
Query-sensitive Feature Selection for Lazy Learners

Xin Tong and Mingyang Gu
Department of Computer and Information Science,
Norwegian University of Science and Technology,

7030, Trondheim, Norway
{tongxin, mingyang}@idi.ntnu.no

Abstract

Feature selection contributes to increasing many learn-
ers’ accuracy by identifying and removing irrelevant fea-
tures in multidimensional datasets. Conventional feature
selection methods determine the optimal feature subset in-
dependently from and prior to the introduction of a new
query. In general, some features will be relevant only in
certain tasks. We argue that a query, as an indicator of the
attention focus and current task, is a major part of the con-
text and should be involved in the determination of the final
feature subset. In this paper we attempt to propose a query-
sensitive feature selection model, present two algorithms for
applying such a feature selection method, and test their ef-
fectiveness by comparing their performances to those of the
conventional selection algorithms. Our experiments are ex-
ecuted under a nearest neighbor classification environment
and the results show a consistent improvement in the clas-
sification performance when a query-sensitive feature sub-
set is selected and used for measuring similarities between
the query and other instances. The results suggest that the
performance of a lazy learner has the potential to increase
through query-sensitive feature selection.

1 Introduction

The presence of irrelevant features confuses many data
mining methods and may result in severe degradation of
accuracy. This problem can be solved by identifying the
irrelevant features and removing them from future process-
ing. Feature selection is to select a feature subset from the
full set of features based on some optimization criterion,
through which the irrelevant, redundant, or least useful fea-
tures are discarded. With the primary objective to reduce
the number of features used to characterize a dataset so as
to improve a system’s performance on a given task[1], most
feature selection methods would take a tradeoff between a
high system performance and a low cardinality of the finally

chosen feature subset. That is, they attempt to draw a more
compact feature subset with as little performance degrada-
tion as possible.

Different feature selection methods have been proposed
since 70’s and surveyed in [6] and [10]. Feature selection
algorithms can be grouped into ’Filter’ or ’Wrapper’ ap-
proaches. A ’Wrapper’ approach [9], such as FSS [4], is
to evaluate and select the feature subset by using the ac-
tual accuracy measure of the corresponding learning ma-
chine. A ’Filter’ approach, such as FOCUS [2], Relief [7],
attempts to select the feature subset independent of the con-
crete learner. The examples of feature evaluating measures
are distance measures, dependence measures, distance mea-
sures, information theoretic measures.

One important property of the forementioned feature se-
lection methods is that they are static because the features
have been selected before a query is presented and the cho-
sen feature subset would not change any more across dif-
ferent queries. In other words, features would be chosen
only based on known dataset. However, some features will
be relevant only in certain tasks. That is, the relevance of
features may change given the different queries which in-
dicate different problems. Studies in psychology, cognitive
science and computer science [15] [11] [13] [14] share the
similar views suggesting that feature relevance is a highly
dynamic concept that is highly influenced by purpose. From
this view, a query, as an indicator of the attention focus and
current task, is a major part of the context and should be
involved in the determination of final feature subset. The
static feature selection methods cannot catch such poten-
tially important information.

In this paper we suggest that query information should
play a positive role in adjusting selected feature subset by
favoring those dimensions that are more significant for ac-
complishing the particular task. Query-sensitivity means
that determination of the relevance of features is not done
in isolation from the new query in advance, but partially de-
cided by the query itself.

In this paper we attempt to introduce the notion of query-

59

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

Figure 1. Query-sensitive feature selection model

sensitive feature selection, present two algorithms for ap-
plying such a selection, and test the effectiveness of these
algorithms by comparing their performances to those of the
conventional selection methods. Our experiments are un-
der a nearest neighbor classification environment and our
results show a consistent improvement in the classification
performance when query-sensitive feature subsets are used
for similarity measurement. These results suggest that the
effectiveness of a lazy learner has the potential to improve
through the use of query-sensitive feature selection.

The paper is structured as follows: in Section 2, we pro-
pose the model of query-sensitive feature selection and in-
troduce the selection process. In Section 3, we propose two
query-sensitive feature selection algorithms. Section 4 in-
troduces a series of experiments testing the effectiveness of
query-sensitive feature selection. The results are analyzed
and discussed in detail. At the end we draw a conclusion of
our work.

