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Abstract— Free flight is a new concept in air traffic manage-
ment, where pilots are given more freedom in making decisions
in the cockpit. This allows air traffic controllers to manage
more flights. One of the concepts under investigation in the
Australian airspace is moving sectors, where an air traffic
controller becomes responsible of a moving volume of the space
containing a group of airplanes. Planning flight trajectories in
this group is a hard problem. In this paper, we show that XCS
can be used as a reliable planning tool. We also propose a novel
idea for incorporating hard constraints within XCS to increase
its reliability.

I. INTRODUCTION
Current Air Traffic Control (ATC) is a centralized system,

where Air Traffic Controllers (ATCo) are responsible for
critical decisions such as conflict resolution. An ATCo is
normally responsible for a pre-defined fixed volume of the
space known as a sector. However, several studies indicated
that fixed-sector controllers may become a limiting factor
in air traffic growth in the future [14]. This became a major
task in current research activities to find better methodologies
to improve the efficiency of future air transportation. One
school of thought is to fundamentally change the airspace
sectorization in order to improve the efficiency of air trans-
portation and Air Traffic Management (ATM). This school
includes a number of approaches such as the Sector-Less [5],
SuperSector [8] [7] and The Tube Advanced Lane Control
(TALC)[6] concepts. However, the detailed implementation
of these concepts is not well-established as yet.

Another approach is Free Flight, which has been proposed
as an alternative to current policy of allowing pilots very
little freedom to choose optimal routes, altitude, speed, etc.
In the Free Flight environment, pilots could profit from
favorable winds to take faster routes to their destinations or
avoid unfavorable weather conditions when provided with
sufficient information. The benefits of Free Flight include
fuel savings, reductions in flight delays, time-savings to
destinations, and increase use of space [1]. There are still
several outstanding research issues, such as how to maintain
and guarantee safety, how to minimize cost to airlines, and
how to manage congestion and predict airspace constraints
[14].

The version of Free Flight being proposed for adoption in
Australia and elsewhere is called User Preferred Trajectories

(UPT). Under a UPT regime, pilots (or more likely, Airline
Operations Centres) would choose a 4D trajectory (route,
altitude and times at waypoints) that best suits their opera-
tional imperatives. For example, if they want to save fuel, a
great circle route would have the shortest ground distance,
but may not have the shortest air-distance, due to the effect
of head or tail winds, weather conditions, and special use
air space. For some flights it may be more important to save
time than fuel.

Using Australian air traffic as an example, it is clear that
UPTs are likely to lead to bursts of activity in fixed sectors,
due to many airlines wanting to fly similar routes at similar
times. One possible approach proposed by the industry to
decompose this problem is called the Moving Sector concept,
whereby a group of aircraft flying similar trajectories are
allocated to a single ground-based ATCo, for part of their
journey at least. Specifically, a moving volume of airspace
would be the responsibility of the ATCo. The issue addressed
in this paper is how to provide a decision support system for
off-line planning of trajectories so that airlines can try to
optimise individual flight trajectories while at the same time
optimising an overall system performance metric, in order to
assure airspace safety and efficiency.

This is a hard optimization problem. There are two general
ways of thinking on how to solve this problem. One is
to build an optimizer in which the problem is represented
mathematically or otherwise, and every time a new problem
arises, the optimizer is run to find the new set of solutions.
Another approach is to evolve a set of rules that can tell us
how to find solutions. In other words, evolution is not used to
optimize, but is used to find rules on how to optimize. This
is the approach followed in this paper since it generates a
set of rules that can be interrogated by a human expert for
risk assessment. They can also be used to educate pilots on
how to choose an option when faced with a conflict.

In this paper, we use XCS - an evolutionary classifier
system - to evolve the set of rules that can be used for
path planning in a moving sector problem. We investigate
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the effect of the number of populations and population size
on the nature of evolved rules. This paper addresses two
research questions; these are:

• How to handle long action chains? In the off-line
planning system, the performance of the trajectories
for all aircraft will be evaluated after all aircraft arrive
at the destination. Learning Classifier Systems are not
able to solve larger “Long Action Chain” (or Multistep)
problems robustly [2] [4]. We believe that we can solve
this problem efficiently if a carefully designed local
reward function is designed. This paper presents one
such local reward function.

