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Abstract— In mining information from very large graphs,
processing time as well as system memory become computational
bottlenecks as the properties of large graphs must be compared
through each iteration of an algorithm. This is a particularly pro-
nounced problem for complex properties. For example, distance
metrics are used in many fundamental data mining algorithms
including k-nearest neighbors for the classification task. Even
the relatively efficient distance and similarity heuristics for large
inputs, though, often require processing and memory well beyond
linear with respect to the size of the input, and this rapidly
becomes intractable with very large inputs. Complex properties
such as the distance between two graphs can be extremely
costly, but using samples of these large graphs to calculate
the same properties proves to reduce memory requirements
and processing time significantly without sacrificing quality of
classification. Because the vast amount of web data is easily and
robustly represented with graphs, a data reduction technique
that preserves the accuracy of mining algorithms on such inputs
is important. The sampling techniques presented here show
that very large graphs of web content can be condensed into
significantly smaller yet equally expressive graphs that lead to
accurate but more efficient classification of web content.

I. INTRODUCTION

Graphs provide a robust structure with which to model data
for many computational problems. They are common inputs
to problems in information systems, data mining, and image
processing, and there is of course a rich theoretical background
in graphs as well. Processing data in graph form can be
expensive with respect to space and time efficiency, but very
large graphs are not uncommon when modeling real world
data. Graphs offer an especially rich representation for web-
accessible content, and this work proposes and implements a
novel use of random sampling to more efficiently classify large
graphs created from such large real world corpora.

In this paper, graphs are created from the collected text
of twenty newsgroup postings available in the UC Irvine
Knowledge Discovery in Databases Archive [12], but the
techniques apply easily to any large collections of text such
as those created from web sites or emails. After some pre-
processing, each of the newsgroup graphs initially has over
15,000 nodes and several times that many edges, and they
require a great deal of computing resources when used in
even basic data mining tasks. This research shows that random
sampling can be used on these graphs in such a way that the

samples themselves may be used as proxy inputs to common
data mining tasks such as classification. Because structural
properties and aggregate features of the input are maintained,
the use of the condensed inputs improve the performance
relative to both memory and speed without sacrifices in quality.
Specifically, k-nearest neighbors using significantly smaller
graphs results in the same classifications as the same algorithm
used on the original inputs. Classification requires a means of
determining a distance between graphs, and there are several
ways to measure similarity between graphs. Various graph
distance metrics which are used in common clustering and
classification algorithms are listed, but due to space constraints
only the results from experiments using the maximum com-
mon subgraph metric are used to show that the results on
the sample graphs are of the same quality as the much larger
original input graphs.

It is important to distinguish between the effectiveness of the
particular classification methods used and the effectiveness of
the sampling method. This work is concerned with reproducing
the same results with the samples as with the much larger
original graphs, and this means that misclassifications should
be seen as well. The focus is not necessarily on improving
the accuracy of the classification method but rather on the
accuracy of the sample as compared to the original input.
Any improvements in accuracy for a given method should
transfer to the sample inputs but with the advantage of reduced
processing.

II. RELATED WORK

Sampling is widely used in computation, but it is typically
associated with finding a representative subset of inputs from a
large number of inputs. Sampling can also be used to reduce a
single large input to a more manageable yet still representative
structure for use in computations. Previous work [2] shows
the effectiveness of random sampling in reducing the space
complexity of computational problems while maintaining the
relevant structural features of large inputs. Such properties are
useful in several areas. For example, the algorithm selection
problem focuses on selecting the best algorithm among a
collection of solutions whose efficiencies depend on features
of the input [9]. In sorting, different sorting algorithms perform
better or worse depending on the prior relative ordering of the
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input [8], [5]. For graphs, the efficiency of different algorithms
for finding the minimum spanning tree (for example, Kruskal’s
and Prim’s algorithms) can vary according to the density of
the graph.

Other related work examines the effectiveness in sampling
in computation as well. Leskovec and Faloutsos test the ability
of multiple sampling schemes to estimate individual features
such as in- and out-degree of nodes from the original input
[7]. They show that indeed sampling can be used to preserve
context-independent features of many large graphs that model
real world data such as citation networks. Other recent research
using novel sampling tecniques has been used to re-create
the estimated coverage of a search engine’s index [1]. The
preservation of other graph properties from network graphs
with relatively small samples is studied in [6].

