
Abstract—This paper examines the performance and 
adaptability of evolutionary, learning and memetic strategies to 
different environment settings in the Iterated Prisoner’s 
Dilemma (IPD). A memetic adaptation framework is devised 
for IPD strategies to exploit the complementary features of 
evolution and learning. In the paradigm, learning serves as a 
form of directed search to guide evolutionary strategies to 
attain good strategy traits while evolution helps to minimize 
disparity in performance between learning strategies. A 
cognitive double-loop incremental learning scheme (ILS) that 
encompasses a perception component, probabilistic revision of 
strategies and a feedback learning mechanism is also proposed 
and incorporated into evolution. Simulation results verify that 
the two techniques, when employed together, are able to 
complement each other’s strengths and compensate each 
other’s weaknesses, leading to the formation of good strategies 
that adapt and thrive well in complex, dynamic environments. 
    Keywords: Evolution, Incremental Learning, Memetic 
Algorithm, Iterated Prisoner’s Dilemma 

I. INTRODUCTION

The Iterated Prisoner’s Dilemma (IPD) is an abstract 
mathematical game where players cooperate or defect 
simultaneously without prior communication over repeated 
rounds. Though conceptually simple, IPD has been used to 
model behavioral developments and gain insights from 
social, political, economic and other interactions. In recent 
years, computational intelligence has made significant 
contributions to IPD. For instance, evolutionary algorithms 
(EAs) are well suited for searching robust strategies and 
analyzing IPD interactions.  The core issue considered in 
this paper is the adaptation of strategies in various 
environments. Existing works show that EA are highly 
successful in discovering complex and effective methods of 
adaptation to very rich situations [1]. In particular, evolved 
strategies are very good at developing specialized 
adaptations to specific settings, capable of defending against 
defectors and cooperating with cooperators [2]. While 
existing works are mostly concerned with the generalization 
ability of evolved strategies [3], this paper focused on the 
adaptability of strategies to different environmental settings.  

Learning is another adaptation framework that has been 
extensively studied in game theoretic problems [4], [5]. 
According to Hingston and Kendall [6], learning creates 
adaptive strategies that thrive in competitive settings by 
exploiting non-adaptive strategies. It is closely knitted to 
evolution and presents a similarly realistic scenario where 
knowledge accumulated through previous game play can be 
kept and used by players in the IPD tournament.  

However, the pattern of decision making is rarely 

constant [7] but dependent on the environment and complex 
interaction between competing agents. It is known that 
evolution and learning have distinct advantages and 
disadvantages. Evolution facilitates information exchange 
among strategies but is limited by poor exploitation abilities. 
Generation of new individuals is not guided by lessons 
learned from past generations, but rather a form of trial and 
error process [8], often causing populations of IPD strategies 
to reach a naïve state when the algorithm terminates. On the 
contrary, learning allows the strategies to make complex 
decisions spontaneously but entails large score variance due 
to diverse learning experiences [9] across different players. 

The paper considers development of a memetic adaptation 
framework [10] for strategies to exploit the complementary 
features of evolution and learning. In addition, a cognitive 
double-loop incremental learning scheme that encompasses 
a perception component, probabilistic revision of strategies 
and a double-loop learning mechanism is proposed. 
Integrating evolution with the cognitive learning scheme 
introduces a fair degree of realism to the behavioral 
modeling of players. A series of simulation is performed to 
uncover new insights into the intricacies between evolution 
and learning, justifying how adaptive strategies with good 
performance are created via memetic learning. Organization 
of the paper is as follows: Section II presents an overview of 
the IPD problem. Section III introduces different models of 
adapting IPD strategies. Section IV presents the proposed 
cognitive learning scheme and Section V highlights details 
of implementing the adaptation strategies. Section VI 
evaluates the performance of strategies via three distinct 
case studies. Section VII concludes the paper with a 
summary, with some discussions on the results and areas 
where future work can be embarked. 

