
Abstract—Like robot soccer, robot hockey is a game played 
between two teams of robots. A robot hockey simulator has 
been created, for the purpose of game strategy testing and 
result visualization. One major modification in robot hockey is 
the addition of a puck-shooting mechanism to each robot. As a 
result, the mechanics of interaction between the robots and the 
hockey puck become a key design issue. This paper describes 
the simulator design considerations for robotic hockey games. 
A potential field-based strategy planner is implemented which 
is used to develop strategies for moving the robots 
autonomously. The results of the simulation study show both 
successful cooperation between robots (on the strategy level), 
and realistic interaction between robots and the puck. 

Keywords: Game Engine, Robot Hockey, Artificial 
Potential Field 

I. INTRODUCTION

One of the many goals of a robot soccer system is to 
create a test bed such that many notions from robotics, AI, 
software engineering, electronics, and mechanics can be 
synthesized in order to solve a very complex problem. Aside 
from research challenges, robot soccer also has great 
entertainment and education values. Ultimately, the study 
and developments of robot soccer system (multiple 
corporative agents) can be applied to fields such as search 
and rescue, service robotics, security, and space missions. 

Due to the popularity of the hockey sports, a separate new 
league for robot hockey is created by the University. We 
believe that the addition of robot hockey league will help 
further research activities and public interests in the area of 
robotics. 

The novelty of robot hockey lies in its new robot 
mechanical design, puck and rink design (e.g. using an air 
hockey table as the game arena), new rules, and interface for 
manual robot control [1]. Each hockey robot is equipped 
with a shooting mechanism that mimics a hockey player’s 
slap-shooting the puck (Fig. 1). A miniature puck is used, 
and the puck floats on the surface of the hockey rink. As in 
real sports, robot hockey features different rules than robot 
soccer (e.g. allowing body check). In addition to 
autonomous control, the users can choose to manually 
control one robot, in cooperation with other computer-
controlled teammate robots. These differences give rise to 
new challenges in robot control and coordination. 

To test robot team strategy, it is desirable to have a 
computer simulation program that runs teams of robots 

based to the strategies provided by robot programmers. For 
realistic result visualization purposes, the simulation 
program should also include graphical representations of the 
robot hockey environment and the simulated physics that 
handle interactions among objects in the scene. 

In robot soccer, competitions are held not only between 
real robots, but also between simulated robots. Competition 
participants write their own soccer-playing strategies using 
simulator software provided by the competition organizers. 
During competitions, the two team’s strategies are run on 
two separate simulator clients, and the simulator server 
displays the simulated robot soccer game. The RoboCup 
Soccer Simulator is the official simulation software for the 
Simulation Leagues run by RoboCup [2]. This simulation 
software is freely available and it supports two teams of 11 
autonomous robots. The Federation of International Robot-
soccer Association (FIRA) [3] also holds competitions in 
simulated robot soccer – the SimuroSot. Simulation software 
is provided to participants to write their own team strategies, 
and the simulator supports 5-on-5 or 11-on-11 games. 

As for simulator software for mobile robots in general, the 
2D simulator Stage [4] and 3D simulator Gazebo [5] are 
freely available robot simulation software that not only 
allows programmers to test their robot control algorithms 
through simulation, but also to transfer the control programs 
to real robots. In simulation, each robot is abstracted as a 
“Player”, with customizable sensors and actuators. The 
integration of simulation and hardware programming speeds 
up robot prototyping and development time significantly. 
Another mobile robot simulation software is the Webots. It 
is developed by Cyberbotics [6] and is commercially 
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Fig. 1.  A micro hockey robot, with a puck-shooting mechanism 
attached to the bottom-front of its frame.
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available. Webots provides users an integrated development 
environment for robot modeling and programming. It also 
features simulation movie recording and transferring of 
control programs to real robots. 

Our eventual objective is to create a robot simulator that 
not only specializes in the sports of hockey, but it is also 
expandable to provide desirable features such as simulation 
competition (as in RoboCup and FIRA Simulators) and 
code-transfer to real hardware (as in Stage, Gazebo, and 
Webots). In addition, the simulator should support joystick 
inputs for manual robot control (as in typical video games).  

