
Abstract—Like robot soccer, robot hockey is a game played
between two teams of robots. A robot hockey simulator has
been created, for the purpose of game strategy testing and
result visualization. One major modification in robot hockey is
the addition of a puck-shooting mechanism to each robot. As a
result, the mechanics of interaction between the robots and the
hockey puck become a key design issue. This paper describes
the simulator design considerations for robotic hockey games.
A potential field-based strategy planner is implemented which
is used to develop strategies for moving the robots
autonomously. The results of the simulation study show both
successful cooperation between robots (on the strategy level),
and realistic interaction between robots and the puck.

Keywords: Game Engine, Robot Hockey, Artificial
Potential Field

I. INTRODUCTION

One of the many goals of a robot soccer system is to
create a test bed such that many notions from robotics, AI,
software engineering, electronics, and mechanics can be
synthesized in order to solve a very complex problem. Aside
from research challenges, robot soccer also has great
entertainment and education values. Ultimately, the study
and developments of robot soccer system (multiple
corporative agents) can be applied to fields such as search
and rescue, service robotics, security, and space missions.

Due to the popularity of the hockey sports, a separate new
league for robot hockey is created by the University. We
believe that the addition of robot hockey league will help
further research activities and public interests in the area of
robotics.

The novelty of robot hockey lies in its new robot
mechanical design, puck and rink design (e.g. using an air
hockey table as the game arena), new rules, and interface for
manual robot control [1]. Each hockey robot is equipped
with a shooting mechanism that mimics a hockey player’s
slap-shooting the puck (Fig. 1). A miniature puck is used,
and the puck floats on the surface of the hockey rink. As in
real sports, robot hockey features different rules than robot
soccer (e.g. allowing body check). In addition to
autonomous control, the users can choose to manually
control one robot, in cooperation with other computer-
controlled teammate robots. These differences give rise to
new challenges in robot control and coordination.

To test robot team strategy, it is desirable to have a
computer simulation program that runs teams of robots

based to the strategies provided by robot programmers. For
realistic result visualization purposes, the simulation
program should also include graphical representations of the
robot hockey environment and the simulated physics that
handle interactions among objects in the scene.

In robot soccer, competitions are held not only between
real robots, but also between simulated robots. Competition
participants write their own soccer-playing strategies using
simulator software provided by the competition organizers.
During competitions, the two team’s strategies are run on
two separate simulator clients, and the simulator server
displays the simulated robot soccer game. The RoboCup
Soccer Simulator is the official simulation software for the
Simulation Leagues run by RoboCup [2]. This simulation
software is freely available and it supports two teams of 11
autonomous robots. The Federation of International Robot-
soccer Association (FIRA) [3] also holds competitions in
simulated robot soccer – the SimuroSot. Simulation software
is provided to participants to write their own team strategies,
and the simulator supports 5-on-5 or 11-on-11 games.

As for simulator software for mobile robots in general, the
2D simulator Stage [4] and 3D simulator Gazebo [5] are
freely available robot simulation software that not only
allows programmers to test their robot control algorithms
through simulation, but also to transfer the control programs
to real robots. In simulation, each robot is abstracted as a
“Player”, with customizable sensors and actuators. The
integration of simulation and hardware programming speeds
up robot prototyping and development time significantly.
Another mobile robot simulation software is the Webots. It
is developed by Cyberbotics [6] and is commercially

Micro Robot Hockey Simulator – Game Engine Design
Wayne Y. Chen Shahram Payandeh

Experimental Robotics Laboratory Experimental Robotics Laboratory
School of Engineering Science School of Engineering Science

Simon Fraser University, Burnaby, BC, Canada Simon Fraser University, Burnaby, BC, Canada
waynec@fas.sfu.ca shahram@fas.sfu.ca

Fig. 1. A micro hockey robot, with a puck-shooting mechanism
attached to the bottom-front of its frame.

9

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

available. Webots provides users an integrated development
environment for robot modeling and programming. It also
features simulation movie recording and transferring of
control programs to real robots.

Our eventual objective is to create a robot simulator that
not only specializes in the sports of hockey, but it is also
expandable to provide desirable features such as simulation
competition (as in RoboCup and FIRA Simulators) and
code-transfer to real hardware (as in Stage, Gazebo, and
Webots). In addition, the simulator should support joystick
inputs for manual robot control (as in typical video games).

