

Abstract— In this paper, a novel reinforcement learning neural
network (NN)-based controller, referred to adaptive critic
controller, is proposed for affine nonlinear discrete-time systems
with applications to nanomanipulation. In the online NN
reinforcement learning method, one NN is designated as the critic
NN, which approximates the long-term cost function by assuming
that the states of the nonlinear systems is available for
measurement. An action NN is employed to derive an optimal
control signal to track a desired system trajectory while
minimizing the cost function. Online updating weight tuning
schemes for these two NNs are also derived. By using the
Lyapunov approach, the uniformly ultimate boundedness (UUB)
of the tracking error and weight estimates is shown.
Nanomanipulation implies manipulating objects with nanometer
size. It takes several hours to perform a simple task in the
nanoscale world. To accomplish the task automatically the
proposed online learning control design is evaluated for the task
of nanomanipulation and verified in the simulation environment.

Index Terms — Neural network, reinforcement learning,
on-line learning, dynamic programming, Lyapunov method,
nanomanipulation.

I. INTRODUCTION
Dynamic programming (DP) has been extensively applied

[1] for the optimal control of nonlinear dynamic systems,
However, one of the drawbacks of DP is the computation cost
with the dimension of the nonlinear system, which is referred to
as the “curse of dimensionality”. Therefore, adaptive or
approximation methods for DP (e.g. see [2]) have been
developed recently although most of them [3] are implemented
either by offline using iterative schemes or require the
dynamics of the nonlinear systems to be known a priori.
Unfortunately, these requirements are often not practical for
real-world systems, since the exact model of the nonlinear
system is usually not available. Additionally, stability of the
closed-loop system using adaptive DP-based methods are not
discussed which limited its applicability for control
applications until now.

On the other hand, reinforcement learning is originated from
animal behavior research and its interactions with the
environment. Differing from the traditional supervised learning
in neural network (NN), there is no desired behavior or training
examples employed within reinforcement learning schemes.
Nevertheless, it is common to apply reinforcement learning for
optimal controller design, since the cost function can be
directly seen as a form of reinforcement signal. Of the available

The authors are with the Department of Electrical & Computer Engineering,
University of Missouri-Rolla, MO, 65401 USA (e-mail: qyy74@ umr.edu).
Research supported in part by NSF ECS #0327877 and ECS#0621924 grants.

reinforcement learning schemes, the temporal difference (TD)
learning method [4]-[5] has found many applications in the
engineering area. The advantage of reinforcement learning in
general is that it does not require the knowledge of the system
dynamics even though an iterative approach is typically
utilized. To obtain a satisfactory reinforcement signal for each
action, the approach must visit each system state and apply each
action often enough [7], and requires the system to be
time-invariant, or stationary in the case of stochastic system.

To overcome the iterative offline methodology for real-time
applications, several appealing online neural controller designs
methods were introduced in [3], [8]-[9]. They are also referred
to as forward dynamic programming (FDP) or adaptive critic
designs (ACD). The central theme of this approach is that the
optimal control law and cost function are approximated by
parametric structures, such as neural networks (NNs), which
are trained over time along with the feedback information. In
other words, in ACD methods, instead of finding the exact
minimum, the ACDs try to approximate the Bellman equation:

()()
()

()() () ()(){ }min 1 , 1
u k

J x k J x k U x k x k= + + + , where ()x k is

the state and () (())u k u x k= is a specific control law at time
step k, the strategic utility function ((),) (())J x k u J x k=
represents the cost or performance measure associated with
going from k to final step N, () ()()1, +kxkxU is the utility
function denoting the cost incurred in going from ()x k to

(1)x k + using control ()u k , and (1)J k + is the cost or
performance measure associated in going from state k+1 to the
final step N. In the ACD literature, NNs are widely used for
approximation.

In [6], a new NN learning algorithm based on gradient
descent rule is introduced and the approach is evaluated on
three examples. However, no proof of the convergence or
stability of the system was presented. By contrast, Lyapunov
analysis was derived in [10] and [11]. The approach presented
in [11] is specific to robotic systems whose dynamics are
introduced in continuous-time. On the other hand, [6] and [10]
employ simplified binary reward or cost function which is a
variant of the standard Bellman equation. To the best of our
knowledge, there is no published work considering the
convergence proof of the closed-loop system with standard
Bellman equation.

In this paper, we are considering NNs for the control of
nonlinear discrete systems with quadratic-performance index as
the cost function. The whole system consists of two NNs: an
action NN to derive the optimal (or near optimal) control signal
to track not only the desired system output but also to minimize

Online Reinforcement Learning Neural Network
Controller Design for Nanomanipulation

Qinmin Yang and S. Jagannathan

225

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

the long-term cost function; an adaptive critic NN to
approximate the long-term cost function ()()J x k and to tune the

action NN weights. Closed-loop stability is shown.
Nanomanipulation [12] aims at manipulating and handling

nanometer size objects and structures with nanometer
precision. It is also the first and critical step for any complex
functional nano devices. Typically, assembly of small nano
structures built by nanomanipulation today consists of ten to
twenty particles, and may take an experienced user a whole day
to construct.