2 A Query-sensitive Feature Selection Model

In this section, we introduce a query-sensitive feature
selection model. As showed in Figure 1, this model adds
an extra query-sensitive feature selection module into the
traditional feature selection process. In this model, a final
query-sensitive feature subset is selected through two main

steps: step 1 - given the training data, a feature subset is se-
lected through a conventional feature selection process; step
2 - staring from the feature subset from step 1 and the fea-
tures appearing in a concrete query, a query-sensitive fea-
ture selection process is invoked to achieve the final query-
sensitive feature subset which is used to solve this query.

The modules in Figure 1 are explained in the following.
The feature generation module would generate candidate
feature subsets and the feature selection module will deter-
mine which subset will be selected based on the returned
values of the evaluation module on the candidate subsets.
Sometimes, feature subset generation depends on the partial
results of feature selection module, so there may be inter-
action between these two modules. A query-sensitive fea-
ture selection module is to decide the final selected feature
subset based on selected subset by a traditional method and
query information when a new query comes. This mod-
ule would examine the features specified in the query but
missing in the traditional selected feature subset and decide
whether they should be selected or not according to certain
criterion. Different query-sensitive feature selection algo-
rithms are designed based on different criteria.

The execution process of a lazy learner with a query sen-
sitive feature selection algorithm is as follows. First a subset
of features are selected using conventional methods based
on the information of training data. Given a new query, the

60

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

system invokes the query-sensitive feature selection to de-
cide the final feature subset for this query, calculates the
similarity between the query and instances on the query-
sensitive subset of features and then finds the most matched
instance to solve this query.

The motivation of this two-step process instead of ’only’
doing query-time feature selection is to reduce the on-line
computation complexity. A query is given during on-line
process. Considering both the query and instances informa-
tion to effectively select the features during the query-time
can be very time-consuming. Therefore, we try to improve
the effectiveness and efficiency of the total feature selec-
tion through using the result of conventional feature selec-
tion processes that are mainly completed offline. And then
the query-sensitive feature selection process does some ad-
justment to the output of the conventional feature selection
process.

3 Query-sensitive Feature Selection Algo-
rithms

Treating the query as a factor in determining the final
feature subset raises a set of new issues , for example, what
information within the query should be taken into consid-
eration, and how to quantify such information. In this sec-
tion we propose two concrete algorithms referred as QSFS1
(Query Sensitive Feature Selection 1), QSFS2 (Query Sen-
sitive Feature Selection 2) to draw the query-sensitive fea-
ture subsets.

1. QSFS1
QSFS1 is proposed by taking the view that if the query’s

value on a feature is singular from the normal value of
this feature, the feature may describe a significant charac-
ter of the current problem situation, so this feature should
be added into the final query-sensitive feature subset.

The process defined in QSFS1 is that among the nu-
meric features specified in the query but missing in the
traditionally selected feature subset, the features on which
the query’s values depart more than one standard devia-
tion from the means of the corresponding features would
be added to final selected feature subset. QSFS1’s pseudo
code is showed in Table 1.

2. QSFS2
QSFS2 is similar to QSFS1 except that instead of using

the fixed standard deviation on each feature as the thresh-
old to select this feature it defines a threshold learning pro-
cess. The thresholds take features’ standard deviations as
their initial values and are updated according to a learning
algorithm defined in QSFS2. The pseudo code of QSFS2 is
described in Table 2.

The learning process intends to increase the value of
threshold for the possibly irrelevant features and decrease

Table 1. The pseudo-code of QSFS1.

Input: Q is a query
FS is the traditionally selected feature subset
M is the vector of the means of all numeric

features
SD is the vector of the standard deviations of

all numeric features
Note: QFS is query-sensitive selected feature subset

Procedure QSFS1(Q, FS, M, SD)

QFS = FS
for each numeric feature f in Q and not in FS

if |Q(f)−M(f)| ≥ SD(f)
then

QFS = QFS ∪ f
Return QFS

the thresholds for the relevant ones. After a query is clas-
sified correctly, the feature on which there is a large differ-
ence between the values of the query and nearest instance
is probably not relevant very much, so its threshold should
be increased, while the thresholds of other features will be
decreased. And if a query is classified incorrectly, the fea-
tures on which there are very small differences between the
values of the query and nearest instance are probably not
relevant very much, so their thresholds should be increased,
while the thresholds of other features will be decreased. The
thresholds can be learned from the training data. Later in the
experiments described in the next section we use the leave-
one-out method to control the learning process. The η here
is a positive number determining how much to modify the
thresholds at a time.