This paper is organized as follows: Section II describes
the overall architecture design of the simulator. Sections III
gives more detailed design issues and proposed solutions
relevant to the hockey game. And the following major
aspects of the simulator are discussed: rendering, strategy,
inverse kinematics, motion scheduling, forward kinematics,
and event dynamics. Section IV demonstrates simulator
performance through test runs with single or multiple robots,
and with or without the puck. Section V concludes the paper
and suggests future work.

II. GAME ENGINE ARCHITECTURAL DESIGN

The architecture of the simulator engine follows an
object-oriented design, which makes it easy to maintain,
modify, and reuse. The current simulator consists of nine
major components: current state, rendering, forward
kinematics, inverse kinematics, event dynamics, motion
scheduler, strategy, manual control input, and the graphical
user interface. Fig. 2 illustrates the architectural block
diagram of the design.

The current state module stores all state variables at each
time stamp of simulation. This module manages information
such as positions, velocities, and accelerations of the puck
and all robots, as well as environment properties such as
time and surface property of the hockey rink.

The graphical user interface includes controls that allow
users to view or set the current state, change the camera
angle, and pause or change the speed of simulation.

The strategy module decides the actions for each robot,
based on information from current state. Robot actions are
expressed in terms of high-level commands such as

navigating to certain waypoint, shooting the puck, passing
the puck, etc.

The manual control input module maps the user’s input
from the keyboard or joystick into robot actions. The users
have the option of controlling one of the robots manually,
and the users’ commands have higher priority over those
generated by the strategy module. Manual control provides a
second way for robot testing in simulated environment. The
hybrid control model, in which human and computer
cooperate to run a team, is also an interesting research topic.

The inverse kinematics module converts high-level
commands, such as navigating to certain waypoint, into low-
level robot control commands, such as turning the wheels at
certain velocities for certain time duration.

The motion scheduler keeps track of a list of low-level
robot commands that need to be executed by the end of the
current rendering frame. Each robot action is associated with
a time stamp. When the global clock of the simulator
reaches this time stamp, the expired command is sent to the
current state module and removed from the motion
scheduler.

The forward kinematics module calculates the robots’
and the puck’s states for the next rendering frame, based on
information from current state. The calculated new states
need to be verified by the event dynamics module, before
they can be sent back to the current state module for update.

The event dynamics module checks if the new states
from forward kinematics calculations would cause collisions
between objects. If collision should occur, collision response
calculations are performed to modify the new states. After
the new states are modified and verified, they are sent back
to the forward kinematics module.

The rendering module reads the position and orientation
information of the robots and the puck from current state,
and draws them in the scene. This module specifies the 3D
models of all objects in the scene: the robots, the puck, and
the hockey rink.

In summary, at the beginning of each rendering frame, the
rendering module draws the robots, the puck, and the
hockey rink in the scene based on the current state. Then the
strategy module decides the next actions of the robots, based
on the current state. If there are user inputs from keyboards
or joysticks, the manual control input module replaces the
strategically generated robot actions with the user specified
ones. The inverse kinematics module converts the high-level
actions into low-level robot commands. The low-level
commands are then sent to the motion scheduler. The
motion scheduler checks the current time, and picks from its
list the robot commands whose time stamp expires. The
selected commands are sent to the current state module for
state update. The forward kinematics module calculates the
new states of the robots and the puck based on the updated
current state information. The event dynamics module
checks for collision and modifies the calculations from the
forward kinematics module if there is collision. The verified

Fig. 2. Architectural design of the robot hockey simulator.

10

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

new states are passed back to the forward kinematics
module, which then send these new states to the current state
module for update. The simulator advances to the next
rendering frame by incrementing its global clock, and the
whole process repeats. Fig. 3 summarizes the process flow.

III. DESIGN CONSIDERATIONS DUE TO ROBOT HOCKEY

This section gives an overview of various components of
our proposed simulator. The following major components of
the game engine are discussed: rendering, strategy, motion
scheduler, kinematics, and event dynamics.

A. Rendering
OpenGL is used to create the 3D scene, which consists of

the hockey rink, a hockey puck, and six hockey robots (two
on each team).