II. ITERATED PRISONER’S DILEMMA

The IPD problem pertains to the study of short term 
rational decision of self-interest against the long term 
decision of overall interest. Each player has the option to 
COOPERATE (C) or DEFECT (D) and the payoff attained 
after each round is given by a Payoff Matrix as shown in 
Fig. 1. The game is played repeatedly among numerous 
strategies, each with its own set of characteristics and 
behaviors. According to Folk theorem, the set of Nash 
equilibriums of infinitely repeated rounds contains the 
cooperative solution [11]. Repeated defection or cooperation 
is not the best decision as strategies can perform much better 
by cooperating with reciprocal cooperators, exploiting 
unconditional cooperators, and resisting defectors [12]. 
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     Player 2 

Fig. 1: IPD Payoff Matrix 

III. IPD ADAPTATION MODELS

A. Evolution 

Evolution, as an optimization paradigm, is widely used to 
evolve strategies in the IPD game [1]. By retaining fit 
strategies and discarding weaker ones episodically, eventual 
convergence towards robust and effective strategies [3] is 
achieved. Many variants of evolutionary implementations 
have existed as of today. Evolving strategies are represented 
in binary forms [13], neural networks [14], real number [15] 
coded strings and even finite state machines (FSMs) [16]. 
Good strategies are selected in different ways as well, e.g. 
truncation selection [17], ( , ) and (  + ) selection [18] 
fitness-proportional selection [6]. Variation operators used 
also differs across implementations. While most EAs use a 
combination of crossover and mutation [13], pure mutation 
operators is used by Hingston and Kendall [6] and Chong 
and Yao [18] for their coevolutionary framework to analyze 
and study various aspects of the IPD problem. Other EAs 
also use speciation or niching to maintain genetic diversity 
[19] and elitism to avoid the lost of good strategies from the 
mating pool. Despite differences in the various 
implementations, the fundamental evolutionary framework 
is essentially the same and can be summarized as a 
sequential process of fitness assessment, genetic selection 
and genetic variation. 

B. Learning 

The learning methodology can be progressive [20] or 
reactionary [21]. Progressive learning schemes such as hill-
climbers and gradient-based techniques are commonly 
applied to static environments where conditions are fixed 
and the notion of optimality is explicitly defined. Reactive 
learning is more applicable to a dynamic setting where the 
notion of optimality is changing or totally not in existence. 
Notable examples include the Pavlovian learning scheme 
and other stochastic searches. In its classical form, learning 
only affects the individual strategies with no facility for 
communication. Nonetheless, population-based learning in 
[13] was found to supersede its evolutionary counterpart. In 
general, learning functions as a local search operator that 
steers strategies in the direction which is deemed more 
“favorable” in the context of the game. It exploits domain 
information available at hand to improve performance of 
strategies based on some form of heuristics. Since the 
pattern of decision making is rarely constant [7] but highly 
dependent on the environment and complex interaction 
between competing agents, learning should be performed on 
an incremental basis, with partial memory [22] of past 
experiences. This scheme of learning better models the IPD 
players, who are capable of making complex decisions 
spontaneously from time to time, based on some memory of 
their past actions. 

C. Memetic Learning 

Memetic Learning [23] is a hybrid adaptation framework 
that unifies learning and evolution as one single entity. In 
IPD, the notion of evolving strategies memetically is less 
well studied compared to learning and evolution until recent 
years. Two distinct implementations that are widely used are 
the Baldwinian [24] and Lamarckian [25] adaptation 
models. In Baldwinian Evolution, offspring do not inherit 
any learned abilities directly from their parents but merely 
experienced an increased capacity to learn new skills [26]. 
Learning is performed after every evolutionary episode. In 
Lamarckian Evolution, however, learning precedes 
evolution and desired traits that are acquired by parents in 
the course of their lives are passed down directly to their 
offspring [27]. Despite differences, the two models are 
similar in spirit. As opposed to learning, memetic learning 
employs evolution as a tool to facilitate information 
exchange between learning strategies, allowing knowledge 
acquired through learning to be shared using evolutionary 
operators. Learning is used as a form of directed search to 
guide evolving strategies to attain eventual convergence 
towards good strategy traits. "Meta-Pavlov Learning" [28], 
is a good example of a Baldwinian based memetic learning 
strategy. In general, deterministic strategies are well-suited 
to fixed setups but not very robust to environmental 
modifications. Evolutionary and learning strategies are able 
overcome this limitation via adaptation. In particular, it is 
hypothesized that memetic strategies, which harness the 
synergy between learning and evolution, will be able to 
acquire significantly better performance. 

