
A New 3D Representation and Compression
Algorithm for Non-Rigid Moving Objects using

Affine-Octree
Youyou Wang and Guilherme N. DeSouza

Department of Electrical and Computer Engineering
University of Missouri

Columbia, MO, 65211 USA

Abstract—This paper presents a new 3D representation for
non-rigid objects using motion vectors between two consecutive
frames. Our method relies on an Octree to recursively partition
the object into smaller parts for which a small number of
motion parameters can accurately represent that portion of
the object. The partitioning continues as long as the respective
motion parameters are insufficiently accurate to describe the
object. Unlike other Octree methods, our method employs an
affine transformation for the motion description part, which
greatly reduces the storage. Finally, an adaptive thresholding, a
singular value decomposition for dealing with singularities, and a
quantization and arithmetic coding further enhance our proposed
method by increasing the compression while maintaining very
good signal-noise ratio. Compared with other methods like tri-
linear interpolation or Principle Component Analysis (PCA)
based algorithm, the Affine-Octree method is easy to compute
and highly compact. As the results demonstrate, our method has
a better performance in terms of compression ratio and PSNR,
while it remains simple.

Index Terms—3D Motion representation, Non-rigid objects,
Octree, Affine transformation, Animation Compression

I. INTRODUCTION

When it comes to representing 3D data – whether for
efficient storage, transmission, rendering, etc. – two basic cat-
egories of methods can be defined: time-independent methods
and time-dependent methods.

In the first and most traditional category [1], time-
independent, the 3D object can be compressed based on its
geometric properties alone. In those cases, triangular meshes,
surface normals, edges, wavelet coefficients, and other features
[2], [3] of the object are analyzed within a single time instant,
or frame.

In the second case, or time-dependent methods, such as
in [4] and more recently in [5], [6], [7], the basic idea is
to represent the motion of the 3D object, or the difference
between consecutive frames, rather than the object itself. In
order to efficiently achieve that, one must identify the parts
of the object that are fixed from the parts that are moving,
and describe only the latter. This raises two major problems:
1) how to partition these two portions of the object; and
2) how to describe the moving portions. Although much
research has already been done in this area [5], [8], [9], [6],
[7], these approaches still suffer from: 1) inaccurate motion

transformations [9]; 2) the need for extra space to store the
partitioning [6]; 3) the need for apriori information on the
entire sequence [7]; etc.

In this paper, we address the above problems by propos-
ing a fixed partitioning of the 3D space combined with an
affine transformation for motion capture. Some of the major
advantages of our method are its computational efficiency, the
compactness of the motion and the space representation.

In Section II, we will describe some related works in terms
of compression. Section III contains the details about our
approach, while in Section IV we compare our results to other
works and show the advantage of using our representation for
compression.

II. RELATED WORK

One of the first methods proposed for time-dependent 3D
data compression can be found in [4]. From this paper, a
new standard of time-dependent compression was established:
represent the motion among successive frames by a small
number of parameters, and to choose a coding technique
to efficiently represent/store the data. Although some papers
do not follow exactly this standard – like the wavelet-based
approach in [10], [11] – most time-dependent methods can be
generally divided into two steps: a) partitioning of complex
objects into smaller and simpler object. b) description of the
motion of these simplified portions of the object.

With regard to the partitioning method, we find systems
using regular spatial partitioning, where vertices are divided
according to their spatial location. One such example is the
Octree [5], [8], [9], [12]. In this case, the space is recursively
divided into 8 equal portions until some termination criteria
stops the process.