The idea behind this updating process is to measure the
relevance of features in the neighborhoods around the target
instances. The learning method itself is not query-sensitive.
The similar idea and updating process has been adopted in
other researches, such as Each [12], Relief [8].

4 Experiment

The experiment is designed with the objective to test the
effectiveness of query-sensitive feature selection algorithms
reported in this paper. As we discussed in Section 1, con-
ventional feature selection methods can be divided into two
categories, ’Wrapper’ and ’Filter’. Here, we select the FSS
(Forward Sequential Selection) method as the representa-
tive for the ’Wrapper’ methods, and Relief method for the
’Filter’ methods. The lazy learner in the model is defined in
Subsection 4.1. We use Weka system [16] as the test-bed in

61

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Table 2. The pseudo-code of QSFS2.

Input: Q is a query
FS is the traditionally selected feature subset
M is the vector of the means of all numeric

features
SD is the vector of the standard deviations of

all numeric features
TD is the training database

Note: QFS is query-sensitive selected feature subset
T is the vector of the learned thresholds of

all numeric features

Procedure QSFS2(Q, FS, M, SD, TD)
T = LearnT (TD, SD)
QFS = FS
for each numeric feature f in q and not in FS

if |Q(f)−M(f)| ≥ T (f)
then

QFS = QFS ∪ f
Return QFS

Procedure LearnT (TD, SD)
for each q ∈ TD,do

for each ci ∈ TD − q
Dis[ci]← distance(q, ci)

select ck, where Dis[ck] is minimal of all Dis[ci]
for each numeric feature f in q or in ck

if class(q) = class(ck)
then

T (f) = T (f)(1 + η(|q(f)− ck(f)| − SD(f)))
else

T (f) = T (f)(1− η(|q(f)− ck(f)| − SD(f)))
Return T

the experiment and the ten-fold cross validation strategy is
adopted to calculate the classification accuracy.

4.1 Experiment environment

We test the effectiveness of query-sensitive feature se-
lection in the context of the instance-based classification
task (particularly the nearest neighbor algorithm) where in-
stances are represented as flat attribute-value vectors. Let’s
assume that there are n instances in a dataset, and each in-
stance has m features. Assume also an additional feature
called ’class’ denoting instances’ category. We can then
represent the system as a n∗(m+1) matrix.

f1 . . . fm class




instance1 x11 . . . x1m s1

instance2 x21 . . . x2m s2

instance3 x31 . . . x3m s3

...
...

...
...

...
instancen xn1 . . . xnm sn




where xij is the value of the ith instance on the jth feature
and si is the value of the ith instance’s class.

All values of each feature would be normalized before
computing distances in Equation 1.

A new problem to be solved is called a query here, rep-
resented as (q1, q2, . . . , qm).

Similarity is measured through the notion of distance.
That is, the most similar instance is the one which is of least
distance from the query. The distance function between a
query and an instance is defined using Equation 1.

distance(q, xi) =
√∑

j∈J

δ2(qj , xij) (1)

where J is the set of selected features and δ(qj , xij) is the
difference between the query and ith instance on the jth

feature and has the value:

δ(qj , xij) =





qj − xij fj is numerical
0 fj is nominal and qj = xij

1 fj is nominal and qj 6= xij

(2)
The classification process in the system goes like this:

given a query, find the instance with the least distance from
the query and then take the category of this instance as this
query’s category.

4.2 Selected datasets

There are 18 datasets obtained to execute the experiment.
All of them come from the UCI repository [3]. All numeric
features in these datasets are normalized using correspond-
ing ’Filter’ provided in Weka3.4.3 according to the require-
ments of the lazy learner. The detailed information about
the selected datasets is illustrated in Table 3. The columns
denote respectively: the name of the dataset (Dataset), the
number of the instances in each dataset (Instances), the
number of the features excluding the feature ’class’ (To-
tal Features), the number of the numeric features (Numeric
Features), the number of the nominal features (Nominal
Features), the percentage of the missing data (Missing Data)
calculated by ’the number of the missing items/(Instances∗
Total Features)’, and the number of categories (Classes).