• How to incorporate Hard Constraints? The path plan-
ning problem has hard constraints, such as ensuring
the aircraft trajectories stay within the moving volume
and stay safely separated in time and space. These con-
straints can be incorporated in the reward function by
penalizing transitions that may break hard constraints.
However, we hypothesize that it is more efficient to in-
corporate these hard constraints within XCS. Although
the system is proposed to be an off-line system, time
and computing resources are still very important. We
propose in this paper a mechanism to initialize XCS
with hard constraints and compare between XCS with
and without these constraints.

The next section will introduce a short literature review
followed by the approach. We then present the experiments,
analyze the results, and conclude the work.

II. THE APPROACH

A. The Search Technique

Learning Classifier Systems (LCS) [9] are rule-based sys-
tems, where the rules are usually in the traditional production
system form of “IF condition THEN action”. The rules
provide a very general solution to a given problem. An
evolutionary algorithm and heuristics are used to search the
space of possible rules, whilst a credit assignment algorithm
is used to assign utility to existing rules, thereby guiding
the search towards better rules. The LCS formalism was
introduced by Holland [9] and based around his more well-
known invention - the Genetic Algorithm (GA). A few years
later, in collaboration with Reitman [12], he presented the
first implementation of an LCS. Holland then revised the
framework to define what would become the standard system
[10] [11] [3]. A very useful benefit to the use of LCS
is the accessibility of the information that they obtain (or
learn) through interaction with the environment. The explicit
nature of the classifier’s structure permits the possibility of
subsequent higher-level interpretation and organization. In
the research of Sen and Sekaran [15], action policies were
developed to optimize environment feedback. According to
their experimental results, classifier systems can be more
effective than the more widely used Q-learning scheme for
multi-agent coordination on a resource sharing problem and
a robot navigation problem.

The “eXtended Classifier System” (XCS) was introduced
by Wilson [16]. The difference between XCS and traditional

LCS is that in traditional LCS, the rule fitness is based on
the payoff received by rules but in XCS the fitness is based
on the accuracy of predictions in payoff. Advantages of XCS
include an ability to form accurate maximal generalizations
and improved performance [17]. An example of the accurate,
maximally general classifier corresponding to the inputs of
000000, 000001, 000010, 000011, 000100, 000101, 000110,
000111 is 000###. XCS contains rules (called classifiers),
some of which will match the current input. An action is
chosen based on the predicted payoffs of the matching rules.

The rule-based system consists of a population of
condition-action rules or “classifiers”. The structure is [17]:

< condition >:< action >⇒< prediction >

For example: 01#1## : 1 ⇒ 943.2. The # acts as a
wildcard allowing generalization so that the rule condition
#011 matches both the input 0011 and the input 1011. For
each action in [M], classifier predictions are weighted by
the fitness F to get system’s net prediction in the prediction
array. The estimates (keeps an average of) is the predictions
of the payoff expected if the classifier matches and its action
is taken by the system. Based on the system predictions, an
action is chosen and sent to the environment. XCS is chosen
for this research due to the following reasons:

• It provides a method to encode how to find solutions,
instead of directly optimizing a solution; thus one can
understand the process of finding solutions rather than
merely finding them.

• It has enhanced readability [13]: XCS presents a sym-
bolic representation that is easy to understand, so it
should be helpful for us to analyze how the system
finds solutions and to extract behavior rules for ATM
from the rule set in the population.

B. The Environment

This paper uses a simplified version of the Moving Sector
problem in order to develop the methodology. First we
decompose the problem into multiple moving volumes of
airspace: see Fig. 1. Each volume is structured into “lanes”
which are arranged horizontally and vertically and separated
by a minimum safe distance (5 nautical miles is the usual
standard for radar-controlled airspace): see Fig. 2. The vol-
ume moves in a straight line at constant altitude and at a
constant speed. In this highly simplified example, aircraft
are also assumed to move at the same and constant speed,
slightly greater than that of the volume, so that from a relative
perspective they are moving steadily along the lanes. Finally,
for simplicity, time will be discretised, and lane changes will
be made only at discrete, evenly separated points in time;
changing lanes will not incur a speed penalty. As a result
of all these simplifications, the problem has been reduced
to aircraft moving through a 3D grid of cells. A scenario

will be specified by defining the lane in which each aircraft
begins (its entry waypoint) and the desired lane in which it
should finish when it reaches the other end of the volume
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Fig. 1. Two Groups of Aircraft in Two Moving Volumes

Fig. 2. The Structure of a Moving Volume

(its exit waypoint), for each aircraft in the Moving Volume
(MV).