IV. COGNITIVE LEARNING

A double-loop incremental learning scheme (ILS) that is 
adopted by all learning and memetic strategies is presented 
in this section. It is characterized by a cognitive framework 
which incorporates perception into the decision making 
process of strategies during the game play. ILS strategies 
can perceive the nature of opponents, conduct a probabilistic 
revision of strategies, and possess a double-loop learning 
mechanism that facilitates recovery from mistakes. Strategy 
revision is based on a notion of success and failure. In 
general, ILS breeds good strategies that can react and adapt 
well to different opponent strategies, and in the process 
maximize the overall payoff. 

A. Identification of opponent strategies 

A simple classification heuristics is formulated based on 
the correlation between the received payoffs and opponent’s 
likelihood to defect and cooperate. Opponents are classified 
into three broad categories, strategies with a tendency to 
defect (Exploiters), reciprocate cooperation (Reciprocals) or 
cooperate unconditionally (Cooperators). The nature of each 
opponent is mapped out according to the sum of payoffs 
received in the first three rounds of game play. The range of 
scores (0-15) are divided into three equal intervals, each 
corresponding to a class of opponents as shown in Fig. 2. 
This classification process forms the basis to gain insight 
into the nature of unknown opponents so as to facilitate the 

COOPERATE DEFECT
COOPERATE 3,3 0,5 Player 1 DEFECT 5,0 1,1 
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adoption of good strategies during subsequent game play. 

Fig. 2: Classification of opponent strategies 

B. Basis of strategy revision 

The proposed learning scheme is built upon John Nash’s 
[29] concept of Nash Equilibrium. It is conceptualized that 
each pair of strategies, despite their complexity and nature, 
will have a desired state at each round of game play, where 
both execute their best responses to each other. Each 
classification of opponent strategies will thus entail a desired 
response, defined by a Taxonomy Matrix in Fig. 3. The 
Matrix forms a heuristics that dictates the direction where 
local search is directed and is adhered to by all learning 
strategies throughout the course of game play. 

     Player

Fig. 3: Taxonomy Matrix 

To form the basis of learning, outcome of each round is 
classified as “success” (S) or “failure” (F). A “success” trial 
refers to an outcome where the player successfully attains 
the expected payoff against the classified opponent while a 
“failure” trial denotes otherwise. By keeping a record of the 
S and F counts accumulated by each strategy bit, strategy 
revision can take place. The S and F counts indicate how 
well a strategy fair against the opponent and are used to 
decide whether a strategy bit should be revised or left 
unchanged. The Taxonomy Matrix and underlying notion of 
success and failure are proposed to refine the Performance 
Matrix used by the Pavlovian learning scheme, which 
defines “success” as receiving Temptation (T) or Reward 
(R) payoffs and “failure” as awarded Punishment (P) or 
Sucker (S) payoffs. This is not a good way of defining the 
matrix due to the following: 
1)  Receiving P in the context of exploiters which defect 
perpetually should be considered good. 
2)  Receiving R in the context of unconditional 
cooperators should be considered bad as there are further 
opportunities for exploitation. 
3)  Receiving T in the context of reciprocals is not the best 
policy as it can well lead to endless cycles of retaliation. 

In general, “success” and “failure” hold a fuzzy meaning 
when the payoff is P, R or T. With no knowledge about the 
opponent, uncertainty is involved during learning, as what is 
good for one opponent might be bad for another. Since 
“success” and “failure” decides the “goodness” of learning 
and exerts great impact on the performance of strategies, the 
proposed notion of “success” and “failure” is dynamically 
updated based on the perceived nature of the opponent.  

C. Probabilistic revision of strategies 

Probabilistic learning is used by the proposed adaptation 
scheme to revise strategy bits via the accumulated S and F 
counts over the entirety of game play. Fitter bits have larger 

S counts while weaker ones have larger F counts. Unused 
bits will contain a zero for both counts. An update (changing 
C to D or vice versa) is made only if the ratio of F counts to 
the total number of S and F counts exceeds a probability Ps. 
Mathematically, 

Swap(True) iff F / (S + F) > Ps , 

Ps can be adjusted to suit the desired failure tolerance – 
amount of failure which a learning player is willing to 
undertake before deciding to revise his strategy. A higher Ps
makes a player more tolerant to failures and less likely to 
revise its strategy. The number of games played using a bit, 
(S+F), before learning also impacts a player’s sensitivity to 
environment changes. A large (S+F) delays learning but 
allows the “goodness” of a bit to be assessed via a wider 
observation window. An inherent tradeoff arises between 
the need to react promptly to changes in the pattern of 
opponent game play versus the need to maintain a sizable 
window of past experiences before performing strategy 
revision. Appropriate values of Ps and (S+F) are selected so 
that performance of the learning player is maximized. S and 
F are reset to zero whenever updating takes place and on 
encountering a new opponent. This prevents the past 
performance of a bit from affecting its current performance.  