62

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Table 3. Datasets description
Dataset Instances Total Numeric Nominal Missing Classes

Features Features Features Data
Anneal 898 38 6 32 64.98% 5

Anneal Original 898 38 9 29 73.13% 6
Autos 205 25 15 10 1.15% 7

Balance scale 625 4 4 0 0% 3
Breast Cancer 286 9 0 9 0.35% 2

Breast-W 699 9 9 0 0.25% 2
Credit Approval 690 15 6 9 0.65% 2

Diabetes 768 8 8 0 0% 2
Glass 214 9 9 0 0% 7

Heart-C 303 13 6 7 0.18% 5
Hepatitis 155 19 6 13 2.43% 2

Horse colic 368 22 7 15 23.80% 2
Ionosphere 351 34 34 0 0% 2

Iris 150 4 4 0 0% 3
Labor 57 16 8 8 35.75% 2

Segment 2310 19 19 0 0% 7
Sonar 208 60 60 0 0% 2
Vowel 990 13 10 3 0% 11

4.3 Testing the query-sensitive feature selection
with FSS

FSS (Forward Sequential Selection) [1][5] is one of the
most common algorithms used in ’Wrapper’ feature selec-
tion methods. FSS starts with an empty feature subset and
evaluates the performance of the lazy learner selecting a
different feature each time. It then adds to this subset the
feature that yields the best performance and takes the new
subset as the starting subset for the next iteration. This cy-
cle repeats until no improvement is obtained by extending
the current subset.

In our experiment, FSS is selected as the benchmark
in the ’Wrapper’ feature selection category, and based on
it, two other query-sensitive feature selection methods,
FSS+QSFS1, and FSS+QSFS2 are designed:

• FSS+QSFS1 In addition to FSS, the feature selec-
tion algorithm QSFS1 is used to determinate the fi-
nal query-sensitive feature subset by using the fixed
threshold (the standard deviation) on each feature in
the query to decide whether the feature should be se-
lected or not.

• FSS+QSFS2 In addition to FSS, the feature selec-
tion algorithm QSFS2 is used to determinate the fi-
nal query-sensitive feature subset by using a learned
threshold on each feature in the query to decide
whether the feature should be selected or not.

The experiment results for the FSS related feature se-
lection methods are illustrated in Table 4. The columns
FSS, FSS+QSFS1, and FSS+QSFS2, represent the ten-fold
cross validation classification accuracy of the lazy learner
with the corresponding feature selection algorithm FSS,
FSS+QSFS1, and FSS+QSFS2. To show the comparisons
more clearly, we add a particular row ’Average’ in the bot-
tom of the table to show the average value for all the num-
bers appearing in the corresponding columns. From the
values in the ’Average’ row, we can see that the classifi-
cation accuracy of the learner based on FSS+QSFS1 algo-
rithm is higher than that of the learner based on FSS algo-
rithm (83.41 > 81.81), and further, the classification ac-
curacy of the learner based on FSS+QSFS2 algorithm is
higher than that of the learner based on FSS+QSFS1 algo-
rithm (84.46 > 83.41).

To show how significant the evaluation results support
the above findings, we further carry out the formal hypoth-
esis tests. We identify the following two hypotheses based
on the above findings:

H1: the lazy learner based on FSS+QSFS1 algorithm is
more effective than that based on FSS algorithm, that is,
the classification accuracy of FSS+QSFS1 based learner is
higher than that of FSS based learner (the results of sub-
tracting the values in column ’FSS’ from those in column
’FSS+QSFS1’ for each dataset are selected as the signifi-
cance test parameter).

H2: the lazy learner based on FSS+QSFS2 algorithm

63

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Table 4. Experiment results with FSS algo-
rithm

Dataset FSS FSS+QSFS1 FSS+QSFS2
Anneal 88.98 93.76 97.10

Anneal Original 78.29 84.86 92.43
Autos 77.56 78.05 77.56

Balance Scale 79.04 79.04 78.56
Breast Cancer 66.43 59.44 63.64

Breast-W 94.71 95.85 95.28
Credit Approval 78.41 81.01 82.90

Diabetes 66.67 65.23 69.66
Glass 74.30 75.70 74.30

Heart-C 69.97 73.60 71.95
Hepatitis 80.65 80.00 81.29

Horse Colic 83.15 83.70 84.51
Ionosphere 88.60 88.89 88.89

Iris 94.67 96.00 96.00
Labor 78.95 82.46 80.70

Segment 96.88 95.93 97.14
Sonar 76.92 88.94 88.94
Vowel 98.38 98.99 99.49

Average 81.81 83.41 84.46

is more effective than that based on FSS+QSFS1 algo-
rithm (the results of subtracting the values in column
’FSS+QSFS1’ from those in column ’FSS+QSFS2’ for
each dataset are selected as the significance test parameter).