A significant amount of work on modeling interactive forces
during manipulation was introduced in [13]-[14]. Based on that
model, real-time controllers can be designed to automate
nanomanipulation. On the other hand, due to extremely
complex environmental conditions during nanomanipulation
tasks, any iteration based optimal controllers will fail to obtain
satisfactory result. In other words, for every single
manipulation attempt, the environmental conditions or the
system dynamics is different from the other, which means the
learning process obtained in current attempt/iteration can not be
used directly during the next iteration. Thus, in this paper, the
online learning controller design is implemented and evaluated
on the task of nanomanipulation and simulation results show its
effectiveness.

II. BACKGROUND

A. Optimal Control
In this paper, we consider the following stabilizable

nonlinear affine system, given in the form

 ()
()() ()() () ()

01 ((), ())x k f x k u k

f x k g x k u k d k

+ =

= + +
 (1)

with the state () () () ()1 2, , ,
T n

nx k x k x k x k R= ⋅⋅⋅ ∈ at time instant

k. (()) nf x k R∈ is a unknown nonlinear function vector, and

()() n ng x k R ×∈ is a matrix of unknown nonlinear functions,

() nu k R∈ is the control input vector and () nd k R∈ is the

unknown but bounded disturbance vector, whose bound is
assumed to be a known constant, () md k d≤ . Here stands

for the Frobenius norm [17], which will be used through out
this paper. It is also assumed that the state vector ()x k is
available at the kth step.

Assumption 1: Let the diagonal matrix ()() n ng x k R ×∈ be a

positive definite matrix for each () nx k R∈ , with ming R+∈
and maxg R+∈ representing the minimum and maximum
eigenvalues of the matrix (())g x k respectively, such that

min max0 g g< ≤ .
The long-term cost function is defined as

0

0

() ((),) ()

[(()) () ()]

i

i t

i T

i t

J k J x k u r k i

q x k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

 (2)

where ()J k stands for ((),)J x k u for simplicity, u is a given
control policy, R is a positive definite matrix and (0 1)γ γ≤ ≤
is the discount factor for the infinite-horizon problem. As
observed from (2), the long-term cost function is the discounted
sum of the immediate cost function or Lagrangian expressed as

() (()) () ()
(() ()) (() ()) () ()

T

T T
d d

r k q x k u k Ru k
x k x k Q x k x k u k Ru k

= +
= − − +

(3)

where Q is a positive definite matrix. In this paper, we are using
a widely applied standard quadratic cost function defined based
on the tracking error ()e k , which will be defined later in
contrast with [6] and [10]. The immediate cost function ()r k
can be viewed as the system performance index for the current
step.

The basic idea in the adaptive critic or reinforcement
learning design is to approximate the long-term cost function J
(or its derivative, or both), and generate the control signal
minimizing the cost. By using learning through an algorithm,
the online approximator will converge to the optimal cost
function and the controller will converge to the optimal
controller correspondingly. As a matter of fact, for an optimal
control law, which can be expressed as *() *(())u k u x k= ,
the optimal long-term cost function can be written alternatively
as *() *((), *(())) *(())J k J x k u x k J x k= = , which is just
a function of the current state [16]. Next, one can state the
following assumption.

Assumption 2: The optimal cost function *()J k is finite
and bounded over the compact set nS R⊂ by mJ .

Next it will be shown that nanomanipulation will be
expressed as a nonlinear discrete-time system (1).

B. Nanomanipulation

ß

d
Aps

Fps
Ftp

ftp

fps

Fz
c

y

z

Fig. 1. Geometry and the interacting forces between AFM tip, nano particle and
stage during pushing process.

Nowadays, assemblies of small nano structures built by
nanomanipulation are typically realized by using an Atomic
Force Microscope (AFM) as the manipulator. Initially used as
the imaging tool, the tip of AFM is also utilized as manipulation
end effector.

The simplified geometrical relationship between AFM tip,
nano sphere and substrate (stage) is shown in Fig. 1. Briefly

226

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

speaking, the objective of nanomanipulation is to drive the tip
of AFM to push nano particles along a desired track. An
alternative way is to drive the stage instead of the tip to
accomplish the push task. In our experiment, the latter approach
is selected.

The model development and analysis involves the adhesion
forces between AFM tip, substrate and nano particle to be
pushed. In the nano world, gravitational forces are relatively
very small and, therefore, are neglected. The main components
of the adhesion forces are van der Waals, capillary, and
electrostatic forces [14].