The above formulation ensures that desirable traits are 
likely to remain intact while undesirable ones are more 
susceptible to change. The inherent randomness regulates 
the learning pressure and avoids repeated updating of 
strategy bits when learning an incorrect move. It also takes 
into account the very fact that decision making is never 
absolute but subjected to a fair degree of uncertainty. 

D. Double loop learning 

The double-loop learning process draws parallel to human 
way of learning: perceiving, reasoning, self-evaluating and 
readjusting. A separate learning cycle which involves total 
reclassification of the opponent and re-mapping of the 
perceived best response is performed in situations where it is 
mapped incorrectly. Reclassification is triggered when the 
accumulated F count of any strategy bit used in the game 
play exceed a count of f. Notion of “success” and “failure” 
is changed and a new perceived best response adopted. If the 
new perceived best response corresponds to the desired one, 
the number of F counts will be greatly reduced, indicating 
that the player is using the right tactics against the opponent. 
Otherwise, learning continues until the perceived and 
desired best response coincide.  

While inner-loop learning gives players the ability to form 
models of mental perception about opponents and learn 
incrementally, outer-loop learning allows players to perform 
evaluation of each model and make appropriate 
readjustments from time to time. By learning and relearning 
[30], strategies can adapt and realign their tactics 
dynamically to changes in the nature of unknown opponents, 
via formation, evaluation and revision of perceptions. A 
flow chart of the double-loop learning scheme is shown in 
Fig. 4. Unlike absolute reactionary learning, the integrated 
double-loop learning prevents chances of entering a loop of 

SCORE RANGE 0 - 4 5 - 10 11 - 15 
NATURE OF 
OPPONENT EXPLOITERS RECIPROCALS COOPERATORS

COOPERATE DEFECT
COOPERATE Reciprocals Cooperators Opponent

DEFECT - Exploiters 
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endless updating and lowers the possibility of being trapped 
in a local minimum. 

Classification 
of Opponent 

Perform learning by 
keeping a record of S
and F counts for each 

strategy bit. 

Define perceived Nash 
Equilibrium and notion 

of S and F.

F / (S + F) 
> Ps ?

Perform 
swapping  

Ftotal > f ?
Desired Nash 

Equilibrium perceived 
incorrectly. 

Outer Loop Learning Inner Loop Learning

Yes

No

Yes

No

Fig. 4: Overview of the Double-Loop Learning Process 

V. IMPLEMENTATION

Evolution of strategies is achieved by means of a genetic 
algorithm (GA) model as described in section 3. Learning is 
performed by the ILS in section 4 while the memetic 
algorithm (MA) combines evolution and ILS based on the 
framework in section 3. The flowchart of MA is presented 
as shown in Fig. 5. 

Each GA player is represented by a 65-bit chromosome. 
The first bit encodes the initial condition for triggering the 
first move at the start of each game set while the remaining 
bits address the 64 (26) possible histories of 6-bit memory 
configurations corresponding to the previous three moves of 
both players. Each ILS and MA player is represented by a 
65 by 3 2D array where each slot comprises of three genes. 
The first gene denotes the action corresponding to a 6-bit 
memory configuration while the second and third store the S 
and F counts. All strategies also encode an independent 6-bit 
memory that provides information about round histories and 
is used to decide the next move. The initial population of all 
adaptation strategies is randomly generated. In GA and MA, 
fitness assignment is performed after each tournament and is 
given by the payoffs accumulated throughout the game play. 
Niching with a sharing distance of r is applied to encourage 
the growth of a diverse repertoire of strategies. Elitism is 
incorporated by means of binary tournament selection. 
Selected individuals will then undergo uniform crossover 
and binary uniform mutation. 