This paper is organized as follows: Section II describes 
the overall architecture design of the simulator. Sections III 
gives more detailed design issues and proposed solutions 
relevant to the hockey game. And the following major 
aspects of the simulator are discussed: rendering, strategy, 
inverse kinematics, motion scheduling, forward kinematics, 
and event dynamics. Section IV demonstrates simulator 
performance through test runs with single or multiple robots, 
and with or without the puck. Section V concludes the paper 
and suggests future work. 

II. GAME ENGINE ARCHITECTURAL DESIGN

The architecture of the simulator engine follows an 
object-oriented design, which makes it easy to maintain, 
modify, and reuse. The current simulator consists of nine 
major components: current state, rendering, forward 
kinematics, inverse kinematics, event dynamics, motion 
scheduler, strategy, manual control input, and the graphical 
user interface. Fig. 2 illustrates the architectural block 
diagram of the design. 

The current state module stores all state variables at each 
time stamp of simulation. This module manages information 
such as positions, velocities, and accelerations of the puck 
and all robots, as well as environment properties such as 
time and surface property of the hockey rink. 

The graphical user interface includes controls that allow 
users to view or set the current state, change the camera 
angle, and pause or change the speed of simulation. 

The strategy module decides the actions for each robot, 
based on information from current state. Robot actions are 
expressed in terms of high-level commands such as 

navigating to certain waypoint, shooting the puck, passing 
the puck, etc. 

The manual control input module maps the user’s input 
from the keyboard or joystick into robot actions. The users 
have the option of controlling one of the robots manually, 
and the users’ commands have higher priority over those 
generated by the strategy module. Manual control provides a 
second way for robot testing in simulated environment. The 
hybrid control model, in which human and computer 
cooperate to run a team, is also an interesting research topic. 

The inverse kinematics module converts high-level 
commands, such as navigating to certain waypoint, into low-
level robot control commands, such as turning the wheels at 
certain velocities for certain time duration. 

The motion scheduler keeps track of a list of low-level 
robot commands that need to be executed by the end of the 
current rendering frame. Each robot action is associated with 
a time stamp. When the global clock of the simulator 
reaches this time stamp, the expired command is sent to the 
current state module and removed from the motion 
scheduler. 

The forward kinematics module calculates the robots’ 
and the puck’s states for the next rendering frame, based on 
information from current state. The calculated new states 
need to be verified by the event dynamics module, before 
they can be sent back to the current state module for update. 

The event dynamics module checks if the new states 
from forward kinematics calculations would cause collisions 
between objects. If collision should occur, collision response 
calculations are performed to modify the new states. After 
the new states are modified and verified, they are sent back 
to the forward kinematics module. 

The rendering module reads the position and orientation 
information of the robots and the puck from current state, 
and draws them in the scene. This module specifies the 3D 
models of all objects in the scene: the robots, the puck, and 
the hockey rink. 

In summary, at the beginning of each rendering frame, the 
rendering module draws the robots, the puck, and the 
hockey rink in the scene based on the current state. Then the 
strategy module decides the next actions of the robots, based 
on the current state. If there are user inputs from keyboards 
or joysticks, the manual control input module replaces the 
strategically generated robot actions with the user specified 
ones. The inverse kinematics module converts the high-level 
actions into low-level robot commands. The low-level 
commands are then sent to the motion scheduler. The 
motion scheduler checks the current time, and picks from its 
list the robot commands whose time stamp expires. The 
selected commands are sent to the current state module for 
state update. The forward kinematics module calculates the 
new states of the robots and the puck based on the updated 
current state information. The event dynamics module 
checks for collision and modifies the calculations from the 
forward kinematics module if there is collision. The verified 

Fig. 2.  Architectural design of the robot hockey simulator. 
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new states are passed back to the forward kinematics 
module, which then send these new states to the current state 
module for update. The simulator advances to the next 
rendering frame by incrementing its global clock, and the 
whole process repeats. Fig. 3 summarizes the process flow. 

III. DESIGN CONSIDERATIONS DUE TO ROBOT HOCKEY

This section gives an overview of various components of 
our proposed simulator. The following major components of 
the game engine are discussed: rendering, strategy, motion 
scheduler, kinematics, and event dynamics.  