After taking all those adhesion and friction forces into
consideration, a satisfactory model is built in [13] and [14],
which is adopted in this paper. Since we are driving the stage to
accomplish the task, the equation governing the system is

2

2

2

1 1 cos (,)

1 1 sin (,)

1 1 (,)

s s s ps s sub x
x x x

s s s ps s sub y
y y y

s s s ps s sub z ps
z z z

x x x f z z
w w Q

y y y f z z
w w Q

z z z F z z A
w w Q

θ τ

θ τ

τ

+ + + =

+ + + =

+ + + = +

 (4)

where (, ,)s s sx y z is the position of the stage on x, y, and z axis
respectively. (, ,)x y zw w w is the resonant frequency and

(, ,)x y zQ Q Q is the amplification factor for the stage.

(, ,)x y zτ τ τ is the stage driving force which is seen as the

control input signal. The term θ is the angle between y axis
and the pushing direction, and subz is the substrate surface
height displacement, which is simulated to be a sinusoid
function in this paper for simplification. Now

psf is the friction

force and
psF is the attractive/repulsive interaction force

between particle and substrate, which is a complex function of
the pushing environment. For more details, please refer to [13]
and [14]. Equation (4) represents the manipulation system
which can be viewed as a nonlinear system of second order.

To fulfill Assumption 1, we define the tracking error as

s d

s s d

s d

x x
e y y

z z
= − (5)

where (, ,)d d dx y z is the desired movement of the stage. Based
on that, filtered tracking error can be defined as s ss e e= + Λ ,
with Λ a positive definite design parameter matrix. Common
usage is to select Λ diagonal with large positive entries.
Therefore, the system dynamics can be rewritten in term of the
filtered tracking error as follows

2 2

2 2

cos

sin

s s

s d s d

s d s d

s d s d

x
s x s d d x ps

x

y
s y s d d y ps

y

z

z

s e e
x x x x
y y y y
z z z z

w x w x x x w f
Q

w
y w y y y w f

Q

w
Q

θ

θ

= + Λ

= − + Λ − Λ

Λ − − − − Λ −

= Λ − − − − Λ −

Λ −

2

2

2

2 2

0 0
0 0
0 0

()

()

x x

y y

z z

s z s d d z ps ps

s

w
w

w

z w z z z w F A

f s w

τ
τ
τ

τ

+

− − − Λ − −

= + ⋅
 (6)
As long as the controller guarantees that the filtered error s is
bounded, the tracking error se is bounded. In order to apply
our nonlinear discrete-time controller, the system dynamics (6)
need to be discretized to obtain an affine nonlinear
discrete-time system [17] which is given by
 ()(1) ((), (1),...) ()ss k T F s k s k w s kτ+ = − + ⋅ + (7)

where T is the sampling time and Fs is the corresponding
nonlinearity in discrete. By rearranging (7), one can get an
affine nonlinear discrete-time system (1), with the filtered
tracking error as the system state.

III. ONLINE REINFORCEMENT LEARNING CONTROLLER DESIGN

For the purpose of this paper, our objective is to design an
online reinforcement learning NN controller for the system (1)
such that 1) all the signals in the closed-loop system remain
UUB; 2) the state ()x k follows a desired trajectory

() n
dx k R∈ ; and 3) the long-term cost function (2) is

minimized so that a near optimal control input can be
generated. Here, the “online” means the learning of the
controller takes place “in real-time” by interacting with the
plant, instead of in an offline manner.

()Ĵ k

1z− ()ˆ 1J k −

Fig. 2. Online neural dynamic programming based controller structure.

The block diagram of the proposed controller is shown in
Fig. 2, where the action NN is providing a near optimal control
signal to the plant while the critic NN approximates the
long-term cost function. The learning of the two NNs is
performed online without any offline learning phase.

In our controller architecture, we consider the action and the
critic NN having two layers. The output of the NN can be given
by ()T TY W V Xφ= , where V and W are the hidden layer and

227

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

output layer weights respectively. The number of hidden layer
nodes is denoted as 2N .

A general function 3() ()Nf x C S∈ can be written as
() () ()T Tf x W V x xφ ε= + (8)

with ()xε a NN functional reconstruction error vector. In our
design, V is initially selected at random and held fixed during
entire learning process. It is demonstrated in [15] that if the
hidden layer weights, V , are chosen initially at random and
kept constant and if

2N is sufficiently large, the NN
approximation error ()xε can be made arbitrarily small since
the activation function vector forms a basis.

Furthermore, in this paper, a novel tuning algorithm is
proposed to make the NN weights robust so that PE condition is
not needed, which will be discussed later. Next we present the
controller design. Before we proceed, the following mild
assumption is needed.

Assumption 3: The desired trajectory of the system states,
()dx k , is bounded over the compact subset of nR . For our

nanomanipulation system, the desired value is zero.

A. The Action NN Design
The tracking error at instant k is defined as

 () () ()de k x k x k= − (9)
Then future value of the tracking error using system dynamics
from (1) can be rewritten as
 (1) (()) (()) () () (1)de k f x k g x k u k d k x k+ = + + − + (10)
To eliminate the tracking error, a desired control law is given
by

1
1() (())((() (1) ())d du k g x k f x k x k l e k−= − + + + (11)

where 1
n nl R ×∈ is a design matrix selected such that the

tracking error, ()e k , is converging to zero.