Fig. 5: Simple flowchart depicting the operations of MA

              :  LEARNING CYCLE                      : EVOLUTIONARY CYCLE Initialization of 
MA population 

Finished iterated game 
set with opponent? 

Iterated game play with 
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  END 
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VI. SIMULATION RESULTS

Simulations are carried out using the Visual C++ 
development kit. A summary of the parameter values used in 
the simulations are depicted in Table I. 

TABLE I
LIST OF PARAMETER VALUES USED IN THE SIMULATION RUNS

Parameters Values 
No. of rounds in an iterated game set, 200

Generation, g 600
Population size, n Variable

Number of strategies for each population type, p 30
Tournament size, s 2
Crossover rate, c 0.8
Mutation rate, m 0.05
Niche radius, r 50
Failure count, f 10

A. Case Study 1: Performance Assessment 

The first case study compares the relative performance of 
GA, ILS and MA when each competes with AllC, AllD and 
TFT. The base strategies contain a good mix of cooperators, 
defectors and reciprocals, each with its own unique best 
response. Three tests, A, B and C are used to evaluate the 
performance of GA, ILS and MA against single, multiple 
opponents as well as against one another. Group 
performance will be analyzed using generation payoffs, box 
plots, ideal player scores (IPS) and statistical tests.  
   Test A – Single opponent type 

Each of the three adaptation strategies is set to compete 
against AllC, AllD, TFT and their own players separately. 
The IPS - average payoff attained against the maximum 
attainable payoff per game, of GA, ILS and MA is plotted 
against the ideal IPS of 5, 3, 3, 1 in Fig. 6 when playing 
against AllC, TFT, itself and AllD respectively.   
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Fig. 6: IPS against (a) AllC, (b) AllD, (c) TFT and (d) itself 

The plots show that all three strategies can achieve IPS 
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close to the ideal IPS for single opponent type. In particular, 
IPS of ILS and MA is almost indistinguishable from the 
ideal IPS. For GA, greater deviation from the ideal IPS 
reinforces the fact that unguided evolution is limited in its 
ability to track the desired best response. Onset of premature 
convergence places a limit on GA’s ability to evolve players 
that can cooperate well with one another in Fig. 6(d). ILS 
and MA players can perform significantly better by virtue of 
their ability to adjust strategies constantly in the search for 
the desired best response. 

Test B – Multiple opponent types 
Extending from test A, each adaptation strategy is set to 

play against AllC, AllD and TFT simultaneously. Box plots 
in Fig. 7 show that GA, ILS and MA are still the best among 
each set. In particular, ILS and MA outperform GA 
significantly by virtue of the ability to cooperate with TFT 
and defect against AllC and AllD to a larger extent.  
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Fig. 7: Box plots of (a) GA, (b) ILS and (c) MA 

Compared to the single opponent case, plots in Fig. 8 also 
show that the IPS of GA has degraded a lot in the face of 
multiple opponent types. Since evolution is performed only 
after each tournament, GA players do not have the luxury to 
alter their strategies within the course of game play. The 
evolved strategies are essentially fixed and tradeoffs are 
involved when attempting to balance between different best 
responses, as what is good against an opponent is not 
necessarily good for another. Instead of achieving the best 
performance, GA, at best, can only score reasonably well 
against each opponent type. ILS and MA can perform better 
by adjusting to changes in the nature of opponent. Subtle 
difference in Fig 8(d) also suggests that MA players are 
more cooperative among themselves. Further statistics in 
Table II also show that MA and ILS perform much closer to 
the ideal player than GA. MA is also superior to ILS in 
terms of the score uniformity across players and inference 
can be made to point out the understated fact that evolution 
with learning can stabilize performance across a population, 
especially when players have differing learning experiences. 

Analysis of the learning traces of ILS and MA in Fig. 9 
also reveal that learning is the dominant force in the short 
run and is responsible for the initial improvement of players. 
Evolution exerts pressure for improvement in the long term 
basis when the learning ratio is relatively low. The lower 
and less fluctuating MA trace indicates that MA players 
need to learn less on an individual basis due to the 
possibility of information exchange via evolution. 
Competent strategies will eventually be adopted by weaker 
players, affirming that evolution is capable of leveling out 
differences in learning experience between players and 
stabilize scores across an entire population of strategies.  
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Fig. 8: IPS against (a) AllC, (b) AllD, (c) TFT and (d) itself 