On the other side of the coin, we find systems employing
irregular partitioning. In [6], for example, the system employed
the Iterative Closest Points algorithm (ICP) and assumed that
the underlying motion between two consecutive frames fol-
lowed a rigid transformation. The rigid transformation returned
from the ICP was used to reconstruct the frame, while small
and irregular portions of the object with small reconstruction
error were clustered together to form a single rigid component.
In [13], the clustering of the vertices was based on a method

978-1-4244-2794-9/09/$25.00 c© 2009 IEEE

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3948



similar to a k-means, while the distance between clusters was
defined as the Euclidean distance on the subspace defined by
a principal component analysis (PCA). That means that the
entire sequence had to be know beforehand in order to calculate
the subspaces. The same can be said about other PCA-based
methods [14], [7] – whether using irregular partitioning or not.
Finally, in [15], several local coordinate frames were assigned
to the object at the center of each cluster, and the vertices were
assigned to clusters depending on their movements between
consecutive frames. If the type of objects is restricted to, for
example, the human body, the body parts can be clustered
using their trajectories, as it was done in [16]. Actually, there
is a third kind of systems where a spatial partitioning is not
at all explicit. That is, in [17], [18] for example, vertices are
grouped despite their spatial location, but rather based on their
motion vectors.

After a partitioning is obtained, the next step is to find
an efficient encoding for the motion. In that sense, some
partitioning methods impose constraints on how the motion
can be described. In other cases, the partitioning is generic
enough so that the same motion descriptor can be used by
other methods. In [5], [8], [9], all systems used a tri-linear
interpolation, a regular partitioning (octree) and eight motion
vectors attached to the corners of the cell. Another system,
[6], used irregular partitioning and an affine transformation
between clusters as the motion descriptor. Finally, as we
mentioned earlier, PCA-based methods can achieve a good
compression by storing only the principal components of the
motion vectors, that is, a smaller dimension than the original
one. That can be done both globally[14], [7] and locally[13],
[15], but in either case, the entire sequence must be used for the
principal component analysis. More recent approaches include
the Principal Geodesic Analysis, a variant of the PCA method
[19], methods relying on prediction of the motion vectors, [17],
and the replica predictor[18].

III. PROPOSED APPROACH

A. Octree Structure

Our approach starts with the use of octrees for the partition-
ing of 3D objects. Octrees have been used in computer vision
and computer graphics for many years [20]. This data structure
has also been widely used in both time-independent methods,
such as [21], [22], as well as time-dependent methods, such
as in [5] and later improved in [8], [9], [12].

In our case, the partitioning using octree is similar to that
in other time-dependent methods, however, the decision as
to when partition and the termination criteria are different,
making our method unique. That is, with octrees, the 3D
space containing the object vertices is recursively divided into
8 subspaces, also known as the octants, cells or cubes. In
this paper, we will use the terms cube, cell, node and octant
interchangeably.

The partitioning starts with the application of an affine
transformation and the calculation of an error measurement
based on the motion vectors. If this error is too high, the cell
is subdivided and the process repeats for each subcell. As for

the termination criteria, we propose an adaptive thresholding of
the reconstruction error followed by a singular value decom-
position and quantization using arithmetic coding to further
increase the compactness of the representation. All this process
is simplified by re-scaling (normalizing) all vertices to a size
between [0, 1] – that is, the size of the root cube is always
regarded as 1 unit.

B. Algorithm

Our algorithm consists of an encoding of the motion vector
of the current frame with respect to the previous one. That is,
the algorithm perform the following steps:

1) First, it applies a tightly bounded cube around all vertices
in the previous frame.

2) Next, it calculates the affine transformation matrix be-
tween all vertices in the bounding cube and the corre-
sponding vertices from the current frame.

3) It checks for singularities of the affine and then it
quantizes and dequantize the resulting affine matrix. This
step is required in order to produce the reconstructed
current frame and to calculate the error between the
reconstructed and actual current frames.

4) If the error in the previous step is too large, the algorithm
partitions the bounding cube into eight smaller subcubes
and the steps 2 and 3 above are repeated for each of the
subcubes.

5) Otherwise, it stores the quantized affine transformation
as the motion vector for that cube.