Since both of ()()kxf and ()()kxg are unknown smooth
nonlinear functions, the desired feedback control ()du k cannot
be implemented directly. Instead, an action NN is employed to
generate the control signal. From (11) and considering
Assumption 1 and 2, the desired control signal can be
approximated as

() ()() (()) () (()) ()T T T
d a a a a a a au k w v s k s k w s k s kφ ε φ ε= + = + (12)

where () () () 2,
TT T ns k x k e k R= ∈ is the action NN input

vector. The action NN consists of two layers, and an n
aw R ×∈ and

2 an n
av R ×∈ denote the desired weights of the output and hidden

layer respectively with (())a s kε is the action NN approximation
error, and

an is the number of neurons in the hidden layer.

Since av is fixed, for simplicity purpose, the hidden layer
activation function vector ()() 2nT

a av s k Rφ ∈ is denoted as

()()a s kφ .
Considering the fact that the desired weights of the action

NN are unknown, the actual NN weights have to be trained
online and its actual output can be expressed as

ˆ ˆ() () (()) () (())T T T
a a a a au k w k v s k w k s kφ φ= = (13)

where ˆ () an n
aw k R ×∈ is the actual weight matrix of the output

layer at instant k.
Using the action NN output as the control signal, and

substituting (12) and (13) into (10) yields

() ()
() ()()
() ()() () ()

1

1

1

(1) (()) (()) () () (1)
(()) () () ()

(()) () (()) () ()

d

d

T
a a a

a a

e k f x k g x k u k d k x k
l e k g x k u k u k d k

l e k g x k w k s k s k d k

l e k g x k k d k

φ ε

ζ

+ = + + − +
= + − +

= + − +

= + +

(14)

where
ˆ() ()a a aw k w k w= − (15)

()()() ()T
a a ak w k s kζ φ= (16)

() (()) (()) ()a ad k g x k s k d kε= − + (17)
Thus, the closed-loop tracking error dynamics is expressed

as
() () ()() () ()11 a ae k l e k g x k k d kζ+ = + + (18)

Next the critic NN design is introduced.

B. The Critic NN Design
As stated above, a near optimal controller should be able to

stabilize the closed-loop system by minimizing the cost
function. In this paper, a critic NN is employed to approximate
the long-term cost function ()J k . Since the actual ()J k is
unavailable for us at the kth time instant in an online learning
framework, the critic NN is tuned online in order to converge to
the actual ()J k .

First, the prediction error generated by the critic or the
Bellman error [6] is defined as

ˆ ˆ() () [(1) ()]ce k J k J k r kγ= − − − (19)
where the subscript “c” stands for the “critic” and

() () ()() () ()()ˆ ˆ ˆT T T
c c c c cJ k w k v x k w k x kφ φ= = (20)

where ()Ĵ k R∈ is the critic NN output which is an

approximation of ()J k . In our design, the critic NN is also a

two-layer NN, while () 1ˆ cn
cw k R ×∈ and cn n

cv R ×∈ represent
its actual weight matrix of the output and hidden layer
respectively. The term cn denotes the number of the neurons
in the hidden layer. Similar to HDP, the system
states () nx k R∈ are selected as the critic NN input. The

activation function vector of the hidden layer ()() cnT
c cv x k Rφ ∈

is denoted as ()()c x kφ for simplicity. Provided that enough

number of the neurons in the hidden layer, the optimal
long-term cost function ()*J k can be approximated by the

critic NN with arbitrarily small approximation error
cε (k),

*() (()) (()) (()) (())T T T
c c c c c c cJ k w v x k x k w x k x kφ ε φ ε= + = +

 (21)
Similarly, the critic NN weight estimation error can be

228

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

defined as
ˆ() ()c c cw k w k w= − (22)

where the approximation error is given by
()()() ()T

c c ck w k x kζ φ= (23)

Thus, we

 () ()
ˆ ˆ() () (1) ()

() * (1) * 1
() () (1)

c

c c

c c

e k J k J k r k
k J k k J k

r k k k

γ
γζ γ ζ

ε ε

= − − +
= + − − − −
+ − + −

 (24)

Next we discuss the weight tuning algorithms for critic and
action NNs.