A. Rendering 
OpenGL is used to create the 3D scene, which consists of 

the hockey rink, a hockey puck, and six hockey robots (two 
on each team). 

The hockey rink has two goal posts, one on each end of 
the floor. When a robot scores a goal, the light bulb on top 
of the goal lights up. Similar to real hockey, the rink can be 
modified to allow robots and the puck to travel behind the 
goals. Fig. 4 illustrates the overhead view of the hockey rink 
model. 

Each hockey robot is modeled as a cube, plus two wheels 
and a kicker. On each wheel, we draw a white circle as a 
marker, so that the wheel’s turning motion is easily visible. 
The kicker is modeled as a rectangular rod that pivots to the 
front-left corner of the robot. For robot identification, each 

robot has unique textures on its top (color identifiers) and on 
its front/back (name tags). The users can customize these 
textural images to their own liking. Fig. 5 illustrates models 
of two hockey robots and a puck. 

B. Strategy 
To test the functionality of the simulator, we have 

implemented a potential field based strategy planner [1][7]. 
We define various potential functions, each of which 

models a specific game condition. Like a contour map, the 
robot is to move from locations with high potential to those 
with low potential. Here, we describe some of the important 
potential fields used in the game of robot hockey: the base 
field, distance-to-destination field, play-zone field, line-of-
sight field, and robot-personal-region field. 

The base field enables a robot to move toward the 
opponent’s goal. The base field potential function is directly 
proportional to the distance from the opponent goal: 

2 2

_ _base base opp goal opp goalU x x y y ,  (1) 

where base is a tunable scaling factor. 
The distance-to-destination field enables a robot to go to 

certain location. The potential function for this field is 
directly proportional to the distance from the destination: 

2 2
dest dest dest destU x x y y .   (2) 

The play-zone field enables a robot to stay within its zone 
of responsibility. The potential values for regions in the 
robot’s play-zone are zero, and a large constant elsewhere. 
Assuming that the rink has width lrink_w, the play-zone 
potential function for a robot playing center is defined as: 

Fig. 5.   Models of two hockey robots and a puck. 

Fig. 3.  Logic flow of each rendering frame in simulation. 

Fig. 4.   Model of the hockey rink (overhead view). 
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_ _0 4 , 4

elsewhere
rink w rink w

zone

zone

y l l
U .    (3) 

The line-of-sight field enables a robot to stay in regions 
where it can maintain line-of-sight to the puck. Regions 
behind the opponent robots facing away from the puck are 
given high constant potential values: 

behind opponent w.r.t. puck
0 elsewhere
sight

sightU .  (4) 

The robot-personal-region field discourages a robot 
from going near the immediate regions near other robots (for 
collision avoidance). Regions within certain radius dpersonal

from any robots are given high constant potential values: 
robot clearance

0 elsewhere
personal personal

personal

d
U . (5) 

When calculating the best waypoints for offense, defense, 
goal-scoring, or goal-tending, different sets of potential 
functions are added together. The location corresponding to 
the lowest potential in the super-imposed potential field is 
the best waypoint for the robot to move to. For visualization, 
Fig. 6 illustrates super-positioning the five fore-mentioned 
potential functions to find the best “offense waypoint” (at 
the cross mark). 

When the team is on offense, the robot that is closest to 
the puck is selected to be the puck-handler. In the current 
implementation, the puck-handler chooses its action 
randomly among “shoot to goal”, “pass to teammate”, and 
“move with the puck” (i.e. dribble the puck). The other non-
puck-handler robots move to their own offense waypoints. 

For each robot, potential function super-position is 
performed to find the best waypoints to perform the selected 
actions (goal-scoring, passing, dribbling, or moving to 
offense waypoint). These waypoint locations, along with the 
information whether or not to activate the kicker, form the 
high-level action commands. These high-level actions are 
then sent to the inverse kinematics module for conversion 
into low-level robot commands. 

C. Inverse Kinematics 
Inverse kinematics calculations deal with the problem that 

given the desired final configuration of a robot (position and 
orientation), find the robot joint angles to achieve such 
configuration. Calculations to be performed in inverse 
kinematics depend on the mechanical construct of the 
robots. For the hockey robot shown in Fig. 1, inverse 
kinematics involves the calculations of three joint angles: 
left wheel, right wheel, and the kicker. 