The hockey rink has two goal posts, one on each end of
the floor. When a robot scores a goal, the light bulb on top
of the goal lights up. Similar to real hockey, the rink can be
modified to allow robots and the puck to travel behind the
goals. Fig. 4 illustrates the overhead view of the hockey rink
model.

Each hockey robot is modeled as a cube, plus two wheels
and a kicker. On each wheel, we draw a white circle as a
marker, so that the wheel’s turning motion is easily visible.
The kicker is modeled as a rectangular rod that pivots to the
front-left corner of the robot. For robot identification, each

robot has unique textures on its top (color identifiers) and on
its front/back (name tags). The users can customize these
textural images to their own liking. Fig. 5 illustrates models
of two hockey robots and a puck.

B. Strategy
To test the functionality of the simulator, we have

implemented a potential field based strategy planner [1][7].
We define various potential functions, each of which

models a specific game condition. Like a contour map, the
robot is to move from locations with high potential to those
with low potential. Here, we describe some of the important
potential fields used in the game of robot hockey: the base
field, distance-to-destination field, play-zone field, line-of-
sight field, and robot-personal-region field.

The base field enables a robot to move toward the
opponent’s goal. The base field potential function is directly
proportional to the distance from the opponent goal:

2 2

_ _base base opp goal opp goalU x x y y , (1)

where base is a tunable scaling factor.
The distance-to-destination field enables a robot to go to

certain location. The potential function for this field is
directly proportional to the distance from the destination:

2 2
dest dest dest destU x x y y . (2)

The play-zone field enables a robot to stay within its zone
of responsibility. The potential values for regions in the
robot’s play-zone are zero, and a large constant elsewhere.
Assuming that the rink has width lrink_w, the play-zone
potential function for a robot playing center is defined as:

Fig. 5. Models of two hockey robots and a puck.

Fig. 3. Logic flow of each rendering frame in simulation.

Fig. 4. Model of the hockey rink (overhead view).

11

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

_ _0 4 , 4

elsewhere
rink w rink w

zone

zone

y l l
U . (3)

The line-of-sight field enables a robot to stay in regions
where it can maintain line-of-sight to the puck. Regions
behind the opponent robots facing away from the puck are
given high constant potential values:

behind opponent w.r.t. puck
0 elsewhere
sight

sightU . (4)

The robot-personal-region field discourages a robot
from going near the immediate regions near other robots (for
collision avoidance). Regions within certain radius dpersonal

from any robots are given high constant potential values:
robot clearance

0 elsewhere
personal personal

personal

d
U . (5)

When calculating the best waypoints for offense, defense,
goal-scoring, or goal-tending, different sets of potential
functions are added together. The location corresponding to
the lowest potential in the super-imposed potential field is
the best waypoint for the robot to move to. For visualization,
Fig. 6 illustrates super-positioning the five fore-mentioned
potential functions to find the best “offense waypoint” (at
the cross mark).

When the team is on offense, the robot that is closest to
the puck is selected to be the puck-handler. In the current
implementation, the puck-handler chooses its action
randomly among “shoot to goal”, “pass to teammate”, and
“move with the puck” (i.e. dribble the puck). The other non-
puck-handler robots move to their own offense waypoints.

For each robot, potential function super-position is
performed to find the best waypoints to perform the selected
actions (goal-scoring, passing, dribbling, or moving to
offense waypoint). These waypoint locations, along with the
information whether or not to activate the kicker, form the
high-level action commands. These high-level actions are
then sent to the inverse kinematics module for conversion
into low-level robot commands.

C. Inverse Kinematics
Inverse kinematics calculations deal with the problem that

given the desired final configuration of a robot (position and
orientation), find the robot joint angles to achieve such
configuration. Calculations to be performed in inverse
kinematics depend on the mechanical construct of the
robots. For the hockey robot shown in Fig. 1, inverse
kinematics involves the calculations of three joint angles:
left wheel, right wheel, and the kicker.

Here, we show how low-level commands are calculated
from high-level commands “navigating to certain waypoint”
and “activating the kicker”.

To navigate a robot to a waypoint at Pf from its current
position Pi, we first break the robot’s straight path into
segments, and each segment has length of the virtual sensing
range of the robot. This decomposition is needed because a
robot may take more than one rendering frame to reach its
destination. Fig. 7 illustrates the decomposition process.

If other robots are located inside the robot sensing range,
the first intermediate waypoint is adjusted 90 degrees to the
left or to the right, as shown in Fig. 8.

