 
[9]. Unlike CoMFA, CoMSIA, and linear methods, ANNs 
and RBF-SVM are able to describe nonlinear relationships, 
which should bring to a more realistic approximation of the 
structure-relationship paradigm, since interactions between 
the ligand and its biological target must be nonlinear.

Besides  the  complex  nature  of  biological  interactions, 
the  enormous  variety  of  molecular  descriptors  already 
proposed  to  correlate  with  activity  arise  an  undetermined 
problem where undesirable data overfitting can result. This 
problem can be handled by implementing feature selection 
routines  that  determines  relevant  descriptors.  The  present 
paper  describes  the  application  of  Bayesian-regularized 
genetic  neural  networks (BRGNNs) and genetic algorithm 
(GA)-optimized SVM (GA-SVM) for feature selection and/
or  model  optimization  in  drug  design  area.  Firstly,  we 
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describe  BRGNN  and  GA-SVM  approaches.  Then,  we 
expose their applications to model different own collected 
drug-target interaction data.

II. MATERIAL AND METHODS

A. DATA SET 

In order to study affinities of different series of ligands, 
biological  activities  were  collected  from  the  literature. 
Activity measurements were taken as affinity constants (Ki) 
and  ligand  concentrations  for  the  50%  (IC50)  and  90% 
(IC90)  inhibition  of  the  targets.  For  modeling,  IC50and 
IC90were  converted  in  their  negative  logarithmic  values 
(pIC50and  pIC90)  which  are  measurement  of  drug 
effectiveness,  it  is  the  functional  strength  of  the  ligand 
towards the target. 

Prior to molecular descriptor calculations, 3D structures 
of  the  studied  compounds  were  geometrically  optimized 
using  the  semiempirical  quantum-chemical  methods 
implemented  in  the  MOPAC  6.0  computer  software  by 
Frank J. Seiler Research Laboratory [10]. Datasets include: 
cancer  therapy  targets,  HIV  target;  Alzheimer's  disease 
target,   ion  channel  blockers,  antiprotozoan  target.  ion 
channel proteins  and protein receptor. 

Different set of molecular descriptors were computed for 
encoding  the  structural  information  of  the  targets. 
Intercorrelation  among variables  was  eliminated  and  only 
independent or quasi-independent variables were included in 
the GA search.

B. BAYESIAN-REGULARIZED GENETIC NEURAL 

NETWORKS

Back-propagation  ANNs  are  data-driven  models the 
sense  that  their  adjustable  parameters  are  trained  to 
minimize some network performance score  F (often equal 
to MSE):

(1)

In this equations MSE is the mean of the sum of squares of 
the network errors, N is the number of compounds, yi is the 
predicted  biological  activity  of  the  compound i,  ti  is  the 
experimental biological activity of the compound i. 
Often predictors  can memorize  the training examples,  but 
have  not  learned  to  generalize  to  new  situations.  The 
Bayesian framework for ANNs is based on a probabilistic 
interpretation of network training to improve generalization 
ability of the classical networks. In contrast to conventional 
network training, where an optimal set of weights is chosen 
by  minimizing  an  error  function,  the  Bayesian  approach 
involves  a  probability  distribution of  network  weights.  In 
Bayesian-regularized artificial neural networks (BRANNs), 
Bayesian approach yields a posterior distribution of network 
parameters, conditional on the training data and predictions 

are expressed in terms of expectations with respect  to this 
posterior distribution [11, 12].
Assuming a set of pairs D={xi, ti}, where i= 1…N is a label 
running  over  the  pairs,  the  data  set  can  be  modeled  as 
deviating  from  this  mapping  under  some  additive  noise 
process (vi):

 (2)

If  vis modeled as zero-mean Gaussian noise with standard 
deviation  �v,  then  the  probability  of  the  data  given  the 
parameters w is:

  (3)

where  Mis the particular neural network model used, �= 1/ 

�v
2and the normalization constant is given by ZD(�) = (  /�  

�)N / 2.  P(D|w, ,M)� is called the likelihood. The maximum 
likelihood  parameters  wML(the  what  minimises  MSE) 
depends sensitively on the details  of the noise in the data 
[11, 12].