TABLE II
IPS ERROR AGAINST (A) ALLC (B) ALLD, (C) TFT & (D) ITSELF

GA ILS MA 
Mean 60.5405 6.5370 6.0160 

Std 50.5148 0.2587 0.0081 
Median 52.7405 6.5458 6.0137 

25th Percentile 9.8904 6.4967 6.0112 
75th Percentile 95.5872 6.7105 6.0194 

GA ILS MA 
Mean 63.7098 3.0596 3.0115 

Std 93.0117 0.0273 0.0022 
Median 10.6724 3.0631 3.0110 

25th Percentile 7.7254 3.0572 3.0098 
75th Percentile 115.2993 3.0774 3.0129 

(a) (b) 
GA ILS MA 

Mean 261.0971 12.2445 12.7109 
Std 104.9512 0.1003 0.0293 

Median 253.2133 12.2497 12.7079 
25th Percentile 187.0430 12.2272 12.6865 
75th Percentile 304.9748 12.3266 12.7265 

GA ILS MA 
Mean 621.7026 20.0730 12.4371 

Std 146.6414 3.7954 0.1981 
Median 590.8009 20.1469 12.3905 

25th Percentile 506.9482 19.7961 12.2863 
75th Percentile 731.0408 22.4862 12.5023 

(c) (d) 
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Fig. 9: Learning traces for (a) ILS and (b) MA against multiple opponents 

Test C – Relative performance of GA, ILS and MA 
To assess the overall strategic dominance, GA, ILS and 

MA are set to compete against one another in the presence 
of AllC, AllD and TFT. Despite small IPS deviations in Fig. 
10, ILS and MA are still able to track the ideal IPS fairly 
well. Nevertheless, the IPS of GA is worst off because the 
addition of adaptive opponents has upset the equilibrium 
state of the evolved GA strategies and their ability to 
balance between the distinct best responses. It can also be 
deduced from the persistently fluctuating IPS profile that 
there is neither one overall optimal strategy nor equilibrium 
state for GA to converge to.  

The normalized generation scores in Fig. 11(a) show that 
ILS and MA continue to lead other strategies by a large 
score margin. Drop in performance of GA below TFT is 
possibly due to the exploitation by ILS and MA, but in 
greater likelihood, the inability of each fixed, evolved GA 
strategy to cope with the added complexity in the setup. As 
much ease as it seems with only six strategies, addition of 
adaptive opponents entails multiple best responses that are 
constantly shifting. The dynamics involved has become 
insurmountable for any GA strategy to handle. This asserts 
that the inherent ability to learn dynamically is an important 
adaptation trait for preserving the performance of strategies 
amidst changes in complexity over time and across varying 
environments. Box plot in Fig. 11(b) also shows that MA 
outperforms ILS by a diminutive amount.  
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To justify that this lead is significant, the score difference 
across all strategies is verified via the Kolmogorov-
Smirnov-Test (KS-Test) where the maximum difference 
between the cumulative score distribution functions of two 
strategy types, over all possible player scores, is used as its 
test statistic. The p-value of the test will decide how 
different two populations of strategies are. A p-value close 
to 0 denotes distinct difference while a p-value close to 1 
denotes close correlation. Statistical tabulation of p-values 
between GA, ILS, MA and all strategies in Table III show 
explicitly that GA, ILS and MA are significantly different 
from strategies other than itself. Coupled with observations 
attained previously, it can be concluded that the superiority 
of MA over ILS is indeed noteworthy and non-trivial. 
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Fig. 10: IPS against (a) AllC, (b) AllD, (c) TFT and (d) itself 

Normalized average generation score Box plot 
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Fig. 11: (a) Normalized average generation score and (b) Box plot 

TABLE III
P-VALUES OF KS-TEST BETWEEN STRATEGIES

MA GA ILS ALLC ALLD TFT
MA 1 1.7973e-014 1.7973e-014 1.7973e-014 1.7973e-014 1.7973e-014 
GA 1.7973e-014 1 1.7973e-014 1.7973e-014 1.7973e-014 1.7973e-014 
ILS 1.7973e-014 1.7973e-014 1 1.7973e-014 1.7973e-014 1.7973e-014 