After an intermediate waypoint is selected as destination,
we calculate the corresponding left and right robot wheel
motions to reach this destination. One navigation movement
involves the robot first to turn and face the destination, and
then move forward toward the destination (as shown in Fig.
9). The angle that the robot needs to turn (turning) can be
calculated from the current robot position (xi, yi), current
robot orientation body, and the destination position (xf, yf):

arctanturning f i f i bodyy y x x . (6)

For a two-wheel robot, the general angular velocity of the
robot (robot) can be calculated from the linear velocities of
the two wheels (vL, vR) and the width of the robot (lrobot_width),
as follows [8]:

_robot R L robot widthv v l . (7)

Assume the wheel motor has maximum angular speed
vMAX, and the wheel has radius rwheel. Then the maximum
linear speed of the wheel is:

max wheel MAX wheelv r . (8)

Fig. 7. Decomposition of a robot’s path based on its sensing range.

Fig. 6. Finding the best offense waypoint through potential function
super-position.

12

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

And the maximum angular speed the robot can rotate is:

_max 2robot MAX wheel robot widthr l . (9)

Suppose that the robot runs its wheels at maximum speed
while adjusting its orientation toward the waypoint. Using
the results from (6) and (9), the time it takes for the turning
motion is:

maxturning turning robott . (10)

The distance the robot needs to move forward to reach the
destination waypoint is:

2 2

forward f i f id x x y y . (11)

Running the two wheel motors at top linear speeds as in
(8), the time it takes to complete the forward motion is:

maxforward forward wheelt d v . (12)

In the current implementation, the low-level commands
(called state update vectors) that get sent to the motion
scheduler consist of the following fields: robot ID, robot
part, part angular velocity (part), part angular acceleration
(part), and start time (tstart). This command data structure is
chosen because it resembles the commands used to control
real hockey robots [8].

The state update vector that commands robot i to first turn
left, and then move forward toward the destination waypoint
looks like those in Table 1. In Table 1, tcurrent is the current

time, which refers to the global clock during the current
rendering frame in simulation. And the last two rows in the
table commands the robot to stop moving after it has
finished turning and moving forward.

When performing a kicking action, the robot rotates its
kicker out to an angle kick, and then retracts the kicker back
to its home position. Let max(kicker) be the maximum
angular speed of the kicker motor. The time the kicker needs
to turn in each direction is:

maxkicking kick kickert . (13)

If robot i needs to perform the kicking action at the end of
its waypoint navigation, we append the entries in Table 2 to
the end of Table 1. For this case, the time stamp at the end
of kicking action should be:

_kick end current turning forward kickingt t t t t . (14)

D. Motion Scheduler
The motion scheduler upkeeps a table that holds all the

state update vectors corresponding to the commands
generated by the strategy and the user control input modules.

TABLE I
ROBOT COMMANDS FOR WAYPOINT NAVIGATION

Robot
ID

Part
Name

part part tstart

i Left
wheel

max(wheel) 0 tcurrent

i Right
wheel

max(wheel) 0 tcurrent

i Left
wheel

max(wheel) 0 tcurrent+
tturning

i Right
wheel

max(wheel) 0 tcurrent+
tturning

i Left
wheel

0 0 tcurrent+
tturning+
tforward

i Right
wheel

0 0 tcurrent+
tturning+
tforward

TABLE II
ROBOT COMMANDS FOR KICKER ACTIVATION

Robot
ID

Part
Name

part part tstart

i Kicker max(kicker) 0 tcurrent+
tturning+
tforward

i Kicker max(kicker) 0 tcurrent+
tturning+
tforward

i Kicker 0 0 tcurrent+
tturning+
tforward+
tkicking

Fig. 9. Robot turning and moving forward to reach destination.

Fig. 8. Modifying the intermediate waypoints due to obstacles.

13

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Each state update vector needs to be executed, at the time
according to its time stamp. The motion scheduler is
responsible for checking the current time (from the current
state module), going through the entire list of state update
vectors, and picking out the state update vectors whose time
stamps have expired. The selected state update vectors are
sent to the current state module for current state update, and
removed from the scheduler’s list.