For  completing  the  interpolation  model,  a  prior 
distribution  must  be  defined  which  embodies  our  prior 
knowledge on the sort  of mappings that are “reasonable”. 
Typically this is quite a broad distribution, reflecting the fact 
that  we  only  have  a  vague  belief  in  a  range  of  possible 
parameter values. Once we have observed the data, Bayes’ 
theorem can be used to update our beliefs, and we obtain the 
density. As a result, the posterior distribution is concentrated 
on  a  smaller  range  of  values  than  the  prior  distribution. 
Since a neural network with large weights will usually give 
rise  to  a  mapping  with  large  curvature,  we  favor  small 
values for the network weights. At this point, we defined a 
prior that expresses the sort of smoothness the interpolant is 
expected to have. The model has a prior of the form:

 (4)

where  represents  the inverse�  of the distribution and the 

normalization constant is given by ZW( ) = (  / )� � �  N / 2. 

MSW is the mean of the sum of the squares of the network 
weights  and  is  commonly  referred  to  as  a  regularising 
function [11, 12].

Considering the first  level  of  inference,  if   and  � �are 
known, then posterior probability of the parameters w is:

(5) 

where P(w|D, , ,M) � � is the posterior probability, that is the 
plausibility  of  a  weight  distribution  considering  the 
information of the data set in the model used,  P(w| ,M)  � is 
the  prior  density,  which  represents  our  knowledge  of  the 
weights  before  any  data  is  collected,  P(D|w, ,M)  � the 
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likelihood  function,  which  is  the  probability  of  the  data 
occurring,  given  the  weights  and  P(D| , ,M)  � � is  a 
normalization  factor,  which  guarantees  that  the  total 
probability is 1.

Considering  that  the  noise  in  the  training  set  data  is 
Gaussian and that  the prior distribution for the weights is 
Gaussian, the posterior probability fulfills the relation: 

(6)

where  ZF  depends  of  objective  function  parameters.  So 
under this framework, minimization of F is identical to find 
the (locally) most probable parameters. 

In short, Bayesian regularization involves modifying the 
performance function (F) defined in Equation 5, which is 
possible improving generalization by adding an additional 
term that  weights by penalizing overly large magnitudes.

MSWMSEF ×+×= αβ       (7)
The relative size of the objective function parameters �  

and  � dictates the emphasis for getting a smoother network 
response.  MacKay’s  Bayesian  framework  automatically 
adapts  the  regularization  parameters  to  maximize  the 
evidence of the training data [11, 12].

The  joining  of  BRANN  and  GA  feature  selection 
(BRGNN)  increases  the  possibilities  of  BRANNs  for 
modeling pharmaceutical data as reported by Caballero and 
Fernandez   [13].  This  method  implemented  in  Matlab 
environment [14] is relatively fast and considers the whole 
data set in training process. For other hybrids of ANN and 
GA the  use  of  the  mean  square  error  as  fitness  function 
could lead to  undesirable  well  fitted but poor generalized 
networks  as  algorithm  solutions.  In  this  connection, 
BRGNN avoids  such  results  by  two aspects:  (1)  keeping 
network architectures as simple as possible inside the GA 
framework and (2) implementing Bayesian regulation in the 
network training function.

Unlike  to  other  GA  approaches,  the  objective  of  our 
algorithm is not to obtain a sole optimum model. It yields a 
sub-population of well fitted models, with  MSE lower than 
threshold  value,  where  the  Bayesian's  regularization 
guaranties good generalization abilities (Figure 1). This is 
due  to  we  used  MSE  of  data  training  instead  of 
crossvalidation or test set  MSE values as cost function and 
therefore  the  optimum  model  cannot  be  directly  derived 
from the  best  fitted model  yielded  by the  genetic  search. 
However, from crossvalidation experiments throughout the 
subpopulation of well fitted models the most generalizable 
network can be derived with the highest predictive power. 
This process also assures to avoid chance correlations. This 
approach  has  shown to  be  highly  efficient  in  comparison 
with  crossvalidation-based  GA  approach  since  only 
optimum models, according to the Bayesian regularization, 
are crossvalidated at the end of the routine and not all the 
model generated throughout all the search process.

Figure 1. Flow diagram describing the strategy for the genetic 
algorithm implemented in the BRGNNs. 