C. Weight Updating for the Critic NN
Following the discussion from the last section, the objective

function to be minimized by the critic NN can be defined as a
quadratic function of tracking errors as

() () () ()21 1
2 2

T
c c c cE k e k e k e k= = (25)

Using a standard gradient-based adaptation method, the weight
updating algorithm for the critic NN is given by

() () ()ˆ ˆ ˆ1c c cw k w k w k+ = + Δ (26)
where

() ()
()

ˆ
ˆ

c
c c

c

E k
w k

w k
α

∂
Δ = −

∂
 (27)

with c Rα ∈ is the adaptation gain.
Combining (19), (20), (25) with (27), the critic NN weight

updating rule can be obtained by using the chain rule as

() ()
()

()
()

()
()

()
()

()() ()

ˆ
ˆ ˆˆ ˆ

c c c
c c c

c c c

c c c

E k E k e k J k
w k

w k e k w kJ k

x k e k

α α

α γφ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂∂

= −

 (28)

Thus, the critic NN weight updating algorithm is obtained as

() () ()() () () ()()ˆ ˆˆ ˆ1 1c c c cw k w k x k J k r k J kα γφ γ+ = − + − − (29)

D. Weight Updating for the Action NN
The basis for adapting the action NN is to track the desired

trajectory and to lower the cost function. Therefore, the error
for the action NN can be formed by using the functional
estimation error ()a kζ , and the error between the nominal
desired long-term cost function ()dJ k R∈ and the critic signal

()Ĵ k . Now we define the cost function vector as
1ˆ ˆ ˆ() () () ... ()

T nJ k J k J k J k R ×= ∈ . Let

() ()() () ()()() () ()()

()() () ()()() ()

1

1

a a d

a

e k g x k k g x k J k J k

g x k k g x k J k

ζ

ζ

−

−

= + −

= +

 (30)

where ()a kζ is defined in (16). Given Assumption 1, we define

()() n ng x k R ×∈ as the principle square root of the diagonal

positive definite matrix ()()g x k , i.e.,

()() ()() ()()g x k g x k g x k× = , and ()()() ()()
T

g x k g x k=

[10]. The desired long-term cost function ()dJ k is nominally

defined and is considered to be zero (“0”), which means as low
as possible.

Hence, the weights of the action NN ˆ ()aw k are tuned to
minimize the error

() () ()1
2

T
a a aE k e k e k= (31)

Combining (14), (16), (18), (30), (31) and using the chain
rule yields

() ()
()

()
()

()
()

()
()

()() ()()
()() () () () ()()1

ˆ
ˆ ˆ

(()) ()

1

a a a a
a a a

a a a c

T
a a a

T
a a a

E k E k e k k
w k

w k e k k w k

s k g x k k J k

s k e k l e k d k J k

ζ
α α

ζ

α φ ζ

α φ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − − +

 (32)

where a Rα +∈ is the adaptation gain of the action NN.
However, ()ad k is typically unavailable. So as in the ideal

case, we assume the ()d k and the mean value of (())a s kε over

the compact subset of 2nR to be zero, and obtain the weight
updating algorithm for the action NN as

() () ()() () () ()()1ˆ ˆ1 1
T

a a a aw k w k s k e k l e k J kα φ+ = − + − + (33)

IV. MAIN THEORETIC RESULT

Assumption 4: Let aw and cw be the unknown output layer
target weights for the action and critic NNs respectively, and
assume that they are upper bounded such that

a amw w≤ , and c cmw w≤ (34)

where amw R+∈ and cmw R+∈ represent the bounds on the
unknown target weights.
Fact 1: The activation functions for the action and critic NNs
are bounded by known positive values, such that

() (),a am c cmk kφ φ φ φ≤ ≤ (35)

where ,am cm Rφ φ +∈ is the upper bound for the activation
functions.
Assumption 5: The NN approximation errors ()()a s kε and

()()c x kε are bounded above over the compact set nS R⊂ by

amε and cmε [11].
Fact 2: With the Assumption 1, 4, the term ()ad k in (17) is

bounded over the compact set nS R⊂ by

() maxa am am md k d g dε≤ = + (36)

Combining Assumption 1, 3, and 4 and Facts 1, and 2, the main
result of this paper is introduced in the following theorem.

Theorem 1: Consider the system given by (1). Let the
Assumptions 1 through 4 hold with the disturbance bound md
a known constant. Let the control input be provided by the

229

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

action NN (13), with the critic NN (20). Further, let the weights
of the action NN and the critic NN be tuned by (29) and (33)
respectively. Then the tracking error ()e k , and the NN weight

estimates of the action and critic NNs, ()ˆaw k and ()ˆ cw k are

UUB, with the bounds specifically given by (A.9) through
(A.11) provided the controller design parameters are selected as
(a) () 2 min

2
max

0 a a
gk
g

α φ< < (37)

(b) ()() 2
0 1c c x kα φ< < (38)

(c)
max

30
3

l< < (39)

(d) 1
2

γ > (40)

where aα and cα are NN adaptation gains, and α is
employed to define the strategic utility function.
Proof: See Appendix.