One major advantage of using the state update vectors and
the motion scheduler is that the simulator is able to move
multiple robots concurrently and independently. Another
advantage of using such design is that the simulator can
easily be extended to control real hockey robots. The state
update vectors contain low-level motor control information,
which can be sent directly to the robots as commands.

E. Forward Kinematics
Forward kinematics calculations involve the

determination of a robot’s configuration from the robot’s
joint angles. In robot hockey, we perform forward
kinematics to calculate a robot’s position and orientation for
the next rendering frame, based on the current states of its
two wheels.

For a two-wheel robot, when the two wheels’ velocities
are not equal, the robot rotates about an instantaneous center
of rotation (ICR), as shown in Fig. 10.

The general angular velocity of the robot (robot) can be
calculated using (7). Given that the time increment between
frames in simulation is t, a robot’s angle of rotation per
frame can be calculated as:

robot t . (15)
The radius of rotation rrot can be calculated from the

linear speeds of the two wheels (vL, vR), and the robot’s body
width (lrobot_width) as follows [8]:

_

2
robot width R L

rot
R L

l v vr
v v

. (16)

From rrot and , we can calculate the magnitude of the
robot’s displacement due to its rotation around the ICR:

2 sin 2rotD r . (17)

Using the geometric setup as shown in Fig. 10, we can
calculate the angle of the robot’s displacement (). For the
case that the robot moves in the clockwise direction, we use:

2 2 2
. (18)

For the case that the robot moves in the counter-clockwise
direction, we use:

2 2 2
. (19)

Finally, the location of the robot for the next time frame
(xf, yf) can be determined from D and , using trigonometry:

cos
sin

f i

f i

x x D
y y D

. (20)

F. Event Dynamics
Event dynamics calculations deal with changes in motion

due to interaction among objects. In simulated environment,
this includes collision detection and collision response.

The first step of collision detection is to choose a
geometric model to represent the objects. Then by perform
intersection check between the geometries, we can
determine if two objects collide or not.

The robot hockey environment consists of the hockey
rink, the puck, and the robots. For collision detection, the
hockey rink is modeled as a collection of line segments. The
puck is modeled as a line segment, with its two endpoints
being the puck’s current position and the predicted position
for the next rendering frame. The robot’s body is modeled as
a rectangle. As for the robot’s kicker, it uses a line segment
model when both the robot’s body and its kicker are
stationary. When the robot’s kicker is stationary but its body
is moving, the kicker is modeled as a parallelogram. When
the robot’s body is stationary but its kicker is swinging, the
kicker is modeled as a pie shape. Fig. 11 illustrates the three
geometric models of the robot’s kicker.

In robot hockey, the objective is for a team of robots to
manipulate the puck with their bodies and kickers, until the
puck reaches inside the opponent’s goal. Thus, collision
response of the puck plays a significant role in both the
game play and game physics.

Fig. 11. Geometric models of the kicker for collision detection: (a) a
line segment, (b) a pie, (c) a parallelogram.

Fig. 10. Robot rotating about an instantaneous center of rotation.

14

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Suppose that collision detection finds out that the puck
will collide with a surface at location PC. Fig. 12 illustrates
the scenario, where Vi is the puck’s velocity vector before
impact, and Vf is the puck’s velocity after impact.

Given that the normal vector of the contact surface is NC,
we can break down the puck’s initial velocity into two
components: one in the normal direction VN,i (relative to NC),
and one in the tangential direction VT,i, by using dot product
and vector subtraction:

,

, ,

N i i C C

T i i N i

V V N N
V V V

. (21)

By applying the conservation of momentum, the puck’s
speed in the normal direction after impact can be calculated
using the following simplified equation (where is the
coefficient of restitution):

, ,N f N iV V . (22)

The puck’s speed in the tangential direction relative to the
surface normal remains unchanged:

, ,T f T iV V . (23)

The overall velocity of the puck after impact is then the
sum of the normal (22) and the tangential (23) components.