The steps above are highlighted by the blue box in Figure 1a.
Once a representation for the current frame is completed,

the algorithm proceeds to the next frame. That is, it now uses
the reconstructed current frame as the “previous” frame and
the next frame as the “current” frame and the steps above are
repeated until the last frame in the sequence is encoded. The
idea is that only the positions of the vertices for the first frame
are recorded and transmitted to the other side – in the case of
3D video streaming for example, when frames are generated on
one machine and rendered on another machine. After the first
frame is transmitted, only motion vectors related to each cube
of the octree are transmitted to the receiving end. In practice,
in order to achieve better signal to noise ratios, intra frames
could be inserted after an arbitrary number of frames to reset

the error. However, in this paper we are interested in maximum
compression only, and therefore, we will not offer any further
discussion on how or when to insert intra frames.

The “dual” of the encoding algorithm described above is
the decoding algorithm, and it is presented in Figure 1b. Since
this algorithm consists of the same (dual) parts of the steps of
the encoder, we will leave to the reader to explore the details
of the decoder.

C. Computation of the Affine Transformation

One of the main steps in our approach is the calculation of
the motion vectors between two consecutive frames. Since the
correspondence between vertices from two different frames is
known, the motion vectors can be approximated using an affine

3949



(a) (b)

Figure 1: Flowchart of the Algorithm: (a) Encoder and (b)
Decoder

transformation A whose reconstruction error can be expressed
as:

E =
N∑

i=1

‖A ∗ −→pi −−→qi ‖2 (1)

where N is the total number of vertices in the cube, and−→pi is a 4 by 1 homogeneous vector with the coordinate of
vertex i in the previous frame. Similarly,−→qi is the homogeneous
coordinates of the corresponding vertex in the current frame. In
other words, the affine transformation A is the actual motion
vector between the vertices of a cube in the previous frame
and the corresponding vertices of the current frame.

Considering the entire structure of the octree, the total
reconstruction error is the sum of all the errors at the leaf
nodes of the tree. That is,

E = E1 + E2 + · · · + EM =
M∑

j=1

⎛
⎝ Nj∑

i=1

∥∥Aj ∗ −−→pdji −−→qdji

∥∥2

⎞
⎠

where M is the number of leaf nodes, Nj is the number
of vertices in the jth leaf node and dji is the index of the ith
vertex in that same leaf node.

In vector form, the homogeneous coordinates of the points
in the leaf node j, at the previous frame f -1, are given by:

Fj(f−1) =

⎡
⎢⎢⎣

p1dj1 p1dj2 ... p1djNj

p2dj1 p2dj2 ... p2djNj

p3dj1 p3dj2 ... p3djNj

1 1 ... 1

⎤
⎥⎥⎦

and the corresponding coordinates at the current frame f ,

are given by:

Fjf =

⎡
⎢⎢⎣

q1dj1 q1dj2 ... q1djNj

q2dj1 q2dj2 ... q2djNj

q3dj1 q3dj2 ... q3djNj

1 1 ... 1

⎤
⎥⎥⎦

The affine Aj that minimizes the error Ej , that is, minimizes
A∗Fj(f−1) = Fjf in the least square sense is given by a right
pseudo-inverse. That is:

AjFj(f−1) = Fjf (2)

AjFj(f−1)F
T
j(f−1) = FjfFT

j(f−1)

Aj = FjfFT
j(f−1) ·

(
Fj(f−1)F

T
j(f−1)

)−1

The matrix Aj is a 4 by 4 matrix with [0001] as the last row.
Since each pair of points gives us three equations, N must be
equal or larger than 4. Also, since the transformation between
Fj(f−1)and Fjf is not a perfect transformation, the calculated
Aj leads to a reconstruction error |AjFj1 − Fj2| > 0. If N is
smaller than 4, no affine is calculated and the position of the
vertices in that cube are transmitted instead.

D. Quantization and Singular Nodes

Each element of the affine transformation matrix is stored
using integers, which affects the precision, but increases the
compactness of the representation. To compensate for this
loss of precision, a frame f is encoded with respect to the
reconstructed frame, rather than the actual frame f − 1. By
doing so, the quantization error in the latter frame is corrected
by the motion estimation for the current one. Therefore,
quantization errors only affect the frame, but do not propagate
throughout the whole sequence.