There has also been work on using graphs in web content
mining because of their ability to represent relationships
between objects or elements in a set. This additional repre-
sentational ability, though, often comes with a computational
cost. Schenker et al. explore the use of graphs to overcome the
inability of vector models to represent structural information
[10]. They show that graphs can be effective structures for
web content mining tasks such as classification and clustering,
but the computational overhead can be prohibitive for large
graphs. Other techniques for dimensionality reduction include
latent semantic indexing [4] that rely on the use of singular
value decomposition to condense the input, and others have
shown that such techniques can indeed provide as good or
better performance for data mining tasks [11]. However, this
work differs in that it attempts to maintain the rich structure
inherent in graphs for use in classification.

Sampling of course has been used to choose from a large
number of inputs to narrow the complexity of the input
space in many data mining applications, but little work has
focused on using sampling to reduce the complexity of a
single or many very large inputs to such a task. This research
shows that sampling can also be used with large graphs to
classify data more efficiently but just as accurately as with
the original inputs. Using data from the text from a collection
of twenty newsgroups postings [12], large graphs are created
and classified into different groups using a traditional k-nearest
neighbors algorithm using a distance metric known as the
maximum common subgraph. Samples of these large graphs
are then processed in the same way, and results are provided
that indicate samples indeed provide very accurate results with
significantly smaller processing and memory requirements.

III. SAMPLING AND GRAPHS

Large graphs as models of real world problems are a
natural result of their ability to represent rich relationships
between objects as well as the constant increase in avail-
able machine-processable information. Processing such large
graphs becomes very costly, particularly for problems whose
solutions scale polynomially (or worse) with the size of the
input. Heuristics for reducing the search space are a common

approach, and reducing the input to a more compact repre-
sentation also can be critical in designing a tractable solution.
Data reduction must not come at the expense of accuracy of the
model, though. This section addresses accurately estimating
such distance or similarity metrics for large graphs through
sampling.

A. Large Graphs and Their Features

Graphs are commonly defined as a structure of two sets –
nodes and the edges that connect them. There are of course
as many variations on this basic idea as there are problems
to which to apply them, and these can be found in any
introductory graph theory text. Graphs are commonly used
not only to store objects (nodes) but the relationships between
them as well (edges). Many data structures have structural
features that make a particular instance unique in a sense, and
graphs are no different. Given a particular graph, such features
as the density and edge probability are context-independent
ways to describe the data in the aggregate. In addition, there
are problem- and context-specific features of graphs that reveal
much about a particular instance and its relationship with the
problem. These features can uniquely identify the input, and
they can affect the performance of different algorithms used
to solve the problem. These features are also frequently the
output of a problem themselves. For example, the similarity
(or distance) between two inputs is required for many data
mining processes such as clustering and classification. It is
these features on which this work focuses.

Experiments on randomly generated graphs are useful to
show that abstract features that are not context specific are
maintained through sampling. Experiments on real data, how-
ever, show that features unique to a particular application or
context can also be accurately estimated with an appropriate
sampling technique. Large volumes of data naturally result
in large computational representations, and these structures
are rich in features as well as noise. Data to create such
large graphs are readily available in various domains such as
network traffic analysis, image processing, and the mining of
data from large text corpora [10], and this work uses sampling
to filter noise out of large graphs created from web content
for more efficient classification.

B. Sampling Graphs

There are a variety of ways to sample graphs. While some
focus on the set of nodes, others focus on the edge set.
Random walks and its variations are also often used to explore
graphs to create a sample. Each method has its own advantages
and disadvantages, and the best method often depends on the
application or data itself. In random node selection, random
nodes are selected until a target sample size is reached.
Variations often differ on exactly which edges to include from
the a node’s adjacency list. In random edge selection, random
edges are added to a target sample’s edge list until a required
size is reached. Both of these techniques have their biases
toward or against certain kinds of nodes, though. Random
walk-based sampling techniques often select a random node
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from which to start a walk across a graph by selecting edges to
traverse from the current node’s adjacency list. Variations often
manipulate various probabilities that influence the chance of
returning to the start node or a new random node, for example.
In this paper, experiments use a hybrid edge-node selection
sampling method to create samples. Its details are discussed
in Section 5. The ability of this sampling technique to estimate
aggregate features such as the relative distance between graphs
will be evaluated for the classification task.