Here, we show how low-level commands are calculated 
from high-level commands “navigating to certain waypoint” 
and “activating the kicker”. 

To navigate a robot to a waypoint at Pf from its current 
position Pi, we first break the robot’s straight path into 
segments, and each segment has length of the virtual sensing 
range of the robot. This decomposition is needed because a 
robot may take more than one rendering frame to reach its 
destination. Fig. 7 illustrates the decomposition process. 

If other robots are located inside the robot sensing range, 
the first intermediate waypoint is adjusted 90 degrees to the 
left or to the right, as shown in Fig. 8. 

After an intermediate waypoint is selected as destination, 
we calculate the corresponding left and right robot wheel 
motions to reach this destination. One navigation movement 
involves the robot first to turn and face the destination, and 
then move forward toward the destination (as shown in Fig. 
9). The angle that the robot needs to turn ( turning) can be 
calculated from the current robot position (xi, yi), current 
robot orientation body, and the destination position (xf, yf):

arctanturning f i f i bodyy y x x .   (6) 

For a two-wheel robot, the general angular velocity of the 
robot ( robot) can be calculated from the linear velocities of 
the two wheels (vL, vR) and the width of the robot (lrobot_width),
as follows [8]: 

_robot R L robot widthv v l .      (7) 

Assume the wheel motor has maximum angular speed 
vMAX, and the wheel has radius rwheel. Then the maximum 
linear speed of the wheel is: 

max wheel MAX wheelv r .      (8) 

Fig. 7.  Decomposition of a robot’s path based on its sensing range. 

Fig. 6.  Finding the best offense waypoint through potential function 
super-position. 
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And the maximum angular speed the robot can rotate is: 

_max 2robot MAX wheel robot widthr l .   (9) 

Suppose that the robot runs its wheels at maximum speed 
while adjusting its orientation toward the waypoint. Using 
the results from (6) and (9), the time it takes for the turning 
motion is: 

maxturning turning robott .    (10) 

The distance the robot needs to move forward to reach the 
destination waypoint is: 

2 2

forward f i f id x x y y .   (11) 

Running the two wheel motors at top linear speeds as in 
(8), the time it takes to complete the forward motion is: 

maxforward forward wheelt d v .    (12) 

In the current implementation, the low-level commands 
(called state update vectors) that get sent to the motion 
scheduler consist of the following fields: robot ID, robot 
part, part angular velocity ( part), part angular acceleration 
( part), and start time (tstart). This command data structure is 
chosen because it resembles the commands used to control 
real hockey robots [8]. 

The state update vector that commands robot i to first turn 
left, and then move forward toward the destination waypoint 
looks like those in Table 1. In Table 1, tcurrent is the current 

time, which refers to the global clock during the current 
rendering frame in simulation. And the last two rows in the 
table commands the robot to stop moving after it has 
finished turning and moving forward. 

When performing a kicking action, the robot rotates its 
kicker out to an angle kick, and then retracts the kicker back 
to its home position. Let max( kicker) be the maximum 
angular speed of the kicker motor. The time the kicker needs 
to turn in each direction is: 

maxkicking kick kickert .    (13) 

If robot i needs to perform the kicking action at the end of 
its waypoint navigation, we append the entries in Table 2 to 
the end of Table 1. For this case, the time stamp at the end 
of kicking action should be: 

_kick end current turning forward kickingt t t t t .  (14) 

D. Motion Scheduler 
The motion scheduler upkeeps a table that holds all the 

state update vectors corresponding to the commands 
generated by the strategy and the user control input modules. 

TABLE I
ROBOT COMMANDS FOR WAYPOINT NAVIGATION

Robot 
ID

Part
Name 

part part tstart

i Left
wheel

max( wheel) 0 tcurrent

i Right 
wheel

max( wheel) 0 tcurrent

i Left 
wheel

max( wheel) 0 tcurrent+
tturning

i Right 
wheel

max( wheel) 0 tcurrent+
tturning

i Left 
wheel

0 0 tcurrent+
tturning+
tforward

i Right 
wheel

0 0 tcurrent+
tturning+
tforward

TABLE II
ROBOT COMMANDS FOR KICKER ACTIVATION

Robot 
ID

Part
Name 

part part tstart

i Kicker max( kicker) 0 tcurrent+
tturning+
tforward

i Kicker max( kicker) 0 tcurrent+
tturning+
tforward

i Kicker 0 0 tcurrent+
tturning+
tforward+
tkicking

Fig. 9.  Robot turning and moving forward to reach destination. 