In our research, we select the one-tailed t test to complete
the significance evaluation. With the degree of freedom of
17 and the significance level of 0.05, we find out the critical
value as 1.740. For all these two hypotheses listed above,
we get the calculated t values as 1.760 and 1.818 respec-
tively. Since all the calculated t values are larger than the
critical value, we refuse all the non-hypotheses and accept
the two original hypotheses.

4.4 Testing the query-sensitive feature selection
with Relief

Relief is one type of the ’Filter’ feature selection method.
Relief is a feature weight based algorithm. Given a train-
ing dataset D, Relief starts with selecting m samples from
it. For each sample, a closest instance with the same class
value (Near-hit) and a closest instance with different class
value (Near-miss) are identified, and the weights for each
features will increase by a value correlated with the devia-
tion of the value of this feature in the sample instance from
that in the Near-hit instance and decrease by a value cor-
related with that of the sample value on one feature from
that in the Near-miss instance. The final selected feature

set is decided by whether or not the weights of each feature
(normalized by m) are larger that a specified threshold [7].

In this experiment, Relief is selected as the benchmark
in the ’Filter’ feature selection category, and based on it,
two other query-sensitive feature selection methods, Re-
lief+QSFS1, and Relief+QSFS2 are designed:

• Relief+QSFS1 Based on the feature set selected by Re-
lief algorithm, QSFS1 algorithm is further used to de-
terminate whether the rest features in the query should
be added into the selected feature set through compar-
ing the deviation of each feature from its average value
and a fixed threshold (the standard deviation).

• Relief+QSFS2 Based on the feature set selected by Re-
lief algorithm, QSFS2 decides whether the rest fea-
tures in the query should be added into the selected
feature set through comparing the deviation of each
feature from its average value and a learned threshold.

Table 5 has the similar structure as Table 4, but its
content illustrates the evaluation results concerning the
lazy learners related to Relief algorithms. Concretely, the
columns, Relief, Relief+QSFS1, and Relief+QSFS2 present
the ten-fold cross validation classification accuracy of the
lazy learner based on the Relief algorithm, Relief+QSFS1
and Relief+QSFS2 respectively. From the values in the
’Average’ row, we can see that the classification accuracy
of the learner based on Relief+QSFS1 algorithm is higher
than that of the learner based on Relief algorithm (80.73 >
76.19), and further, the classification accuracy of the learner
based on Relief+QSFS2 algorithm is higher than that of the
learner based on Relief+QSFS1 algorithm (84.28 > 80.73).

To show how significant the evaluation results support
the above findings, we further carry out the formal hypoth-
esis tests. We further identify the following two hypotheses
based on the above findings:

H3: the lazy learner based on Relief+QSFS1 algorithm
is more effective than that based on Relief algorithm (the re-
sults of subtracting the values in column ’Relief’ from those
in column ’Relief+QSFS1’ for each dataset are selected as
the significance test parameter).

H4: the lazy learner based on Relief+QSFS2 algorithm
is more effective than that based on Relief+QSFS1 algo-
rithm (the results of subtracting the values in column ’Re-
lief+QSFS1’ from those in column ’Relief+QSFS2’ for
each dataset are selected as the significance test parameter).

The same hypothesis test process as described in above
subsection is further used to test the significances of hypoth-
esis H3 and H4. With significant level of 0.05, the calcu-
lated t values for these two hypotheses are 1.872 and 1.961
respectively. Since all these two t values are larger than the
critical value (1.740), we refuse the non-hypotheses and ac-
cept the two original hypotheses.