IV. GRAPH SIMILARITY

Measuring how alike two graphs are is a computationally
complex problem. If two graphs are considered isomorphic, we
might say that they are the same graph with different labels.
If they are not exactly isomorphic, though, we might want to
describe how close they are to being exactly alike (or unalike).
Such notions of relative proximity are very useful in tasks
such as classification and clustering. Though of course we
ideally want a highly accurate but computationally inexpensive
distance metric, there exists as always a tradeoff. Several
such measures are proposed in [10]. Our experiments use
one particular metric for similarity calculations, and it then
addresses the question of whether the same technique produces
the same relative results when used on samples of the original
inputs.

A. Graph Distance Metrics

Measuring the similarity between graphs provides a notion
of how far apart or how close two graphs are, but they can be
most useful when several such graphs are being compared.
Schenker et al. list several such graph similarity techniques
[10] including but not limited to:

• Graph and subgraph isomorphism
• Graph edit distance
• Maximum common subgraph
• Minimum common supergraph
• Probabilistic
• Distance preservation

The authors provide a thorough treatment of the advantages
and disadvantages of each technique. In addition, they also list
several ways to calculate the means and medians of graphs for
clustering tasks. Experiments discussed in this work use the
maximum common subgraph distance measure.

B. Maximum Common Subgraph

The maximum common subgraph technique attempts to find
the largest subgraph that two graphs have in common, and it is
related to the graph edit distance [3]. Given graphs G1 and G2,
we define mcs(G1, G2) as the maximum common subgraph of
G1 and G2 if it is a subgraph of G1, it is a subgraph of G2,
and there exists no other subgraph that is contained in both G1

and G2 that is larger. With unlabeled graphs, such a measure
would be very inefficient. With labeled graphs, however, the
maximum common subgraph is computationally manageable

because the labels significantly reduce the possible matchings.
Space and time requirements are still very high with very large
graphs, however. The algorithm used in the experiments is as
follows:

Algorithm 1: Maximum Common Subgraph
Input: Graphs G1 and G2

Output: Maximum Common Subgraph of G1 and G2

for edge e ∈ G1 do
if e ∈ G2 then

add e to g
end

end
return g

Table 1 shows distances between a subset of the graphs to
all other graphs created from the original text of the twenty
newsgroups. Not all graphs from the collection of twenty are
listed due to space constraints, but those listed in the table are
representative of those not listed. The closest graph (which is
not itself) by maximum common subgraph is listed in bold
for each column. The distances can have a range from 0 to
1. Here, a distance of 0 means the graphs are the same while
a distance of 1 means that the graphs have no edges (with
the same from and to nodes) in common. These distances
between newsgroups make intuitive sense. That is, we would
expect newsgroups about computers to be closer to each other
than to those about religion, for example. Details about how
these graphs are created are discussed in the next section.
With large graphs, these calculations can rapidly exceed the
computational limits of a particular application. Sampling
provides a way to reduce the size of the inputs significantly
while still preserving its aggregate structure so that relative
ordering with respect to similarity between all pairs of graphs
is maintained given a set of inputs. This results in large gains
in performance for data mining tasks with little or no sacrifice
in quality.

V. SAMPLING FOR SIMILARITY

The effectiveness of graph sampling methods is often depen-
dent on the data being represented. We examine in more detail
a hybrid random edge-node selection method for creating a
subgraph of an input, but there exist several sampling methods
which may be used to varying effectiveness for a given
application. We create samples using the hybrid edge-node
selection procedure, and we compare the relative ordering
of distance metrics as calculated by the maximum common
subgraph in the original inputs as well as the sample graphs.