Fig. 8.  Modifying the intermediate waypoints due to obstacles. 
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Each state update vector needs to be executed, at the time 
according to its time stamp. The motion scheduler is 
responsible for checking the current time (from the current 
state module), going through the entire list of state update 
vectors, and picking out the state update vectors whose time 
stamps have expired. The selected state update vectors are 
sent to the current state module for current state update, and 
removed from the scheduler’s list. 

One major advantage of using the state update vectors and 
the motion scheduler is that the simulator is able to move 
multiple robots concurrently and independently. Another 
advantage of using such design is that the simulator can 
easily be extended to control real hockey robots. The state 
update vectors contain low-level motor control information, 
which can be sent directly to the robots as commands. 

E. Forward Kinematics 
Forward kinematics calculations involve the 

determination of a robot’s configuration from the robot’s 
joint angles. In robot hockey, we perform forward 
kinematics to calculate a robot’s position and orientation for 
the next rendering frame, based on the current states of its 
two wheels. 

For a two-wheel robot, when the two wheels’ velocities 
are not equal, the robot rotates about an instantaneous center 
of rotation (ICR), as shown in Fig. 10. 

The general angular velocity of the robot ( robot) can be 
calculated using (7). Given that the time increment between 
frames in simulation is t, a robot’s angle of rotation per 
frame can be calculated as: 

robot t .       (15) 
The radius of rotation rrot can be calculated from the 

linear speeds of the two wheels (vL, vR), and the robot’s body 
width (lrobot_width) as follows [8]: 

_

2
robot width R L

rot
R L

l v vr
v v

.    (16) 

From rrot and , we can calculate the magnitude of the 
robot’s displacement due to its rotation around the ICR: 

2 sin 2rotD r .      (17) 

Using the geometric setup as shown in Fig. 10, we can 
calculate the angle of the robot’s displacement ( ). For the 
case that the robot moves in the clockwise direction, we use: 

2 2 2
.    (18) 

For the case that the robot moves in the counter-clockwise 
direction, we use: 

2 2 2
.  (19) 

Finally, the location of the robot for the next time frame 
(xf, yf) can be determined from D and , using trigonometry: 

cos
sin

f i

f i

x x D
y y D

.     (20) 

F. Event Dynamics 
Event dynamics calculations deal with changes in motion 

due to interaction among objects. In simulated environment, 
this includes collision detection and collision response. 

The first step of collision detection is to choose a 
geometric model to represent the objects. Then by perform 
intersection check between the geometries, we can 
determine if two objects collide or not. 

The robot hockey environment consists of the hockey 
rink, the puck, and the robots. For collision detection, the 
hockey rink is modeled as a collection of line segments. The 
puck is modeled as a line segment, with its two endpoints 
being the puck’s current position and the predicted position 
for the next rendering frame. The robot’s body is modeled as 
a rectangle. As for the robot’s kicker, it uses a line segment 
model when both the robot’s body and its kicker are 
stationary. When the robot’s kicker is stationary but its body 
is moving, the kicker is modeled as a parallelogram. When 
the robot’s body is stationary but its kicker is swinging, the 
kicker is modeled as a pie shape. Fig. 11 illustrates the three 
geometric models of the robot’s kicker. 

In robot hockey, the objective is for a team of robots to 
manipulate the puck with their bodies and kickers, until the 
puck reaches inside the opponent’s goal. Thus, collision 
response of the puck plays a significant role in both the 
game play and game physics. 

Fig. 11.  Geometric models of the kicker for collision detection: (a) a 
line segment, (b) a pie, (c) a parallelogram. 

Fig. 10.  Robot rotating about an instantaneous center of rotation. 
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Suppose that collision detection finds out that the puck 
will collide with a surface at location PC. Fig. 12 illustrates 
the scenario, where Vi is the puck’s velocity vector before 
impact, and Vf is the puck’s velocity after impact. 