B. Performance in different environments 

Case study 2 is devised to show that MA leads to better 
performance and adaptation on a broader perspective. The 
adaptability of GA, ILS and MA is assessed with different 
mixture of opponent strategies. Pavlov, RAND, TFTT and 
STFT are added to the existing base strategies in various 
combinations via four different test sets. All plots in various 
test sets show that the dynamism in learning still allows MA 
and ILS to maintain substantial lead over all strategies. Fig. 
12(a) also justifies that the proposed cognitive learning 
scheme indeed offers better performance than Pavlov. Onset 
of large-scale fluctuation suggests that GA’s ability to score 
well against all opponents is compromised in the midst of 
trying to cope in the complex environment. Nonetheless, the 
score uniformity in GA suggests that evolution is important 
to smooth out disparity across players’ scores in different 

environments. Fig. 12(b)-(d) show that the dynamic double 
loop learning allows ILS and MA to eventually work 
towards mutual cooperation with reciprocals and defection 
against exploiters. The inability to cooperate or defect fully 
in the midst of balancing multiple tradeoffs and goals only 
allows GA to perform reasonably well but not surpass other 
strategies significantly. In the extreme case, GA actually 
evolves into RAND by virtue of the complexity in Fig. 
12(d). This indicates that it is practically impossible to 
define any fixed pattern of game play since each opponent 
differs in nature according to its own right. The KS-test 
results of all test sets also demonstrate that MA’s payoff is 
distinctly the best among all strategies, including its close 
competitor ILS. Synergy between evolution and learning has 
enabled MA to sustain its lead consistently throughout all 
test sets. On the other hand, ILS, in the absence of 
evolutionary pressure, suffers large differential in payoffs, 
which inevitably brings down the population performance. 

Normalized average generation score Box plot 
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Fig. 12: (a) Normalized average generation score and (b) Box plot  

C. Performance in dynamic environments 

The final case study evaluates the performance of MA 
and GA in a dynamically changing environment. With the 
opponent changing probabilistically to AllC, AllD or TFT 
after every 50-100 generations, it is justified from the large 
score margin in Fig. 13 that MA performs better than GA. 
The increase in MA’s score comes at the expense of the 
opponent, indicating MA’s ability to exploit the opponent 
when GA failed to do so. While GA converges to a strategy 
that is generally cooperative, MA is able to go one step 
further to reap the temptation payoffs in the case of AllC 
and to fend against AllD as well. Collectively, this leads to 
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an improvement in the generation score and affirms the good 
adaptive ability of MA over GA.  

To bring the discussion further, results from 2 distinct 
runs are used to assess the IPS over 600 generations. Fig. 
14(a) shows discernible details that GA is plagued by large 
scale fluctuation when the opponent transits from AllC or 
AllD to TFT. Initially, GA has been so accustomed to defect 
against AllC and AllD that it is able to track the ideal IPS 
with negligible error. Nonetheless, sudden transition to TFT 
radically changes defection from good to totally bad. 
Convergence of GA towards defection and the limited 
variation ability to adopt cooperative traits prevents GA 
from breaking out of the instability zone. This instability is 
however not experienced by MA in Fig. 14(b) because 
during instances when the opponent transits between two 
radically different types, players will experience a sudden 
increase in F counts and this triggers reclassification when 
the threshold of change is reached. MA players are thus able 
to break out of their old mental model and reshape their 
perception of the opponent. Compared to random mutation, 
learning makes strategy revision more explicit. As long as a 
portion of the population has perceived the right best 
response, information is propagated to other members via 
evolution and traits are adjusted almost immediately. 
Fluctuation is minimized and perfect tracking of the ideal 
IPS is achieved. With more transitional phases in Fig. 15, 
results also show that MA adapts well to the changing nature 
of opponents on a consistent basis. 