A. Hybrid Edge-Node Random Sampling

A randomly selected subgraph g’ of size s of some graph
G can be created by randomly selecting s nodes and adding
them to g’. Variations might select all or part of each node’s
adjacency list to add to g’ as well. Alternatively, edges can be
randomly selected from G’s edge list to add to g’ along with
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TABLE I
DISTANCES BETWEEN ORIGINAL INPUTS USING MAX COMMON

SUBGRAPH.

its “to” and “from” nodes. Random node or edge selection to
create samples has certain biases toward or against nodes with
higher or lower in and out degrees, and some of these can be
avoided through a hybrid approach. The following algorithm
creates a subgraph g’ of G of size s by randomly selecting
edges, adding nodes, and then processing the adjacency lists
of each node previously added.

This algorithm performs well for many types of graphs
for maintaining general structure. Particular applications may
require other techniques such as a random walk sampling.
For example, an application may require that the sample
be a connected component of the original input. In these
experiments, however, no such requirements exist. In this
case, other techniques may work better, and tests with other
sampling schemes have had similar results.

B. Data

Randomly generated artificial graphs provide complete con-
trol over features of the graph at the individual node and edge
level as well as the aggregate level, but graphs representing
real world data provide motivation for application of sampling
techniques [2], [7]. A collection of newsgroup postings from
the UC-Irvine Knowledge Discovery in Databases archive
are used [12]. These files contain 20,000 messages from
twenty newsgroups (1,000 from each newsgroup). From these,

Algorithm 2: Hybrid Random Node-Edge Graph Sampling
Input: Graph G, Subgraph graph size s
Output: Subgraph g’ of G
while | g′ |≤ s do

select random edge e from G
if e /∈ g′ then

add source node to g’
add destination node to g’

end
end
for all nodes n ∈ g′do

for edge e ∈ n’s adjacency list do
if destination node /∈ g′ then

remove e
end

end
end
return g’

twenty graphs are constructed based on the words contained
in the messages and their proximity to each other. Stop word
removal is performed to reduce the size of the graph and
remove extremely common words from all groups. Other
preprocessing techniques such as stemming are possible, but
some noise is left in the graph representation by performing
only basic stop word removal to test how robust the sampling
techniques can be. Directed edges are created between words
within three positions of each other, but this parameter can be
adjusted to create more or less dense graphs. Sample sizes of
25, 40, and 50% are used in experiments, but only the results
from 50% samples are discussed here.

C. Experiments

For the experiments, the original graphs are processed as
pairs to compute distance according to the maximum common
subgraph of each pair. The distance is calculated as the ratio
of the size of the maximum common subgraph to the size of
the larger of G1 and G2. If, for example, the size of graph
G1 is 100 and graph G2 is 150, and the size of the maximum
common subgraph is 75, the distance between G1 and G2 is
0.5. Several variations on this calculation exist as detailed in
[10]. Then a sample of each graph is taken, and the distance
between each pair of samples is calculated. Comparisons are
made between the predicted order of closest to furthest from
the samples to the actual distances calculated from the original
inputs.

D. Results

Table 2 lists the changes in relative rankings (for the same
newsgroups used in Table 1) from a 50% sample to the original
input. For example, if the original input had the atheism and
religion newsgroups as closest to each other and the sample
had them closest together as well, the change in proximity
ranking from input to sample is 0. If the sample had another
group closer to religion than atheism (say atheism was the
second closest), the change in the relative ranking is -1.
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TABLE II
CHANGE IN RELATIVE RANKING OF DISTANCE FROM 50% SAMPLE TO

ORIGINAL INPUT.

We see from the results in the table that samples taken
from the original graphs do an excellent job of maintaining
relative ordering with respect to the distance metric used. The
variations that do exist are minor, and they are attributed to the
original distances between certain groups being clustered into
close groups initially. We might expect then that a sample
might flip an ordering here and there, but the same neigh-
borhoods exist in the rankings. There are no large variations
between the original rankings and the rankings of the sample,
showing that the samples are similarly structured despite being
significantly smaller. Data from exhaustive experiments using
sample sizes of 25, 40, and 50% are available but not included
due to space constraints. As expected, smaller samples lead to
more variation, but results are still positive for smaller sizes.
Having shown that samples preserve graph structure, we can
now use these similarity measures in applications. As we will
see in the next section, the distances between the samples
result in the same classifications as the distances between the
original inputs when used in a k-nearest neighbors algorithm.

