
Identifying trajectory classes in dynamic tasks
Stuart O. Anderson

Robotics Institute
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, Pennsylvania 15213

Email: soa@ri.cmu.edu

Siddhartha S. Srinivasa
Intel Research Pittsburgh

Intel Corporation
4720 Forbes Ave

Pittsburgh, Pennsylvania 15213
Email: siddhartha.srinivasa@intel.com

Abstract— Using domain knowledge to decompose difficult
control problems is a widely used technique in robotics. Previous
work has automated the process of identifying some qualitative
behaviors of a system, finding a decomposition of the system
based on that behavior, and constructing a control policy based
on that decomposition. We introduce a novel method for auto-
matically finding decompositions of a task based on observing the
behavior of a preexisting controller. Unlike previous work, these
decompositions define reparameterizations of the state space that
can permit simplified control of the system.

I. INTRODUCTION

One common approach to finding control policies for
robotic systems is to decompose a task into subtasks that
are individually less difficult to solve. Methods like state
space funnels [1], [7], behavioral primitives [2]–[4], hybrid
systems [5], and reinforcement learning [6] are all variations
of this approach. In practice, however, finding a useful de-
composition is most often not automatic and relies on expert
human knowledge of a particular problem domain.

Methods for automatically identifying equivalence classes
of trajectories using geometric structure in phase space have
been shown [8], [9]. It has also been demonstrated that,
once identified, these structures can be used to generate
controllers autonomously [10]. Recent work in the POMDP
dynamic programming community [11], [12] has emphasized
the value of observing existing control policies to guide the
search for optimal policies. The key idea in this work is
that an existing policy is a task independent representation of
information about the task domain in which it operates. Our
approach combines automatic problem decomposition with
the use of information from observed policies. Rather than
finding a decomposition to aid the search for a policy, we
find a natural decomposition for a problem by observing a
preexisting solution.

The method described in this paper decomposes observed
motions of a system into exemplar motions based on a measure
of the local rate of convergence. Each motion class has an asso-
ciated exemplar motion that is representative of all the motions
in that class. Exemplar motions are automatically generated
and are used as the basis for building new parameterizations
of state space that are unique to each motion class. We believe
that it is often the case that the behavior of the observed policy
can be closely reproduced by a linear controller operating in
the reparameterized state space near an exemplar motion.

Section II of this paper presents definitions of the exemplar
motions of a system and defines a reparameterization of state
space based on these classes. Section III presents a method
for numerically computing these motions and associated repa-
rameterizations. Section IV presents an example of this method
applied single link inverted pendulum swing up task. Section
V discusses operation of the method in higher dimensions,
provides theoretical justification for the methods described
in section II, and compares this work to previous efforts.
Section VI discusses ongoing and future work on extending
the technique to deal with the sparseness of human motion
capture data.

II. DEFINITIONS

This section presents a definition of exemplar motions based
on observed trajectories as well as a reparameterization of
state space that can simplify the control policy associated with
each exemplar. Exemplar motions are found by searching for
regions of state space where the flow of the system is strongly
convergent and identifying trajectories about which the system
is most convergent. A single stable region may have several ex-
emplar motions if the rate of convergence varies significantly
over the region. Because the definition of the exemplar motions
is sensitive to variations in the rate of convergence, is is often
the case that the rate of convergence toward an individual
exemplar is fit well with simple parametric models. This can
permit the use of linear control policies in the reparameterized
state space. Fig.1 illustrates the definitions provided in this
section.

Exemplar motions

Consider a time invariant, fully observable, deterministic
system with state x, control input u, system dynamics ẋ =
f (x,u) and control policy u∗ = c(x). If u∗ is used to control
the system, then every point in the state space lies on some
trajectory

G(d,x) = x+
Z d

0
f (x,u∗)ds (1)

Samples of these trajectories for the example problem
discussed in section IV are illustrated in blue in Fig.4 and
Fig.6.

172

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

Fig. 1. Trajectories of a possible system(left), Tangent manifolds of a section of that system (center), and ST-Space reparameterization about a key trajectory
of the system (right)

Qualitatively, exemplar motions of the system are the set
of trajectories that other trajectories converge toward. Flow
convergence is not an appropriate metric for defining these
exemplar motions because we are not concerned with con-
vergence in the direction of flow caused by a change in
the rate of flow. However, a convergence metric that reflects
only convergence tangent to the direction of flow is useful.
Exemplar motions for the example problem are illustrated by
red lines in in Fig.5 and Fig.6.