Given that the normal vector of the contact surface is NC,
we can break down the puck’s initial velocity into two 
components: one in the normal direction VN,i (relative to NC),
and one in the tangential direction VT,i, by using dot product 
and vector subtraction: 

,

, ,

N i i C C

T i i N i

V V N N
V V V

.     (21) 

By applying the conservation of momentum, the puck’s 
speed in the normal direction after impact can be calculated 
using the following simplified equation (where  is the 
coefficient of restitution): 

, ,N f N iV V .      (22) 

The puck’s speed in the tangential direction relative to the 
surface normal remains unchanged: 

, ,T f T iV V .       (23) 

The overall velocity of the puck after impact is then the 
sum of the normal (22) and the tangential (23) components. 

If the surface of collision also has velocity Vsurface at the 
time of impact, the surface velocity contributes to the puck’s 
final velocity as well: 

, ,f N f T f surfaceV V V V .    (24) 

When a robot’s kicker strikes the puck at location PC (Fig. 
13), the kicker’s velocity at the point of contact can be 
calculated from the angular velocity of the kicker kicker and 
distance from the kicker’s hinge Phinge to contact point PC, as 
follows: 

dist ,kicker kicker hinge CV P P .  (25) 

If the robot swings its kicker at the puck while moving 
forward at the same time with linear velocity Vbody, then the 
overall surface velocity that contributes to the puck’s final 
velocity after impact is: 

surface kicker bodyV V V .      (26) 

When the puck slides freely in the rink, it is subject to the 
kinetic friction between the puck and the rink surface. The 
puck’s deceleration due to this frictional force is: 

puck k puck puckV t g V V ,   (27) 

where k is the coefficient of kinetic friction and g is the 
gravitation acceleration (g = 9.81 m/sec2).

IV. PERFORMANCE OF THE SIMULATOR

This section demonstrates the performance of some main 
features of the robot hockey simulator. 

The GUI of the simulator is implemented using Glui [9]. 
The GUI includes controls to pause/resume animation, to 
view/edit all current states, to choose strategies of the two 
teams, and to rotate/pan/zoom the global camera. Fig. 14 
shows the current GUI design.  

Fig. 15 shows an isometric view of the playfield, with 
potential fields in the background. On average, the simulator 
runs at 20 frames per second (CPU: Intel® Pentium® 
1.5GHz; RAM: 512MB; OS: Windows® XP). The 
maximum frame rate can go as high as 25 frames per 
second. Strategy calculations are performed every other 
frame (10 frames per second). 

Some basic robot hockey skills are waypoint navigation, 
puck shooting, and puck passing. Fig. 16 illustrates a robot 
navigating to a waypoint (to the cross mark), while avoiding 
an obstacle in its away. Fig. 17 illustrates a robot shooting 
the puck with its kicker: (a) with only its kicker swinging, 
(b) with both its kicker swinging and its body moving 
forward. Fig. 18 illustrates robot cooperation: a robot 
passing the puck to another teammate robot. 

Fig. 12.  Impact analysis of the puck bouncing off a surface. 

Fig. 13.  The robot shoots the puck by swinging its kicker. 

Fig. 14.  Graphical user interface of the robot hockey simulator. 
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As discussed in Section III-D, the use of state update 
vectors and the motion scheduler enables the simulator to 
animate multiple robots concurrently and independently. 
Fig. 19 illustrates two teams of robots (three robots on each 
team) competing in a game of robot hockey. 

V. CONCLUSION AND FUTURE WORK

This paper describes the game engine design of a robot 
hockey simulator, both on the architectural level and on the 
component level. Future work includes robot dynamics 
model, improved puck kinematics model (spinning effect), 
improved team strategies, larger robot teams, a 
programming interface for strategy and robot model design, 
transfer of control codes to real robots, and simulated robot 
hockey tournaments over the Internet.  
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Fig. 15.  Isometric view of the playfield with potential field. 

Fig. 16.  Robot navigation to a waypoint while avoiding obstacles.

Fig. 17.  Shooting the puck: (a) with kicker, (b) with kicker and body.

Fig. 18.  Passing the puck to a teammate. 

Fig. 19.  Two teams of robots competing in robot hockey. 
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