C. Genetic Algorithm -optimized Support Vector  

Machine (SVM) 

SVM is a machine learning method, which has been used 
for  many kinds of  pattern  recognition  problems [15,  16]. 
First, the input vectors are mapped onto one feature space 
(possible with a higher dimension). Secondly, a hyperplane, 
which can separate two classes,  is  constructed within this 
feature  space.  Only  relatively  low-dimensional  vectors  in 
the input space and dot products in the feature space will 
involve  by  a  mapping  function.  SVM  was  designed  to 
minimize structural risk whereas previous techniques were 
usually  based  on  minimization  of  empirical  risk.  The 
mapping  into  the  feature  space  is  performed  by  a  kernel 
function.   There  are  several  parameters  in  the  SVM, 
including the kernel function and regularization parameter. 
GA-based SVM (GA-SVM) algorithm was implemented for 
selecting  optimum  subset  of  input  training  vectors  and 
setting the two SVM parameters,  regularization  parameter 
and  width  of  the  RBF  kernel,  to  optimum  values.  The 
toolbox used to implement the SVM with RBF kernel (RBF-
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SVM) was LIBSVM for Matlab by Chang and Lin [17] that 
can  be  downloaded  from: 
http://www.csie.ntu.edu.tw/cjlin/libsvm/. 
GA  was  applied  for  selection  of  the  optimum  subset  of 
variables  and the optimization of regularization parameter 
and width of an RBF kernel.   We simply concatenated  a 
representation of the parameters to a chromosome encoding 
the subset of variables used for SVM training [18]. Usually 
it is not necessary to consider any arbitrary value but only 

certain discrete values with the form: n× 10k, where n=1…9 
and  k=-4…4.  So,  these  values  can  be  calculated  by 
randomly  generating  n and  k values  as  integers  between 
(1…9) and (-4…4), respectively. In this way, GA optimized 
regularization parameter and the width of an RBF kernel.

A three-fold-out crossvalidation assessed model’s quality 
throughout the GA search. Three data subsets were created, 
two subsets are generated in the crossvalidation process for 
training the SVM and another subset is then predicted. This 
process is repeated until all subsets have been predicted. The 
GA  routine  minimized  the  misclassification  percent  of 
three-fold-out  (MCPTFO)  crossvalidation.  GA-SVM  was 
implemented in Matlab environment [14]. 

III. RESULTS AND DISCUSSION

A. Anti-cancer targets

In  the  context  of  cancer  therapy  targets,  models  were 
developed  to  predict  the  inhibition  of  farnesyl  protein 
transferase  [19],  matrix  metalloproteinase  [20],  multiple 
targets,  cyclin-dependent  kinase  [21],  multiple  targets 
antagonists for the luteinizing hormone-releasing hormone 
(LHRH) receptor [22]. Results from BRGNN modeling of 
cancer-target  datasets  appear  in  Table  1.  Numbers  of  f 
selected  eatures  varied  accordingly  to  the  size  and 
variability of each data set. The selected features correspond 
to the molecular descriptors which best describe the affinity 
of the ligands towards the targets. Models were validated by 
crossvalidation  or/and  test  set  prediction.  Validation 
accuracies were higher than 65% for all datasets. 

Cyclin-dependent  kinase,  LHRH  and  matrix 
metalloproteinase  inhibitions  were  modeled  using  2D 
molecular  descriptors,  which  resemble  bidimensional 
distributions of atomic properties on the molecular sketch. 
Meanwhile,  farnesyl  protein  transferase  was  modeled  by 
3D-descriptors  encoding distributions of  atomic properties 
on the tridimensional molecular spaces. In the case of the 
later  target,   knowledge  of  the  ligand  binding  mode was 
used. 

It  was noteworthy that  BRGNN trained with chemical 
quantum  descriptors  predicted  LHRH  antagonist  activity 
with  70% accuracy.   Chemical  quantum descriptors  only 
encoded information relative to the electronic states of the 
molecules rather than distribution of chemical groups on the 
structure.  The chemical  homogeneity of the macrolides in 
this  dataset  suggests  a  well  define  and  homogenous 

electronic pattern that was recognized by the networks after 
supervised training.

TABLE 1.Details and Accuracies of the Optimum BRGNNs Models.

Target name Data 
size

Numb. Opt. 
Var.