64

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

Table 5. Experiment results with Relief algo-
rithm

Dataset Relief Relief+QSFS1 Relief+QSFS2
Anneal 98.44 98.22 95.77

Anneal Original 95.99 96.10 92.43
Autos 75.61 76.59 75.61

Balance Scale 61.12 74.24 79.04
Breast Cancer 56.99 56.99 59.44

Breast-W 95.28 95.28 95.57
Credit Approval 80.72 80.72 82.46

Diabetes 61.98 66.28 68.36
Glass 20.56 45.33 72.90

Heart-C 80.53 78.22 78.88
Hepatitis 78.71 80.65 81.29

Horse Colic 77.99 77.99 82.34
Ionosphere 89.46 86.89 87.46

Iris 95.33 96.00 96.00
Labor 80.70 80.70 84.21

Segment 97.14 96.49 97.10
Sonar 81.25 86.54 88.94
Vowel 43.54 80.00 99.29

Average 76.19 80.73 84.28

5 Conclusion

Noticing the relevance of feature is sensitive to differ-
ent tasks, our research describes an attempt to devise means
by which this kind of change of feature relevance can be
detected. In this paper, we introduce the notion of query-
sensitive feature selection which takes query information
into account during the feature selection. A general query-
sensitive feature selection model is proposed, providing a
framework under which different query-sensitive selection
algorithms could be developed. Furthermore, we propose
two query-sensitive feature selection algorithms QSFS1 and
QSFS2. Based on the feature set selected by the conven-
tional feature selection algorithms, QSFS1 extends the se-
lected feature set by adding the numeric features on which
the query’s value is more than one standard deviation from
the average feature value. QSFS2 adds to the selected
featrue set with the numeric features on which the query’s
value is more than a learned threshold of this feature from
the average feature value. Experimental results has shown
the effectiveness of query-sensitive feature selection.

References

[1] D. W. Aha and R. Bankert. Feature selection for case-based
classification of cloud types: An empirical comparison. In
D. W. Aha (Ed.) Case-Based Reasoning: Papers from the

1994 Workshop (Technical Report WS-94-01). Menlo Park,
CA: AAAI Press, 1994.

[2] H. Almauallium and T. Dietterich. Learning with many ir-
relevant features. In Ninth National Conference on Artificial
Intelligence, volume 2, pages 547–552, 1991.

[3] C. Blake and C. Merz. Uci repos-
itory of machine learning databases
[http://www.ics.uci.edu/ mlearn/mlrepository.html],
1998.

[4] P. A. Devijver and J. Kittler. Pattern recognition: A statisti-
cal approach. Egnlewood Cliffs, 1982.

[5] P. Domingos. Context-sensitive feature selection for lazy
learners. Artificial Intelligence Review, 11(1-5):227–253,
1997.

[6] K. Fukunaga. Introduction to Statistical Pattern Recogni-
tion. CA: Academic Press, San Diego, 1990.

[7] K. Kira and L. Rendell. The feature selection problem tra-
ditional methods and a new algorithm. In Tenth National
Conference on Artificial Intelligence, 1992.

[8] K. Kira and L. Rendell. A practical approach to feature se-
lection. In D. Sleeman and P. Edwards, editors, the Ninth
International Conference on Machine Learning, pages 249
– 256, San Mateo, California, 1992.

[9] R. Kohavi and G. John. Wrappers for feature subset selec-
tion. Artificial Intelligence, 97(1-2):273–324, 1997.

[10] H. Liu and H. Motoda. Feature Selection for Knowledge
Discovery and Data Mining. Kluwer Academic Publishers,
MA, 1998.

[11] R. M. Nosofsky. Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psy-
chology: General, 115:39–57, 1986.

[12] S. Salzberg. A nearest hyper-rectangle learning method.
Machine Learning, 6:251–276, 1991.

[13] L. Schamber, M. B. Eisenberg, and M. S. Nilan. A
re-examination of relevance: toward a dynamic, situa-
tional definition. Information Processing and Management,
26(6):755, 1990.

[14] A. Tombros and C. v. Rijsbergen. Query-sensitive similarity
measures for information retrieval (invited paper). Knowl-
edge and Information Systems, 6(5):617–642, 2004.

[15] A. Tversky. Features of similarity. Psychological Review,
84(4):327–352, 1977.

[16] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools with Java implementations. Morgan Kauf-
mann, San Francisco, 2000.

65

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