V. SIMULATION RESULTS

To demonstrate the feasibility of the theoretic results,
nanomanipulation system using the proposed controller is
chosen as an example. Some of the parameters used in this
simulation are set as follows: (note: 3I is the identity matrix
with dimension of 3)

TABLE 1
SUMMARY OF PARAMETERS USED IN SIMULATION OF NANOMANIPULATION

Parameter xw yw zw , ,x y zQ Q Q θ
Value 1570 rad/s 1570 rad/s 117.6 rad/s 20 30

Parameter R F γ Λ 1l
Value 0.1 0.1 0.5 100 30.1 I×

Parameter cn an cα aα
Value 20 20 1×e-8 1×e-8

The simulation is run with time step of 1×e-5. The effect of
surface roughness in a form of sinusoid function is also
introduced into the simulation as disturbance. The objective or
the desired trajectory is to realize the movement of the particle
along the sample surface with a constant speed. A proper force
on the nano particle will indicate that the particle is being
pushed by the tip, which could be observed by the movement of
the stage along z axis.

Our online learning controller is first applied, with the results
shown as in Fig. 4.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-2

0

2

4

6

x
(n

m
)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-5

0

5

10

y
(n

m
)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-0.4

-0.3

-0.2

-0.1

0

z
(n

m
)

t (s)

Fig. 4. Simulation results of the online learning controller on nanomanipulation
system. Solid line: trajectories of the actual movement of the stage; Dashed
line: desired movement of the stage. Note: there is no desired trajectory in the z
axis.

0 0.002 0.004 0.006 0.008 0.01
-5

0

5

x
(n

m
)

0 0.002 0.004 0.006 0.008 0.01
-5

0

5

10

y(
nm

)

0 0.002 0.004 0.006 0.008 0.01
-0.4

-0.2

0

z
(n

m
)

t(s)

Fig. 5. Simulation results of PD controller on nanomanipulation system. Solid
line: trajectories of the actual movement of the stage; Dashed line: desired
movement of the stage.

To compare the performance, the system is also simulated with
a typical PD controller. The results are shown at Fig. 5. From
the comparison of the results, we can find that the online
learning controller outperforms the PD controller in stabilizing
the stage along the z axis, which also implies that an appropriate
applied force on the particle is applied within a shorter time.
Meanwhile, the cost of generating the input for the online
learning controller is calculated to be 397.24, which is much
better than that of the PD controller (541.44).

VI. CONCLUSION

A novel reinforcement learning-based online neural
controller is designed for affine nonlinear systems to deliver a
desired performance under bounded disturbance. The proposed
NN controller optimizes the long-term cost function by
introducing a critic NN. Unlike the many applications where
the controller is trained offline or trained by multiple iterations,
the control signal in our scheme is updated in an online fashion.

230

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Online learning control designs are especially useful for such
complex systems whose dynamics are varying along with time
and whose exact models are unreachable. At the same time,
nanomanipulation system is a promising application and
demands that the process is made automatic. However, its
“fragile” dynamics exclude the implementation of iterative
based control design, since no two manipulation attempts share
a same dynamics. The “optimal” control policy being
approached by a learning entity in one trial does not hold for
another trial. In this regard, an online learner is more
applicable.

To guarantee that a control system must be stable all the time,
the UUB of the closed-loop tracking errors and NN weight
estimates is verified by using Lyapunov analysis in the
presence of bounded disturbances and approximation errors.
Finally, the feasibility of our method is strengthened through
the simulation results.

APPENDIX

Proof of Theorem 1: Define the Lyapunov candidate as

() ()

4

1

2 31 2

2
4

()

() () () () ()
3

(1)

i
i

T T
a a c c

a c

c

L k L

e k tr W k W k tr W k W k

k

γγ γ
α α

γ ζ

=

=

= + +

+ −

(A.1)

where i Rγ +∈ , 1, 2,3,4i = are design parameters. Hence, the
first difference of the Lyapunov function is given by

()
()

()

2 21
1

2 21

2 2 22 21
max 1 max 1

(1) ()
3

() (()) () () ()
3

1 3 () () ()
3

a a

a a

L e k e k

le k g x k k d k e k

l e k g k d k

γ

γ ζ

γ γ ζ γ

Δ = + −

= + + −

≤ − − + +

 (A.2)

()

()() () ()()(
)

() () () ()()
()() () ()

() () ()()

2
2

2

2 2

2 2
2

2
2 min 2

2

(1) (1) () ()

2 () (()) ()

ˆ ˆ() ()

2 (()) 2 ()

(()) ()

2 2 ()

T T
a a a a

a

T
a a a a a

a

T
a a

T T
a a a a

a a a a

T
a a a

a a

L tr W k W k W k W k

tr W k s k g x k k J k d k

W k W k

k g x k k k J k d k

s k g x k k J k d k

g k k J k d k

s

γ
α
γ α φ ζ
α

γ ζ ζ γ ζ

γ α φ ζ

γ ζ γ ζ

γ α φ

Δ = + + −

= − + +

+Δ Δ

= − − +

+ + +

≤ − − +

+ ()() () ()()
() ()() ()()

2 222
max 2

2
2() 2 () (())

a a a

T
a a a a

k g k s k

J k d k J k d k g x k k

ζ γ α φ

γ α ζ

+

× + + +

() ()()() (){
() ()()() ()()