A trajectory in this case is thus a path through the cells. At
each time step an aircraft can move into the cell in front of
it, or to one of the cells adjacent to that (which corresponds
to changing lanes): see Fig. 4. The challenge in planning
trajectories has several parts: do not enter a cell that already
contains another aircraft; do not cross the side boundaries
of the volume; try to end up in the lane containing the exit
waypoint: see Fig. 3. The optimisation problem is to try to
minimise the overall number of lane changes.

Fig. 3. Example of 3 Aircraft Trajectories in The Moving Volume

III. RULE REPRESENTATION IN XCS

In our experiments, it is assumed that there are nine lanes,
namely Absolute Lanes #0 to #8, and the state the agent can
sense is the state of the Adjacent Lanes, namely Adjacent
Lanes #0 to #8, at the next time step. The Adjacent Lanes
are defined relative to the lane the aircraft currently flies on,
which will always be referenced as Adjacent Lane #4 (i.e.

each aircraft is centered in the square). Thus, the Adjacent
Lanes will be numbered as #0 to #8, as shown in Figure 4.

Fig. 4. The “Absolute Lanes” and “Adjacent Lanes”

Although, in current experiments, the speed of the aircraft
is not changeable, one aircraft may sense other aircraft, due
to the sequence (we assume a non-cooperative resolution
policy) in which aircraft plan their trajectories. For example,
if the sequence is AC2–AC0–AC1, the aircraft which AC1
may sense will be AC2 and AC0. The rules in XCS are used
to represent the states of the environment. One rule may be
used, only when the condition part can match the current
state of the environment. So, the nodes of the condition and
action part of the system may be:

TABLE I
THE CONDITION PART OF THE XCS SYSTEM

Node Description Option
0 to 8 The status of adjacent lanes at the next time

step, Adjacent Lane #0 to #8 respectively.
0, 1, 2, #

9 to 17 The Adjacent Lane will be closer to or
further away from or the same distance to
the distance. Node 9-17 represents Adjacent
Lane #0 to #8 respectively.

0, 1, 2, #

TABLE II
THE ACTION PART OF THE XCS SYSTEM

Node Description Option
0 Which Adjacent Lane will be chosen as the

next step? The number, 0-8, represents Ad-
jacent Lane number of the current position.

0, 1, 2, 3, 4,
5, 6, 7, 8

For nodes #0 to #8, the option of 0 means the adjacent
lane at the next time step will be available, 1 means the lane
will not be available due to another aircraft, and 2 means it is
outside of the boundary of the volume. For node 9 to 17, the
option of 0 means that by choosing the lane for the next time
step, the aircraft will be closer to the destination, 1 means
that the distance between the aircraft and the destination
will remain the same and 2 means that the aircraft will be
further away from the destination. In our experiments, the
destination means the lane containing the exit waypoint. The
‘#’ is a “wildcard”, which means the node with ‘#’ will be
ignored when the XCS system tries to match rules with the
inputs of the environment. For the node of the action part, the
number, between 0 and 8, of the option means the Adjacent
Lane number the aircraft will choose for the next time step
as its action. In the example of Figure 5, the best action
should be Adjacent Lane #6.
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Fig. 5. The Chromosome of a Rule

A. Encoding hard constraints in XCS

The rules in the population are generated with the Cover-
ing function of XCS. However, the system may need a lot of
training time and computing resources to learn a good set of
rules. In this application, there are certain rules that we would
like to enforce all of the time, namely: ensuring that aircraft
do not collide and do not cross the volume side boundaries.
We call such rule hard constraints. One approach is to add
such rules to the system when it is initialized and tag them
so that they do not get deleted. Also, these rules are given the
highest possible fitness so that they always get selected from
the match set, and the lowest possible prediction accuracy, so
that they never get selected in action set. It is expected that
with these rules, the system will learn what action should
not be taken, so as to save the time on trying wrong actions.
Figure 6 shows three of these rules.