Validation 
Accuracy

Farnesyl protein transferase 78 7 70%

128 8 75%

Matrix metalloproteinase
 

27-30
a 6 ~70%

a

63-68
b 7 ~80%

b

LHRH(non-peptide) 128 8 75%

LHRH
(erythromycin  A analogs)

38 4 70%

HIV-1 protease 55 4 70%

Potassium channel 29 3 91%

Calcium channel 60 5 65%

Acetylcholinesterase 
(tacrine analogs)

136 7 74%

Acetylcholinesterase 
(huprine analogs)

41 6 84%

Cruzain 46 5 75%
a. Average values of five models for MMP-1, MMP-2, MMP-3, MMP-9 and MMP-13 matrix 

metalloproteinases.

b. Average values of five models for MMP-1, MMP-9 and MMP-13 matrix metalloproteinases.

Models  of  ligand-target  binding  stability  of  multiple 
kinase and protease, developed on systematical selection of 
combined  features  of  target  and  inhibitors,  successfully 
classified about 80% of more than 1700 and 2200 target-
inhibitor pairs for protease and kinase, respectively (Table 
2).  In  general,  it  was  found  that  hydrophobic  and 
electrostastic  natures  of  the  residues  along  the  sequence 
ruled  target-ligand  inhibitions,  whereas  hydrophobicity, 
resembled  as  polarizability  and  van der  Waals  properties, 
were the most relevant ligand feature ruling the interaction 
with  targets.  Furthermore,  polarizability  also accounts  for 
the deformability of the ligand for interacting with the active 
site. This result also suggests that the higher variability of 
the dataset corresponds to the hydrophobic moieties on the 
ligands  structure.  Predictors  are  available  online  at 
://gibk21.bse.kyutech.ac.jp/llamosa/ProteaseGA-
SVM/ProteaseGA-SVM.html  and 
http://gibk21.bse.kyutech.ac.jp/llamosa/KinaseGA-
SVM/KinaseGA-SVM.html.

B. Acetylcholinesterase inhibition

The loss of the basal forebrain cholinergic system is the 
most significant aspect of neurodegeneration in the brains of 
neurodegenerative Alzheimer's disease (AD) patients, and it 
is thought to play a central role in producing the cognitive 
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impairments  [23].  Therefore,  enhancement  of  cholinergic 
transmission  has  been  regarded  as  one  of  the  most 
promising  methods  for  treating  (AD)  patients.  In  this 
regards,  we  applied  BRGNN  to  model  the 
acetylcholinesterase inhibition by huprine- and tacrine-like 
inhibitors. 

For the huprines [24] and tacrines [25] datasets, the GA 
allows  exploring  a  wide  pool  of  3D-descriptors.  The 
predictive capacity of our selected model was evaluated by 
averaging multiple validation sets generated as members of 
neural  network  ensembles  (NNEs).  The  tacrines  model 
showed  adequate  test  accuracy  about  71%  (Table  1). 
Meanwhile,  the  tacrine  dataset  was  also  evaluated  using 
NNEs averaging. The ensemble averaging provided reliable 
statistics.  When  40  members  were  assembled,  the  NNE 
provides  a  reliable  high  accuracy  of  85%.  The  higher 
accuracy yielded for the huprine-type dataset depends on the 
higher  chemical  variability  of  tacrine-like  inhibitors  in 
comparison to the huprine-like. 

TABLE 2. Dataset Details and Accuracies of Optimum GA-SVM 
Models.

Target name Data 
size

Numb. Opt. 
Var.

Validation 
Accuracy

Voltage-gated K
+

channel
a ~100 3 ~85%

Ghrelin receptor 23 2 93%

Kinase >2200 10 80%

Protease >1700 10 80%

a. Average over three physiological variable models

C. HIV-1 protease inhibition

One of the crucial stages in the HIV-1 life cycle is the 
protease-mediated transformation from the immature,  non-
dangerous  virion,  to  the  mature,  infective  virus.  HIV-1 
protease inhibitors have thus become a major target for anti-
AIDS drug design, its inhibition has been shown to extend 
the length and improve the quality of life of AIDS patients. 
A  large  number  of  inhibitors  have  been  designed, 
synthesized,  and  assayed,  and  several  HIV-1  protease 
inhibitors are now utilized in the treatment of AIDS [26]. 
Cyclic  urea  derivatives  are  among  the  most  successful 
candidates  for  AIDS  targeting  and  BRGNN  was 
successfully applied to model their activities towards HIV-1 
protease  [27].  2D  encoding  was  use  in  order  to  avoid 
tridimensional conformational noise in the dataset  and the 
optimum BRGNN model accurately predicted  IC50 values 
with  70%  accuracy  in  validation  test  for  55  cyclic  urea 
derivatives  (Table  1).  Inhibitory activity  variations  due to 
different substituent groups allocated around de cyclic urea 
scaffold were learned by the networks and the activity of 
new  compounds  were  adequately  predicted.   Here  again, 
despite the information was only 2D relevant, the problem 
was successfully attained by the nonlinear approach.