()() () }
() ()()(){

()
()()()

()()

()()
()()

()

22 22
2 min min max

2

2 2

22 2
2 min min max

22

2 2
min max

2
2min

2 2
min max

2 (()) ()

()

(())

1
()

a a a a

T
a a a a

a a a

a a a

a a

a

a a

a a
a

a a

g k g s k g k

k I s k g x k J k d k

s k J k d k

g k g s k g

I s k g x k
k

g s k g

s k g
J k d k

g s k g

γ ζ α φ ζ

ζ α φ

α φ

γ ζ α φ

α φ
ζ

α φ

α φ

α φ

= − − −

− − +

+ +

= − − −

−
× +

−

−
+ +

−

 (A.3)

Set 2 2 2γ γ γ′ ′′= , where ()()
()()

2

min
2 2

2
min max

1 1"
2

a a

a a

s k g

g s k g

α φ
γ

α φ

−
≤

−
,

Therefore,

() ()()()

()
()()()

()()
()

() ()()()

()
()()()

()()
()

() ()

22
2

2 2 min 2 min max

22 2

22
2

min max

22
2

2 min 2 min max

22

2

22
2

min max

2
2

(()) ()
2

(())

*

a a a

a a a
a

a a

a a a

a a

a c

a a

a

L g k g s k g

I s k g x k J k d k
k

g s k g

g k g s k g

I s k g x k
k n k

g s k g

n J k d k

γ ζ γ α φ

α φ
ζ γ

α φ

γ ζ γ α φ

α φ
ζ γ ζ

α φ

γ

Δ ≤ − − −

− +
′× + +

−

≤ − − −

−
′× + +

−

′+ +
 (A.4)
At the same time,

()

()

()() ()() ()
() () () ()

() () ()(

3
3

3

3 3

22 2
3 3

3

(1) (1) () ()

ˆ ˆ ˆ2 () () () ()

ˆ ˆ2 () () ()

2

2 *() 1 *(1) ()

()

T T
c c c c

c

T T
c c c c

c

T T
c c c c c c

c c

c c c c c

c c c

c c

L tr W k W k W k W k

tr W k W k W k W k

tr W k x k e k tr W k W k

k e k e k k

e k e k J k k J k r k

k

γ
α
γ
α
γ γα γφ
α α

γ γζ γ α γ φ

γ γ ζ

ε ε

Δ = + + −

= Δ + Δ Δ

= − + Δ Δ

= − +

= − − + − + − −

+ −) () ()

()() () () () (
())

()() ()

()()
()() ()

22 2
3

22 2 2
3 3 3

22 2 2 2
3 3

2
3

22 2 2 2 23
3 3

(1)

1 2 *()

1 *(1) () () (1)

1 ()

* () 1 * (1) () () (1)

1 ()
4

c c c

c c c c c

c c c

c c c c

c c c

c c c c c

k e k k

k e k e k e k J k

k J k r k k k

k e k k

J k k J k r k k k

k e k k k

γ α γ φ

γ α γ φ γ γ γ

ζ ε ε

γ α γ φ γ γ ζ

γ γ ζ ε ε
γγ α γ φ γ γ ζ ζ

− +

= − − − +

− − − − + − + −

= − − −

+ − − − − + − + −

≤ − − − + ()

() ()2 23 3 3

1

* () * (1) () () (1)
4 4 4 c cJ k J k r k k kγ γ γγ ε ε

−

+ − − + + − −

231

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

()() () ()

()

()() ()()

()() () ()

()

22 2 2 2 23
3 3

2 23 3
max

23
3

22 2 2 2 23
3 3

2 2 23 3 3
max max

3
ma

1 () 1
4

*() *(1) ()
4 4

() ()
4

1 () 1
4

*() *(1) () ()
4 4 8

8

c c c c c

TT T
a a a a a a cm

c c c c c

a

k e k k k

J k J k Q e k

k w k R k w k

k e k k k

J k J k Q e k R k

R

γγ α γ φ γ γ ζ ζ

γ γγ

γ ζ φ ζ φ γ ε

γγ α γ φ γ γ ζ ζ

γ γ γγ ζ

γ

≤ − − − + −

+ − − +

+ + + +

≤ − − − + −

+ − − + +

+ () 2 2
x 3

T
a a cmw kφ γ ε+

 (A.5)
where maxQ and maxR are the maximum eigenvalue of matrix

Q and R respectively and

 ()2 2
4 4 () (1)c cL k kγ ζ ζΔ = − − (A.6)

Combining (A.1) - (A.6) yields

()
() ()()()

()
()()()

()()
()

() () ()() ()

() ()

2 2 22 21
max 1 max 1

22 2
2 min 2 min max

22

2
22 2

min max

2 22 2
2 3

22 2 23 3
3

3

() 1 3 () () ()
3

(())