VI. CLASSIFICATION WITH SAMPLES

Classification tasks typically attempt to classify a previously
unseen input into a previously defined class. K-nearest neigh-
bors (knn) is a common algorithm that classifies an input based

on the classification of its k-closest neighbors as determined
by some distance metric. In these experiments, maximum
common subgraph provides the measure for similarity between
two graphs, and various neighborhood sizes are used. Sample
sizes of 25, 40 and 50% are used with k set to 3, 4, and 5.
Results for the 50% with k=3 are discussed specifically.

A. Experiments

For these experiments, five classification groups are used in
which to categorize each newsgroup. These author-created la-
bels are religion, politics, computer, science, and other. These
are of course arbitrary, and other current work includes using
similarly created samples for clustering tasks to determine
whether samples cluster into the same arbitrary neighborhoods
as the original inputs. Other experiments with other classi-
fication types have been done, and the results are equally
accurate. The author has assigned a default classification to
each newsgroup, and the initial twenty graphs are classified
according to a vote from the three closest neighbors (k=3) as
measured by the maximum common subgraph. Then samples
are created for each graph, and the same process is repeated
for all pairs of sample graphs. The results from experiments
with neighborhood size of three with a sample size of 50%
are discussed.

B. Results

The results for classification for the 50% sample of each of
the original input graphs are shown in Table 3. For each news-
group, its author-assigned classification is listed as well as its
k-nearest neighbor classification from the original inputs. The
other two columns indicate whether the algorithm accurately
predicted the same group as the author-assigned category using
the original inputs as well as the samples from these inputs.
The results indicate that the algorithm misclassifies some of
the graphs using both the original graphs and the samples.
Several improvements could be implemented to improve the
accuracy incrementally, but the focus is not on whether the
classifications of the samples are correct but rather on whether
the classifications are the same as the original large graphs.
Indeed, the samples predict the same classifications as the
k-nearest neighbor run on the original inputs. Any errors or
successes made by the algorithm using the original inputs are
repeated for every sample.

These results and data from other experiments using dif-
ferent sample sizes and classifications lead to the conclusion
that sampling these large inputs can and do result in similarly
structured graphs, and the maximum common subgraph be-
tween these samples produces the same general neighborhoods
of proximity in the collection of graphs. By using the samples
in our classification rather the original, we can significantly
reduce the run time for classification as well as the space
requirements by more than half. Additional experiments show
that as one would expect, smaller sample sizes have more
variation from the classification of the originals. Even system-
atically reducing the input by 75%, though, produces efficient
and relatively accurate results.
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TABLE III
50% SAMPLE CLASSIFICATION COMPARED TO FULL INPUT

CLASSIFICATION.

VII. FUTURE WORK

Reducing large inputs such as graphs to representative
samples has many applications. Current work is focusing
on using these sampling techniques on other data mining
tasks such as clustering. Several notions of the means and
medians of graphs exist, and it would be interesting to explore
the effects of sampling on them. By exploiting the structure
preservation that sampling has been shown to provide, there
exist abundant opportunities not only for improved efficiency
in existing tasks but for data reduction tasks for very large
inputs as well. Future efforts will explore uses in other web-
accessible content such as large scale website content and
social networks. In addition, other types of data such as time-
series flows from sensor networks might benefit from data
reduction techniques.

VIII. CONCLUSIONS

This work has shown that the use of random samples of
large inputs to data mining processes can successfully reduce
the time and memory requirements while providing the same
results for tasks such as classification. The k-nearest neighbors
algorithm produces the same classifications whether the inputs
were the original graph created from twenty collections of

newsgroup postings or random samples taken from these
graphs. These improvements in efficiency are due to the ability
of sampling to retain the properties of large inputs such as
graphs created from web content. As inputs to mining tasks
grow larger and larger, such data reduction techniques become
more and more important to maintain efficient computation.
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