The quantized affine transformation matrix A’ derived from
the original affine transformation matrix A by:

A′ =
⌊
2k

(
A − amin

amax − amin

)⌋
(3)

where k is the quantization step. Also, in order to be able
to compare our method with the method developed in [5],
we set the same linear quantization method with a step of
16 bits. Ideally, amin and amax would be the minimum and
maximum elements among all affine matrices. However, that
would require the prior calculation of the motion vectors for
the entire sequence. Instead, we use a predefined value for both
amin and amax. This arbitrary choice is possible because, as
we explained earlier, we normalize the dimension of the root
cube to [0..1]. That guarantees that the elements of A will only
be large in the case of a singularity – e.g. points are too close
to each other. In that case, two things happen: 1) we apply
a singular value decomposition (SVD) to solve for A in (2);
and 2) we fix the reconstruction error to 5%. That is, when
approximating the pseudo inverse by its SVD, we use only
the eigenvalues corresponding to the first 95% of the principal
components.

E. Termination Criteria

In Section III-B, we explained how the algorithm stops
at step 4). However, there are actually two criteria for such
termination.

The first criterion to stop the partitioning of the octree
comes from the reconstruction error. That is, the maximum
reconstruction error allowed for any single vertex is defined
by:

3950



Vertices Triangles Frames Size(Bytes)

Dance 7061 14118 190 16099080

Chicken 3030 5664 400 14544000

Cow 2904 5804 193 6725664

Table I: Properties of the benchmark sequences used for testing

ME < max
i=1,Nj

(∣∣∣−→q̂dji −−→qdji

∣∣∣) (4)

where
−−→
q̂dji

and −→qdji
are the original and reconstructed

vertices of the jth node.
In other words, if the reconstruction error of any single ver-

tices exceeds ME, the node is partitioned into eight subcubes.
Otherwise, the algorithm stops. In Section IV we explain the
choices of this threshold.

The second criterion to stop the partitioning is the number
of vertices inside a cell. As we explained in Section III-C,
if that number is 4 or less, we store the coordinates of the
vertices directly instead of the motion vectors (affine).

F. Quality of reconstructed sequences

There are a lot of ways of finding the quality of recon-
structed sequences. However, in order to have a comparison
with [5], [9], we applied the Peak Signal-Noise Ratio(PSNR)
defined the same as in[5]

PSNR = 10log10
dmax

AV GMSE

AV GMSE = 1
M

M∑
i=1

MSEi
(5)

where dmaxis the size of the largest bounding box. MSE is
defined as MSEi = (|v′

i − vi|)2.

IV. RESULTS AND ANALYSIS

We tested our algorithm using different animation se-
quences, with objects of different rigidity and number of
vertices. The details on each test sequence is presented in Table
I. We also performed a comparison with Zhang, Owen and Yu’
s algorithms in [5] and [9], as well as Amjoun and StraBer’s
algorithm in [15].

As it is shown in Figure 2, we plot the “Compression Ratio”
versus the “PSNR”, as calculated by eq(5), for each of the three
methods. The detail results for this comparision is also shown
in Tables II, IV, and III.

As for the items shown in these tabes, the percentage after
each sequence name indicates the error threshold ME defined
in the previous section; “Matrices” indicates the total number
of affine transformation matrices we have to use for the entire
sequence; and “Size” is the number of bytes of the compressed
data.

As these results demonstrate, our compression ratios are
much higher than those for the other methods assuming
the same PSNR. For example, check Chicken(10%) and

Ours

Matrices Size Ratio PSNR

Chicken(1%) 52694 709139 20.51:1 39.43

Chicken(5%) 15120 242625 59.94:1 32

Chicken(10%) 6822 119231 121.98:1 29

Chicken(15%) 4184 79548 182.83:1 27.74

Chicken(25%) 2025 44023 330.37:1 26

Paper[5] Paper[9]