A ‘flow tangent manifold’ M(x,d) is defined such that
f (x,u∗) is normal to M(x,d) at all points in M(x,d) and
G(d,x) ∈ M(x,d). Some flow tangent manifolds for the ex-
ample problem are shown in black in figures Fig.5 and Fig.6.

Define the flow tangent divergence of f (x,u∗) to be the
scalar quantity

q(x) = ∇ · (v(x,u∗) f (x,u∗)) (2)

where v(x,u∗) is an orthonormal basis of the tangent space
of M(x,0). The quantity q(x) is useful for describing how
a ball in M(x,d) grows or shrinks with changes in t. If
q(x) > 0 then a ball on the manifold grows in volume and
adjacent trajectories diverge. Likewise, if q(x) < 0 a ball on
the manifold shrinks and adjacent trajectories converge.

For certain values of x and ranges of d, G(d,x) are local
extrema of q(x) along the manifold M(x,d). This means
that there are some system trajectories that are locally the
maximally divergent or convergent trajectories in a region.
The local minima of q(x) are, qualitatively, representatives of
a class of similar trajectories. Additionally, in two dimensions,
the local maxima of q(x) can act as boundaries between these
classes.

State space reparameterization

State space can be reparameterized using coordinate systems
embedded in the flow tangent manifolds. Given a manifold
M(x0,d0) any point in state space xp can be parameterized
using the coordinate vector (s,d) where

ST (xp) = M(x0,d0 +d)+
Z s

0
v(ST−1(s,d0 +d)ds (3)

This parameterizes the point xp in terms of the distance
along the trajectory starting at x0 needed to reach the manifold
that xp lies on, and the distance along that manifold from xp

to the trajectory associated with x0. The space resulting from
this reparameterization is called ’ST-space’. This reparameter-
ization is shown visually in Fig.6.

III. IMPLEMENTATION

The design of the algorithm used to find the exemplar
motions and state space reparameterizations defined in section
II is not trivial. Observed policies contain noise and discretiza-
tion artifacts that create unwanted extrema in the flow tangent
divergence. Fig.2 illustrates the many local extrema that occur
if the flow tangent divergence is computed directly from the
observed policy. This section describes a method for robustly
locating trajectories that lie on extrema of the flow tangent
divergence.

Finding trajectories composed of local extrema of the flow
tangent divergence, q(x), is difficult because the numerical
computation produces artifacts due largely to discretization of
the policy. Numerical stability can be achieved by maximizing
the curvature of quadratic approximations to the flow tangent
manifolds integrated over a complete trajectory of the system.
Although similar to the extrinsic curvature of M(x,d), flow
tangent divergence can be influenced by change in rate of flow
along the manifold,

∂| f (x,u∗)|

∂v(x,u∗)
(4)

while the curvature depends only on change in the direction
of f (x,u∗). This does not, however, affect the location of local
extrema in the curvature. Therefore, both manifold curvature
and flow tangent divergence can be used to find exemplar
motions.

173

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

The curvature of the flow tangent manifold at a point y is
approximated by fitting a second order polynomial to a ball in
the flow tangent manifold containing y, centered at y, and of
radius w. The radius w is chosen by searching for the largest
value of w that does not cause the residual of the fit to exceed
a threshold value. This procedure improves the quality of the
metric as shown in Fig.3. The quadratic approximation can
also be used to iteratively search for local extrema of the
curvature along the manifold using a second order Newton-
Raphson method. q̂(x) denotes curvature computed using this
approximation.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Fig. 2. Noise in the directly computed flow tangent divergence of system
flow

Although quadratic approximation is effective for obtaining
well behaved estimates of the curvature along the manifold,
it is not sufficient for making stable estimates of exemplar
motions. The exemplars are found by locating local extrema
of the mean estimated curvature over trajectory segments on
which the estimated curvature has uniform sign.

argmax
x

Z t f

t0
q̂(G(d,x))ds (5)

where t0 and t f are the minimum and maximum values for
which

s0 ≤ 0

s1 ≥ 0

q̂(G(d,x))q̂(G(0,x)) > 0 when s0 ≤ t ≤ s1

Exemplar trajectories are found by following the gradient
of this metric along any flow tangent manifold.

IV. EXAMPLE PROBLEM

This section presents the application of our method to an
example problem in two dimensions. The flow tangent man-
ifolds, exemplar motions, and ST-space reparameterizations
are shown. The system considered is a single link pendulum
attempting to reach the unstable equilibrium pose (θ = 0 = 2π)

Position (rad)

V
el

oc
ity

 (
ra

d/
s)

Approximated Curvature of Flow Tangent Manifolds

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

−5

−4

−3

−2

−1

0

1

2

Fig. 3. Curvature computed from quadratic approximation of flow tangent
manifolds

with limited torque while minimizing distance to the goal state
integrated over time. The center of the figure corresponds to
the minimum energy state of the pendulum. The identification
of task spines was previously considered in [13], although this
work used a quadratic approximation to the value function for
the computation.