* 1

() 1 *() *(1)
4 4

4

a a

a a a

a a

a c

a a

a c c c

c c

L k l e k g k d k

g k g s k g

I s k g x k
k n k

g s k g

n J k d k k e k

k k J k J k

Q

γ γ ζ γ

γ ζ γ α φ

α φ
ζ γ ζ

α φ

γ γ α γ φ

γ γγ γ ζ ζ γ

γ

Δ ≤ − − + +

− − −

−
′× + +

−

′+ + − −

− + − + − −

+

() ()
()

()

() ()

()() () ()()

2 23
max max

2 2 2 23
max 4 3

22 31
max max

22 3
2 min 1 max max

2 22 3
3 2 4 4

222 2
3 2 min ma

() ()
8

() (1)
8

1 3 ()
3 4

8

(1)
4

1

a

T
a a c c cm

a

c c

c c c a a

e k R k

R w k k k

l Q e k

g g R k

n k k

k e k g s k g

γ ζ

γ φ γ ζ ζ γ ε

γγ

γγ γ ζ

γγ γ γ γ ζ γ ζ

γ α γ φ γ α φ

+

+ + − − +

= − − −

− − −

′− − − − − −

− − − −()

()
()()()

()()

2
x

22

2
2 2

min max

(())a a

a M

a a

I s k g x k
k D

g s k g

α φ
ζ

α φ

−
× + +

−

 (A.7)
where

() 22 23 2 3
max

2 22
1 3

4 2 6

()
2

T
M m a a

a cm

nD J R w k

n d k

γ γ γ φ

γγ γ ε

′
= + +

′
+ + +

 (A.8)

For the standard Lyapunov analysis, equation (A.7) and

(A.8) implies that 0LΔ ≤ as long as the conditions (37) – (40)
are satisfied and following holds

()2
1 max 3 max

2 3()
4 1 3 3

MDe k
l Qγ γ

≥
− −

 (A.9)

or

()
2

2 min 1 max 3 max

2 2
8 8

M
a

Dk
g g R

ζ
γ γ γ

≤
− −

 (A.10)

or

()
2

3 2 4

M
c

Dk
n

ζ
γ γ γ γ

≤
′− −

 (A.11)

According to the standard Lyapunov extension theorem [17],
the analysis above demonstrates that the tracking error ()e k
and the weights of the estimation errors are UUB. Further, the
boundedness of ()a kζ and ()c kζ implies that the weight

estimations ˆ ()aw k and ˆ ()cw k are also bounded.

REFERENCES

[1] R. Bellman and S. Dreyfus, “Applied Dynamic Programming,” Princeton,
NJ: Princeton Univ. Press, 1962.

[2] R. Luus, “Iterative Dynamic Programming”, CRC Press, Boca Raton, FL,
2000.

[3] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds., “Handbook of
Learning and Approximate Dynamic Programming”, Wiley-IEEE Press,
2004.

[4] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol.
8, pp. 257–277, 1992.

[5] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction”, the MIT Press, Cambridge, MA, 1998.

[6] J. Si and Y. T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp.
264–276, Mar.2001.

[7] G. Boone, “Efficient reinforcement learning: Model-based acrobot
control.” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 229
- 234, Albuquerque, NM, 1997 .

[8] D. Prokhorov and D. Wunsch, “Adaptive critic designs”, IEEE Trans.
Neural Networks, Vol. 8, No.5, p.997-1007, 1997.

[9] P. J. Werbos, “Building and understanding adaptive systems: A
statistical/numerical approach to factory automation and brain research,”
IEEE Transactions on Systems, Man, and Cybernetics 17, pp. 7–20, 1987.

[10] P. He and S. Jagannathan, “Reinforcement learning-based output
feedback control of nonlinear systems with input constraints”, IEEE
Trans. Syst., Man, Cybern., vol. 35, pp. 150–154, 2005.

[11] Y. Kim and F..L. Lewis, "Optimal design of CMAC neural network
controller for Robot Manipulators," IEEE Trans. Systems, Man, and
Cybernetics, vol. 30, no. 1, pp. 22-31, Feb 2000.

[12] M. Sitti, “Survey of nanomanipulation systems”, IEEE Proceedings of
the Nanotechnology, pp.75–80, 2001.

[13] Q. Yang and S. Jagannathan, “Atomic force microscope-based
nanomanipulation with drift compensation”, Int. J. Nanotechnology, Vol.
3, No. 4, pp. 527-544, 2006.

[14] M. Sitti and H. Hashimoto, "Controlled Pushing of Nanoparticles:
Modeling and Experiments", IEEE/ASME Trans. on Mechatronics, July
2000.

[15] B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in adaptive
function approximation and the functional-link net,” IEEE Trans. Neural
Network, vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[16] D. P. Bertsekas, “Dynamic Programming and Optimal Control.
Belmont,” MA: Athena Scientific, 2000.

[17] S. Jagannathan, “Neural Network Control of Nonlinear Discrete-time
Systems”, Taylor and Francis (CRC Press), Boca Raton, FL 2006.

232

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