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

Generation

A
ve

ra
ge

 G
en

er
at

io
n

S
co

re
 (

N
or

m
al

iz
ed

)

OPP Gen
S

GA Gen
S

0 100 200 300 400 500 600
0

0.5

1
1.5

2

2.5

3
3.5

Generation

A
ve

ra
ge

 G
en

er
at

io
n

S
co

re
 (

N
or

m
al

iz
ed

)

OPP Gen
S

MA Gen
S

(a) (b) 
Fig. 13: Normalized average generation score for (a) GA and (b) MA 
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Fig. 14: IPS of (a) GA and (b) MA against ideal player in run 2 
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Fig. 15: IPS of (a) GA and (b) MA against ideal player in run 8 

Finally, randomness of the environment is enhanced by 
allowing opponents to morph into AllC, AllD, TFT, Pavlov, 
STFT, TFTT or RAND over the same frequency of change 
as introduced previously. It is apparent from Fig. 16 that 
GA’s score has dropped marginally while the opponent 

score has improved significantly. Difficulty of the opponent 
has risen considerably, given the fact that it can now resume 
a more probabilistic nature apart from deterministic ones. 
Decline in score is due to the inability to track the desired 
best responses with certainty. Nonetheless, MA players are 
still able to secure a large score advantage by virtue of the 
already huge score margin as attained previously.  

Results from 2 separate runs are again used to compare 
the IPS over 600 generations. Since it is difficult to set an 
ideal IPS for probabilistic players, IPS of GA and MA are 
instead superimposed on the same plot for easy comparison. 
Fig. 17 shows that GA is still plagued by large and small 
scale fluctuation. Large scale ones occur when the opponent 
behaves as TFT while small ones subsist when the opponent 
assumes a probabilistic outlook. A probable explanation is 
because the evolved GA strategy has evolved to play well 
against opponents in the initial phases of evolution. 
Subsequently, the low mutation rate limits GA’s ability to 
create perfectly cooperative individuals from defect-oriented 
genotypes e.g. large number of bit flips from 0s to 1s is 
needed. Mixed strategies with mild chances of cooperation 
are formed instead. Alternate cooperation and defection 
against TFT predominantly sets the fluctuation profile into 
play. Fluctuation occurs with a lesser extent for probabilistic 
opponents since it is harder to coin whether GA players will 
perform better if they were cooperative or defect-oriented, 
unlike the case of TFT where it is clear that cooperation will 
yield the best payoffs. Comparatively, with a common 
framework of double loop learning, fluctuation is milder for 
MA players. Radical change in learning direction during 
outer loop learning, coupled with the high frequency of bit 
revision during inner loop learning, is able to introduce 
substantial change of strategy traits even if MA players have 
converged to be significantly similar under evolution. 
Learning allows players to adopt strategies that are vastly 
different from those used against previous opponents and 
thus reduces the performance dependency on the nature of 
opponents. This allows the entire population to adapt and 
adjust smoothly when the opponent transits between two 
different strategy types. Though MA population suffers a 
small degree of fluctuation against probabilistic opponents, 
this is notably less compared to the GA population.  
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Fig. 16: Normalized average generation score for (a) GA and (b) MA 
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VII. CONCLUSION

In this paper, the performance and adaptability of 
evolutionary, learning and memetic strategies are assessed in 
various IPD settings. A memetic adaptation framework, 
MA, is developed to harness the synergy between evolution 
and learning. In this framework, learning assists 
evolutionary strategies to acquire good strategy traits and to 
react spontaneously to changes in the environment while 
evolution provides an avenue to minimize performance 
disparity between learning players via knowledge exchange. 
A cognitive double-loop incremental learning scheme, ILS, 
which encompasses a perception component, probabilistic 
revision of strategies and a double-loop learning mechanism 
is also proposed and incorporated into the evolutionary 
process to correct some flaws in Pavlovian Learning and to 
model IPD players more realistically. 

Comparative study conducted for different environment 
setups showed that players adapted by MA are superior in 
performance to GA and ILS. GA suffers from instability and 
deteriorating performance when multiple opponent strategy 
types are introduced while ILS suffers from diverse learning 
experiences among individuals, leading to large score 
variance which undermines the performance of the entire 
population. On the contrary, the combination of incremental 
learning and evolution in MA allows players to balance the 
task of exploration and exploitation of different strategies 
while preserving the trend of dominance consistently 
throughout different settings. It is gathered that both learning 
and evolution are essential elements in the IPD game. Their 
concurrent interaction is crucial for the formation of good 
strategies that adapt and thrive well in complex, dynamic 
environments. Future work can include simulation of other 
strategies, formulating better learning schemes, applying 
memetic learning to noisy settings, devising complex payoff 
matrices and conducting evolutionary tournaments. A 
thorough study of more complicated situations like the 
above-mentioned would be useful in giving greater insight 
to the intricacies and complexity involved in the IPD game. 
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