An optimal control policy was found via dynamic pro-
gramming. The blue lines in Fig.4 show trajectories followed
by the system using this controller. Visual inspection of the
figure shows that there appear to be four qualitative trajectory
classes in the system. These classes correspond to trajectories
originating at the minimum energy state (π,0) and those
originating at a high energy state (∗,± inf). The trajectories
originating from (π,0) can enter the goal from either the left
or the right, resulting in a total of four expected trajectory
classes terminating at the goal state.

The procedure described in section III is applied to this
system, resulting in the flow tangent manifolds and exemplar
motions shown in Fig.5. The exemplar motions identified by
the system correspond to the four classes of motion identified
by hand. One limitation visible in this result is that the system
is not aware of unstable equilibria, in particular the two saddle
points located approximately at (0.7,0) and (2π−0.7,0).

Fig.6(a) shows a chosen trajectory, its associated flow
tangent manifolds, and the intersections of neighboring tra-
jectories with those manifolds. Fig.6(b) shows the mapping of
this trajectory and its neighbors into the associated S-T space.
In this space the manifold lines that are spaced at constant

174

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Position (rad)

V
el

oc
ity

 (
ra

d/
s)

Observed Motions of Inverted Pendulum

Fig. 4. Some observed trajectories of the controlled inverted pendulum.

distance intervals along the key trajectory would appear as
evenly spaced horizontal lines. The ST space provides an
unambiguous mapping from points in state space to particular
points on the key trajectory and, in this case, its behavior
appears easily fit by a simple parametric model.

V. DISCUSSION

We believe that control in ST-Space can allow linear con-
trollers to operate over larger regions of state space. If the
flow tangent manifolds about a trajectory G(d,x) are well
approximated by second order polynomials with coefficients
linear in the distance along G(d,x) then the direction of the
ST-space flow will be linear in the coordinates:

f (x,u∗) ≈ ST−1(As) (6)

The key limitation of our current approach lies in the
method used for the identification of key trajectories. Our
current method optimizes a scalar value — the curvature of
the flow tangent manifold. While this works well for one-
dimensional manifolds which arise in a two-dimensional state
space, the notion of a single number for the curvature of a
point in a higher-dimensional manifold is not well defined.
One possible solution is to find trajectories that maximize the
minimum curvature of the manifold in any direction.

In higher dimensions the choice of coordinates for the
tangent spaces of flow tangent manifolds is undefined. Without

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Position (rad)

V
el

oc
ity

 (
ra

d/
s)

Task Spines

Fig. 5. Automatically identified spines of the inverted pendulum task. Solid
lines are suggested boundaries, dashed lines are exemplar motions.

a smooth function for determining the basis of the tangent
space at each point on the manifold it is impossible to define
the mapping from state space to ST space in general. If a coor-
dinate system is defined for one manifold it can be propagated
to other manifolds coherently by projecting a small ball on the
original manifold to a new manifold using corresponding inter-
section points of observed trajectories. As the size of the ball
on the original manifold decreases the transformation between
the original and projected balls asymptotically approaches a
linear transformation. This transformation can be applied to
the basis of the tangent space at the center of the original ball
to find the orientation of the basis of the tangent space at the
center of the projected ball. This provides a useful definition
of the basis of a tangent space on the new manifold.

Because the algorithm searches for the local maxima of a
scalar function in a high dimensional space, it may be well
suited to operation with higher dimensional systems. However,
the cost of computing the approximated curvature of the flow
tangent manifolds near a trajectory does grow exponentially
in the number of dimensions.

VI. FUTURE WORK

We are currently exploring the identification of component
strategies in human motion. It is widely believed that human
motion, during balance and gait, for example, exhibits discrete

175

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

Position (rad)

V
el

oc
ity

 (
ra

d/
s)

State Space with Exemplar Trajectory and Neighbors

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

Manifold Distance

K
ey

 D
is

ta
nc

e

ST−Space with Exemplar Trajectory and Neighbors

Fig. 6. top: An exemplar motion and its neighbors are shown intersecting
flow tangent manifolds spaced uniformly along the exemplar. bottom: The
ST-space mapping of the trajectories shown in the top illustration.

recovery strategies in response to unexpected perturbations
[14]. For example, in response to a push, a person might
raise their arms, or take a step forward, or move their hips,
to stay in balance. We believe that our technique can help us
automatically identify these discrete strategies, thereby helping
us understand human balance better, as well as helping us
control humanoid robots to balance better.