Size Ratio PSNR Size Ratio

Chicken(1%) N/A N/A N/A N/A N/A

Chicken(5%) 6481000 22.5:1 28 490227 29:1

Chicken(10%) 318000 45.7:1 25.7 344985 58:1

Chicken(15%) 175000 83:1 24.6 205464 88:1

Chicken(25%) 76700 189:1 22.5 N/A N/A

Table II: Results Comparison of “Chicken” sequence

Ours

Matrices Size Ratio PSNR

Dance(1%) 32103 489644 32.88:1 24.08

Dance(2%) 20314 365378 37.18:1 21.53

Dance(3%) 15217 283377 56.81:1 19.95

Dance(5%) 10360 167687 96:1 18.06

Paper[5] Paper[9]

Size Ratio PSNR Size Ratio

Dance(1%) N/A N/A N/A 878270 18:1

Dance(2%) N/A N/A N/A 490227 33:1

Dance(3%) N/A N/A N/A 344985 47:1

Dance(5%) N/A N/A N/A 205464 78:1

Table III: Results Comparison of “Cow” Sequence

Ours

Matrices Size Ratio PSNR

Cow(1%) 43335 589656 11.4:1 26.35

Cow(5%) 15873 233673 28.78:1 19.68

Cow(10%) 10310 163772 41.07:1 16.65

Cow(15%) 6796 115296 58.33:1 15.27

Paper[5] Paper[9]

Size Ratio PSNR Size Ratio

Cow(1%) N/A N/A N/A N/A N/A

Cow(5%) N/A N/A N/A 424603 16:1

Cow(10%) N/A N/A N/A 202942 32:1

Cow(15%) N/A N/A N/A 140999 48:1

Table IV: Results Comparison of “Cow” Sequence

3951



Figure 2: Overall Comparison

3 Bases 5 Bases

Ratio PSNR Ratio PSNR

Dance(Sd = 14) 67.5 16.9 40.5 20.5

Cow(Sd = 6) 163 12.6 98.1 14.1

Chicken(Sd = 16) 139.3 28.2 83.6 31.1

10 Bases 30 Bases

Ratio PSNR Ratio PSNR

Dance(Sd = 14) 20.2 25.4 6.7 38.7

Cow(Sd = 6) 49.2 16.64 16.5 23.7

Chicken(Sd = 16) 42.2 36.4 14.2 47.4

Table V: Results of the PCA algorithm for the benchmark
sequences for different bases

Chicken(15%). Since the author did not provide their calcu-
lation for PSNR in [9], the data for some of the sequences
was not available. However, the author did not make any
changes between [5] and [9] that could have affected the
PSNR. Therefore, we can assume that the PSNR would be
the same for [5] and [9].

Finally, for the algorithm in [15], we implemented their
approach using the same parameters reported in their paper.
Table V summarizes the results for four different number of
principal components (bases): 3, 5, 10 and 30.

f = 80

f =

200

f =

300

(a) original frame (b) ME = 0.01 (c)

ME = 0.1

Figure 3: Reconstructed frames for the “Chicken” sequence

V. CONCLUSION

We proposed an affine-based motion representation with
adaptive threshold and quantization using an octree structure.
Our experimental results indicated that the proposed algorithm
is superior to other octree-based methods, and could achieve
similar performance when compared to PCA-based methods,
but with a much smaller computation complexity.

Both the PSNR and the compression ratios were very high
and a choice of ME = 0.01 provided an excellent compromise
between these two performance measurements.

One serious limitation of most time-dependent methods,
including our method, is the requirement for correspondence
between vertices in different frames. This prevents this method
from being applied to real 3D data – cloud of points. In the
future, we plan to solve this problem by building a pseudo
correspondence between frames using the Iterative Closet
Points algorithm.

REFERENCES

[1] M.Dearing, “Geometry compression,” ACM AIGGRAPH’95, 1995.
[2] A.Szymczak, “Optimized edgebreaker encoding for large and regular

triangles meshes,” IEEE Proceedings of Data Compression, p. 472, 2002.
[3] T. Lewiner, “Efficient edgebreaker for surfaces of arbitrary topology,”

IEEE Proceedings of Computer Graphics and Image Processing, pp.
218–225, 2004.