If the surface of collision also has velocity Vsurface at the
time of impact, the surface velocity contributes to the puck’s
final velocity as well:

, ,f N f T f surfaceV V V V . (24)

When a robot’s kicker strikes the puck at location PC (Fig.
13), the kicker’s velocity at the point of contact can be
calculated from the angular velocity of the kicker kicker and
distance from the kicker’s hinge Phinge to contact point PC, as
follows:

dist ,kicker kicker hinge CV P P . (25)

If the robot swings its kicker at the puck while moving
forward at the same time with linear velocity Vbody, then the
overall surface velocity that contributes to the puck’s final
velocity after impact is:

surface kicker bodyV V V . (26)

When the puck slides freely in the rink, it is subject to the
kinetic friction between the puck and the rink surface. The
puck’s deceleration due to this frictional force is:

puck k puck puckV t g V V , (27)

where k is the coefficient of kinetic friction and g is the
gravitation acceleration (g = 9.81 m/sec2).

IV. PERFORMANCE OF THE SIMULATOR

This section demonstrates the performance of some main
features of the robot hockey simulator.

The GUI of the simulator is implemented using Glui [9].
The GUI includes controls to pause/resume animation, to
view/edit all current states, to choose strategies of the two
teams, and to rotate/pan/zoom the global camera. Fig. 14
shows the current GUI design.

Fig. 15 shows an isometric view of the playfield, with
potential fields in the background. On average, the simulator
runs at 20 frames per second (CPU: Intel® Pentium®
1.5GHz; RAM: 512MB; OS: Windows® XP). The
maximum frame rate can go as high as 25 frames per
second. Strategy calculations are performed every other
frame (10 frames per second).

Some basic robot hockey skills are waypoint navigation,
puck shooting, and puck passing. Fig. 16 illustrates a robot
navigating to a waypoint (to the cross mark), while avoiding
an obstacle in its away. Fig. 17 illustrates a robot shooting
the puck with its kicker: (a) with only its kicker swinging,
(b) with both its kicker swinging and its body moving
forward. Fig. 18 illustrates robot cooperation: a robot
passing the puck to another teammate robot.

Fig. 12. Impact analysis of the puck bouncing off a surface.

Fig. 13. The robot shoots the puck by swinging its kicker.

Fig. 14. Graphical user interface of the robot hockey simulator.

15

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

As discussed in Section III-D, the use of state update
vectors and the motion scheduler enables the simulator to
animate multiple robots concurrently and independently.
Fig. 19 illustrates two teams of robots (three robots on each
team) competing in a game of robot hockey.

V. CONCLUSION AND FUTURE WORK

This paper describes the game engine design of a robot
hockey simulator, both on the architectural level and on the
component level. Future work includes robot dynamics
model, improved puck kinematics model (spinning effect),
improved team strategies, larger robot teams, a
programming interface for strategy and robot model design,
transfer of control codes to real robots, and simulated robot
hockey tournaments over the Internet.

ACKNOWLEDGMENT

The authors would like to thank Shahrad Payandeh for his
suggestions and support to the robot hockey project.

REFERENCES

[1] W. Y. Chen and S. Payandeh, “Passer-receiver coordination under
multiple defenders in the game of robot hockey,” in Proceedings of
the 2005 FIRA RoboWorld Congress.

[2] Official Website of RoboCup [Online]. Available:
http://www.robocup.org.

[3] Official Website of the Federation of International Robot-soccer
Association [Online]. Available: http://www.fira.net.

[4] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage
Project: tools for multi-robot and distributed sensor systems,” in
Proceedings of the 2003 IEEE International Conference on Advanced
Robotics, pp. 317-323.

[5] N. Koenig and A. Howard, “Design and use paradigms for Gazebo: an
open-source multi-robot simulator,” in Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2149-2154.

[6] Business Website of Cyberbotics [Online]. Available:
http://www.cyberbotics.com.

[7] P. Vadakkepat, T. H. Lee, and L. Xin, “Application of evolutionary
artificial potential field in robot soccer system,” in Proceedings of the
2001 IFSA World Congress and the 20th NAFIPS International
Conference, pp. 2781-2785.

[8] J. H. Kim, “Lecture notes on EE006 robot soccer system,” Korea
Advanced Institute of Science and Technology, Taejon, Korea, 1998,
pp. 31-40.

[9] P. Rademacher, “Glui – a GLUT based user interface library,”
University of Northern California, CA, 1999.

Fig. 15. Isometric view of the playfield with potential field.

Fig. 16. Robot navigation to a waypoint while avoiding obstacles.

Fig. 17. Shooting the puck: (a) with kicker, (b) with kicker and body.

Fig. 18. Passing the puck to a teammate.

Fig. 19. Two teams of robots competing in robot hockey.

16

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