Working with human motion data requires a method that can
operate in a state space with many dimensions. Furthermore,
the number of available trajectory traces, say from human
motion capture, populates this state space sparsely. These chal-
lenges require a reformulation of our approach to operate with
a set of example trajectories where computing the derivative
of the control on the manifold tangent to the trajectory is not
possible, due to a sparse covering.

We are also interested in using this technique as part of
an algorithm for actually finding optimal policies. The key
bottleneck in the search for optimal policies is the curse of
dimensionality — the search space grows exponentially in the
number of state space dimensions. Hence, a good heuristic
that identifies interesting (and conversely, boring) points in
the state space where attention, and hence computation, can
be focused (or defocused) is crucial. Because the behavior
of trajectories in a region around the exemplar trajectories is
characterized by convergence to that trajectory, we believe that
linear controllers will perform well in these regions, making
the points near an exemplar trajectory not very interesting.
The boundaries between trajectory classes could potentially be
used in a fashion analogous to the simplex method introduced
by [9].

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
Chris Atkeson, Geoffrey Gordon, Jessica Hodgins, and Arash
Mahboobin. The material is based upon work supported in part
by the National Science Foundation under NSF Grants ECS-
0325383, CNS-0224419, and DGE-0333420. Stuart Anderson
was partially supported by Intel Research Pittsburgh.

REFERENCES

[1] M. Mason, “The mechanics of manipulation,” in Robotics and Automa-
tion. Proceedings. 1985 IEEE International Conference on,, vol. 2, 1985,
pp. 544–548.

[2] M. Mataric, M. Williamson, J. Demiris, and A. Mohan, “Behavior-based
primitives for articulated control,” in Fifth Interational Conference on
Simulation of Adaptive Behavior, Proceedings of. MIT Press, 1998, pp.
165–170.

[3] A. Fod, M. Mataric, and O. Jenkins, “Automated derivation of primitives
for movement classification,” Autonomous Robots, vol. 1, pp. 39–54,
January 2002.

[4] O. Jenkins and M. Mataric, “Automated derivation of behavior vocab-
ularies for autonomous humanoid motion,” in Autonomous Agents and
Multi Agent Systems, Proceedings of., 2003, pp. 225–232.

[5] M. Branicky, T. Johansen, I. Petersen, and E. Frazzoli, “On-line tech-
niques for behavioral programming,” in Proceedings of the 39th IEEE
Conference on Decision and Control, 2000, pp. 1840–1845.

[6] D. Bentivegna and C. Atkeson, “Learning from observation using prim-
itives,” in IEEE International Conference on Robotics and Automation,
Proceedings of., 2001, pp. 1988–1993.

[7] M. Erdmann and M. Mason, “An exploration of sensorless manipula-
tion,” IEEE Journal of Robotics and Automation, vol. 4, no. 4, August
1988.

176

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

[8] R. Abelson, M. Eisenberg, M. Halfant, J. Katzenelson, E. Sacks, G. Suss-
man, J. Wisdom, and K. Yip, “Intelligence in scientific computing,”
Communications of the ACM, vol. 32, no. 5, pp. 546–562, 1989.

[9] F. Zhao, “Extracting and representing qualitative behaviors of complex
systems in phase space,” Artificial Intelligence, vol. 69, pp. 51–92, 1994.

[10] ——, “Automatic analysis and synthesis of controllers for dynamical
systems based on phase-space knowledge,” MIT Artificial Intelligence
Laboratory, Technical Report 1385, 1992.

[11] N. Roy, G. Gordon, and S. Thrun, “Finding approximate pomdp so-
lutions through belief compression,” Journal of Artificial Intelligence
Research, vol. 23, pp. 1–40, 2005.

[12] J. Bagnell, S. Kakade, A. Ng, and J. Schneider, “Policy search by
dynamic programming,” Proc. NIPS, 2001.

[13] C. G. Atkeson, “Using local trajectory optimizers to speed up
global optimization in dynamic programming,” in Advances in
Neural Information Processing Systems, J. D. Cowan, G. Tesauro, and
J. Alspector, Eds., vol. 6. Morgan Kaufmann Publishers, Inc., 1994, pp.
663–670. [Online]. Available: citeseer.ist.psu.edu/atkeson94using.html

[14] R. Cham and M. Redfern, “Lower extremety corrective reactions to
slip events,” Journal of Biomechanics, vol. 34, no. 11, pp. 1439–1445,
November 2001.

177

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