[4] J. E. Lengyel, “Compression of time-dependent geometry,” ACM Sym-
posium Interactive 3D Graphics, pp. 89–95, 1999.

[5] J.Zhang and C.B.Owen, “Octree-based animated geometry compression,”
Proceedings of Data Compression Conference(DCC’04), pp. 508–517,
2004.

[6] S. Gupta, K. Sengupta, and A.A.Kassim, “Compression of dynamic 3d
geometry data using iterative closest point algorithm,” Computer Vision
and Image Understanding, vol. 87, pp. 116–130, 2003.

[7] P.-F. Lee, C.-K. Kao, B.-S. Jong, and Y.-W. Lin, “3d animation
compression using the affine transformation matrix and pca,” IEICE
Transacations on Infromation and Systems, pp. 1073–1084, 2007.

[8] J.Zhang and J.Xu, “Optimizing octree motion representation for 3d
animation,” ACM Session:Graphices and Real-time Systems, pp. 50–55,
Mar. 2006.

[9] J.Zhang, J.Xu, and H.Yu, “Octree-based 3d animation compression with
motion vector sharing,” IEEE International Comference on Information
Technology, pp. 202–207, 2007.

3952



[10] I.Guskov and A.Khodakovsky, “Wavelet compression of parameter-
ically coherent mesh sequences,” Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pp. 136–146,
2004.

[11] F.Payan and M.Antonini, “Wavelet-based compression of 3d mesh se-
quences,” Proceedings of IEEE ACIDCA-ICMI, 2005.

[12] K.Muller, A.Smolic, M.Kautzner, and T.Wiegand, “Rate-distrotion opti-
mization in dynamic mesh compression,” IEEE International Conference
of Image Processing, pp. 533–536, Oct. 2006.

[13] M.Sattler, R.Sarletter, and R.Klein, “Simple and efficient compression
of animation sequences,” ACM Siggraph Symposium on Computer Ani-
mation, pp. 209–217, 2005.

[14] M.Aleca and W.Muller, “Representaing animations by principal compo-
nents,” Computer Graphics Forum, vol. 19, no. 3, pp. 411–418, 2000.

[15] R.Amjoun and W.StraBer, “Efficient compression of 3d dynamic mesh
sequences,” Journal of the WSCG, no. 1-3, pp. 99–107, 2007.

[16] Q.Gu, J.Peng, and Z.Deng, “Compression of human motion capture data
using motion pattern indexing,” Computer Graphics Forum, vol. 28(1),
pp. 1–12, 2009.

[17] J. Yang, C. Kim, and S. Lee, “Compression of 3d triangle meshe
sequences based on vertex-wise motion vector prediction,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 12, no. 12, pp. 1178–
1184, 2002.

[18] L.Ibarria and J.Rossignac, “Dynapack:space-time compression of the
3d animations of triangle meshes with fiexed connectivity,” SCA ’03:
proceedings of the 2003 ACM SIGGRAPH/Eurographics Sysmposium
on Computer animation, pp. 126–135, 2003.

[19] M. Tournier, L. Reveret, X. Wu, N. Courty, and
E. Arnaud, “Motion compression using principal geodesics
analysis,” in ACM Siggraph/Eurographics Symposium on Com-
puter Animation, SCA (Poster), July 2008. [Online]. Available:
http://perception.inrialpes.fr/Publications/2008/TRWCA08

[20] C. Jackins and S.L.Tanimoto, “Oct-tree and their use in representing
three dimensinal objects,” Computer Grapics and Image Processing,
vol. 14, p. 29, 1980.

[21] Y.Huang, J.Peng, and M.Gopi, “Octree-based progressive geometry cod-
ing of point clouds,” Eurographics Symposium on Point-based Graphics,
pp. 103–110, 2006.

[22] R.Schnabel and R.Klein, “Octree-based point cloud compression,” Eu-
rographics Symposium on Point-based Graphics, pp. 111–120, 2006.

3953



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