Fig. 6. Partial List of Initial Rules for Constraint

B. The Reward Function

Some researchers tried to solve Long Action Chain prob-
lems for XCS, but the results show that further investigations
are still needed [2]. Our proposal is that in some problems,
it might be possible to design local reward functions to
guide the search algorithm to construct a long action chain.
We define the search problem as the determination of an
algorithm to find a path that is: A) continuous from origin
to destination, B) has a minimal number of lane changes, C)
has no collision with another aircraft. Therefore, a simple
possible reward function is presented in Algorithm 1. This
paper investigates the suitability of this reward function.

Algorithm 1 Reward Function
1: AL ←the Adjacent Lane chosen for the next time step
2: CL ←the Current Lane
3: if AL =Not Available then
4: rewards = 0;
5: else if AL =Outside Boundary then
6: rewards = 0;
7: else
8: if Dist to Destin(AL) < Dist to Destin(CL) then
9: rewards = 1000;

10: else if Dist to Destin(AL) = Dist to Destin(CL) then
11: if AL = CL then
12: rewards = 500;
13: else
14: rewards = 300;
15: end if
16: else
17: rewards = 100;
18: end if
19: end if

TABLE III
SCENARIOS USED IN EXPERIMENTS

Scenario AC0 AC1 AC2
init final init final init final
lane lane lane lane lane lane

S0 #2 #7 #7 #0 #8 #1
S1 #1 #6 #5 #2 #6 #3
S2 #4 #3 #3 #8 #1 #6
S3 #5 #0 #6 #2 #8 #1

IV. EXPERIMENTAL SETUP

We undertook two experiments to test the feasibility of
our approach. There are common assumptions in these exper-
iments: (A) All aircraft are trained to fly in the same direction
and speed from origins to destinations. (B) All aircraft
plan their trajectories in sequence. The sequence reflects
the priority level assigned to each aircraft, where aircraft
would normally have to negotiate their priority in a MV.
The XCS parameters are the same for all experiments. 200
training scenarios generated by the system randomly are used
to train the aircraft. Each training scenario will be used to
train the aircraft for 5 epochs. The difference between these
scenarios is the combination of the origins and destinations
for all aircraft. Four testing scenarios (Table III) are designed
manually for testing. Each experiment was repeated with
30 different seeds and the same 30 seeds are used in all
setups. The evaluation criteria are: (1) safety performance
measures: the number of crashes (i.e., two aircraft occupying
the same cell), and the number of times aircraft crossed
the boundary; and (2) efficiency performance measures: the
number of lane changes for the whole team, the number of
climb/descend, and the number of heading changes. A run is
said to be successful if there are no crashes, no aircraft cross
the boundaries, and all aircraft arrive at their exit waypoints.

The first set of experiments is designed to evaluate the
utility of incorporating hard constraints. 18 initial rules are
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added to the population when the system is initialized. The
results are compared with and without these hard constraints.

The second set of experiments is designed to compare
between the use of a single population shared among all
aircraft and the use of a different population for each aircraft.

V. RESULTS

In this section, we will present different statistics on the
experiments. Table IV presents the number of successful
runs when using a single population and with/without hard
constraints. It clearly demonstrates the usefulness of biasing
the initial XCS population by incorporating hard constraints
in the form of rules with high fitness and 0 prediction. The
number of successful runs varied from one test scenario to
another, but it is clear that the four different scenarios have
different characteristics, which is desirable when using them
for testing the generalization of XCS.