D. Potassium-channel and Calcium entry blocker  

activities

A model of the selective inhibition of the intermediate-

conductance  Ca2+-activated  K+  (IKCa)  by  some 
clotrimazole  analogs  was  developed  BRGNNs  [28]  . 

K+channels  constitute  a  remarkably  diverse  family  of 
membrane-spanning  proteins  that  have  a  wide  range  of 
functions  in  electrically  excitable  and  unexcitable  cells. 
Several  compounds have  been  shown to block the  IKCa-

mediated Ca2+-activated K+permeability in red blood cells. 
Substitutions  around  triarylmethane  scaffold  yielded  a 

differential  inhibition of  the K+channel  by triarylmethane 
analogs  that  was  encoded  in  2D  descriptors.  BRGNN 
approach  yielded  a  remarkable  accurate  model  describing 
more that  90% of data variance  in validation experiment. 
Interactions  with  the  ion  channel  were  encoded  in 
topological  charge  variables  and  the  homogeneity  of  the 
dataset again assures very high prediction accuracy. 

Similarly,  a  dataset  of  analogs  of  the  widely  used 
dilthiazen  were  gathered  reporting  negative  ionotropic 
activities   [29].  The  experiment  measure  the  myocardial 
activity  of  the  compounds  focusing  cardiac  failure 
treatment.  However,  optimum  BRGNN  model  exhibited 
poor  accuracy  about  65%.  This  low performance  reflexes 
the complexity of the cellular cardiac response which is a 
multifactor  event  ruled  by  membrane  trespassing  and 
receptor affinities  in comparison to single affinity measure 
such as enzyme inhibition.  

E. Antiprotozoan activity

Trypanosoma cruzi, a parasitic protozoan, is the causative 
agent of the Chagas disease or American trypanosomiasis, 
one of the most threatening endemics in Central and South 
America. The primary cysteine protease of T. cruzi, cruzain, 
is expressed throughout the life cycle and is essential for the 
survival  of the parasite  within host  cells.  Thus,  inhibiting 
cruzain  has  become  interesting  for  the  development  of 
potential  therapeutics  for  the  treatment  of  the  Chagas 
disease. The inhibition constant (Ki) of a set of 46 ketone-
based  cruzain  inhibitors  (KCIs)  against  cruzain  was 
successfully  modeled by means of data-diverse ensembles 
of BRGNNs using 2D molecular descriptors with accuracy 
about  75%  [30].  The  BRGNNs  overcame  GA-optimized 
partial  least  squares  models  suggesting  that  functional 
dependence between affinity and the chemical  features  of 
the inhibitors have a strong nonlinear component. 

F. Receptor and ion channel physiological responses

Modeling  of  target  functional  properties  had  been  also 
carried  out  by genetic  algorithm-optimized  QSAR. SVM-
based  function  mapping  and  binary  classification  were 
carried  out  for  ghrelin  receptor  [31]  and  voltage-gated 

K+channel  functional  properties  [32],  respectively.  Target 
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information was encoded in 2D descriptors calculated over 
protein sequences.  Both regression and classification tasks 
were properly attained with accuracies about 93% and 85%, 
respectively  (Table  2).  Ghrelin  receptor  model  was 
remarkable accurate and depended on only two descriptors 
that  allowed plotting a  functional  response  surface  of  the 
receptor. On the other hand, the accuracy of voltage-gated 

K+channel  model was superior  to other  nine GA-wrapper 
classifiers [32].    

IV. CONCLUSIONS

GA optimization of BRGNNs and SVMs yielded robust and 
accurate  predictors  for  a  variety  of  ligand-target  datasets 
relevant  to  drug  design nowadays.  The methodology also 
allowed  to  identification  of  relevant  structural  features 
ruling  the  chemical-biological  interactions  in  the  studied 
systems.
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