TABLE IV
TOTAL NUMBER OF SUCCESSFUL RUNS WHEN USING A SINGLE

POPULATION WITH AND WITHOUT HARD CONSTRAINTS

(OUT OF 30 TESTS)

Scenario Pop Without With
size Constraints Constraints

S0 1000 0 0
3000 2 14
9000 14 25
12000 14 25

S1 1000 0 0
3000 9 21
9000 26 28
12000 26 28

S2 1000 0 0
3000 4 17
9000 15 24
12000 15 24

S3 1000 0 0
3000 4 16
9000 20 29
12000 20 29

TABLE V
TOTAL NUMBER OF SUCCESSFUL RUNS WHEN USING THREE

POPULATIONS WITH AND WITHOUT HARD CONSTRAINTS

(OUT OF 30 TESTS)

Scenario Pop Without With
size Constraints Constraints

S0 1000 0 0
3000 4 15
4000 5 19
5000 4 17

S1 1000 1 4
3000 7 25
4000 18 27
5000 21 29

S2 1000 0 0
3000 4 13
4000 4 20
5000 4 24

S3 1000 0 2
3000 2 13
4000 7 21
5000 3 25

TABLE VI
AVERAGE AIRCRAFT PERFORMANCE MEASURES WITHOUT CONSTRAINT

INITIALIZATION AND WHEN USING A SINGLE POPULATION

Scenario Pop climb/ heading both lane
size descend changes changes

S0 1000 20.00 20.00 20.00 20.00
3000 18.76 18.69 18.71 18.82
9000 11.14 10.68 11.12 11.61
12000 11.14 10.68 11.12 11.61

S1 1000 20.00 20.00 20.00 20.00
3000 14.38 14.14 14.29 14.81
9000 3.52 2.68 2.97 3.83
12000 3.52 2.68 2.97 3.83

S2 1000 20.00 20.00 20.00 20.00
3000 17.40 17.42 17.64 17.80
9000 10.13 10.37 10.37 10.87
12000 10.13 10.37 10.37 10.87

S3 1000 20.00 20.00 20.00 20.00
3000 17.60 17.40 17.67 18.00
9000 6.91 6.91 7.71 8.20
12000 6.91 6.91 7.71 8.20

TABLE VII
AVERAGE AIRCRAFT PERFORMANCE MEASURES WITH CONSTRAINT

INITIALIZATION AND WHEN USING A SINGLE POPULATION

Scenario Pop climb/ heading both lane
size descend changes changes

S0 1000 20.00 20.00 20.00 20.00
3000 11.14 10.91 11.31 12.01
9000 4.18 3.34 4.16 5.01
12000 4.18 3.34 4.16 5.01

S1 1000 20.00 20.00 20.00 20.00
3000 6.77 6.06 6.62 7.43
9000 2.26 1.34 1.66 2.59
12000 2.26 1.34 1.66 2.59

S2 1000 20.00 20.00 20.00 20.00
3000 8.88 9.09 9.27 9.90
9000 4.22 4.58 4.58 5.38
12000 4.22 4.58 4.58 5.38

S3 1000 20.00 20.00 20.00 20.00
3000 9.82 9.83 10.53 11.51
9000 1.01 1.01 1.93 2.62
12000 1.01 1.01 1.93 2.62

Table V shows a similar comparison when each aircraft
is assigned a different population. Here, the advantages of
biasing the initial population with hard constraints are even
more evident in this example. The number of successful runs
with hard constraints is an order of magnitude better in most
experiments. Also, refer to Table IV, by comparing a single
population of size 3n and 3 populations with size n each,
one can see real advantages when using a single population
as compared to a separate population for each aircraft. The
advantages are better success rate and smaller populations.

Tables VI and VII compare the performance of the differ-
ent XCS populations in terms of the efficiency performance
measures for all aircraft sharing one population. Where no
solution was returned a value of 20 is used, which is equal
to the worst performance (i.e. each aircraft changes lanes at
every step). The definition hold true for Tables VIII and IX,
where a separate population is used for each aircraft. The
results for the cases with constraints (Table VII) are clearly
better than without constraints (Table VI) in most cases (with
statistical significance no more than 0.0143 and alpha=0.05).
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TABLE VIII
AVERAGE AIRCRAFT PERFORMANCE MEASURES WITHOUT CONSTRAINT

INITIALIZATION AND WHEN USING THREE POPULATIONS

Scenario Pop climb/ heading both lane
size descend changes changes

S0 1000 20.00 20.00 20.00 20.00
3000 17.46 17.36 17.50 17.63
4000 16.82 16.68 17.02 17.19
5000 17.48 17.34 17.46 17.61

S1 1000 19.56 19.24 19.36 19.59
3000 15.76 15.37 15.46 15.87
4000 9.08 8.30 8.70 10.02
5000 6.89 6.01 6.50 7.37

S2 1000 20.00 20.00 20.00 20.00
3000 17.37 17.46 17.61 17.77
4000 17.39 17.48 17.41 17.61
5000 17.38 17.62 17.42 17.76

S3 1000 20.00 20.00 20.00 20.00
3000 18.69 18.69 18.76 18.80
4000 15.46 15.48 15.75 16.00
5000 18.03 18.03 18.13 18.20

TABLE IX
AVERAGE AIRCRAFT PERFORMANCE MEASURES WITH CONSTRAINT

INITIALIZATION AND WHEN USING THREE POPULATIONS

Scenario Pop climb/ heading both lane
size descend changes changes

S0 1000 20.00 20.00 20.00 20.00
3000 10.49 10.08 10.72 11.27
4000 7.98 7.37 7.96 8.63
5000 9.23 8.67 9.24 9.80

S1 1000 17.47 17.39 17.44 17.61
3000 4.44 3.87 3.91 5.50
4000 2.91 2.04 2.33 3.27
5000 1.61 0.69 1.22 2.17

S2 1000 20.00 20.00 20.00 20.00
3000 11.52 11.80 11.88 12.51
4000 6.87 7.62 7.51 8.64
5000 4.20 4.60 4.61 5.40

S3 1000 19.04 18.78 18.74 19.21
3000 11.50 11.50 11.90 12.21
4000 6.26 6.29 7.10 7.63
5000 3.64 3.64 4.42 5.03

Table X presents that the differences of values of lane
changes between Tables VI and VII are significant, when
tested with a hypothesis test, ttest2, in Matlab (trademark of
The MathWorks, Inc). The exceptions are Scenario S1 with
populations 9000 and 12000. Note that S1 is a somewhat
simpler scenario than the others, since it requires only four
lane changes and the aircraft shortest paths involve only one
possible conflict. The XCS without constraints seems to have
learnt how to avoid this conflict fairly successfully.

Tables XI and XII compare the number of macro-
classifiers in each case. As would be expected, the number of
macro-classifiers when the initial population is biased with
hard constraints is less than the corresponding number when
hard constraints are not used.

VI. CONCLUSION

This paper presented a first attempt at using XCS for
path planning in a free-flight air-traffic control environment.
We have shown a novel mechanism for incorporating hard
constraints within XCS. Although the case study made some

unrealistic simplifying assumptions, the results are promising
and warrant further research. For future work, we plan to
investigate better ways to encode hard constraints so that
XCS does not produce any crashes. We also plan to scrutinize
the macro populations to reduce their sizes and analyze the
semantics of the evolved rules.

TABLE X
HYPOTHESIS TESTING FOR THE DIFFERENCE OF LANE CHANGE VALUES

IN TABLES VI AND VII

Scenario Pop size h P-Value
S0 3000 1 0.00042038

9000 1 0.0024
12000 1 0.0024

S1 3000 1 0.0012
9000 0 0.3977
12000 0 0.3977

S2 3000 1 0.0001628
9000 1 0.00143
12000 1 0.00143

S3 3000 1 0.00076708
9000 1 0.0015
12000 1 0.0015

TABLE XI
THE AVERAGE NUMBER OF MACRO-CLASSIFIERS WITHOUT/WITH

CONSTRAINT INITIALIZATION AND WHEN USING ONE POPULATION.

Population Number of Macro Number of Macro
size classifiers without constraints classifiers with constraints
1000 814.67 795.8
3000 2458.43 2532.53
9000 8580.07 5028.67
12000 8580.07 5028.67

TABLE XII
THE AVERAGE NUMBER OF MACRO-CLASSIFIERS WITHOUT/WITH

CONSTRAINT INITIALIZATION AND WHEN USING THREE POPULATIONS.

Population Number of Macro Number of Macro
size classifiers without constraints classifiers with constraints

3 x 1000 2604.70 2286.60
3 x 3000 6101.70 5522.03
3 x 4000 8024.30 6487.37
3 x 5000 8940.20 7565.77
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