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Abstract— The notion of constructing a metric of the degree
to which a player enjoys a given game has been presented
previously. In this paper, we attempt to construct such metric
models of children’s ‘fun’ when playing the Bug Smasher game
on the Playware platform. First, a set of numerical features
derived from a child’s interaction with the Playware hardware
is presented. Then the Sequential Forward Selection and the n-
Best feature selection algorithms are employed together with a
function approximator based on an artificial neural network to
construct feature sets and function that model the child’s notion
of ‘fun’ for this game. Performance of the model is evaluated
by the degree to which the preferences predicted by the model
match those expressed by the children in a survey experiment.

The results show that an effective model can be constructed
using these techniques and that the Sequential Forward Selec-
tion method performs better in this task than n-Best. The model
reveals differing preferences for game parameters between
children who react fast to game events and those who react
slowly. The limitations and the use of the methodology as an
effective adaptive mechanism to entertainment augmentation
are discussed.

Keywords: Entertainment modeling, intelligent interactive
playgrounds, neuro-evolution.

I. INTRODUCTION

Cognitive modeling projects significant potential within
digital interactive entertainment systems (such as computer
games). Being able to model the level of user (gamer)
engagement or satisfaction in real-time can provide insights
to the appropriate AI methodology for enhancing the quality
of playing experience [1] and furthermore be used to adjust
digital entertainment environments according to individual
user preferences.

The ‘Playware’ [2] intelligent interactive physical play-
ground attempts to combine the advantages of both computer
games and traditional playgrounds. On one hand, computer
games keep children (among others) engaged more than other
digital media because of their high degree of interactivity and
the freedom for the child to develop and play a role within
a fantasy world which is created during play [3]. On the
other hand, traditional playgrounds offer the advantage of
physical play, which furthermore improves the child’s health
condition, augment children’s ability to engage in social and
fantasy play [4], [5] and provide the freedom for children
to generate their own rules for their own developed games.
Experiments with children playing Playware games will be
presented in this paper.

Following from the reported successful entertainment cap-
ture in physical interactive games [6], a further endeavor

on capturing player satisfaction during gameplay (i.e. en-
tertainment modeling) through more extensive methodology
and experiments with children players is presented in this
paper. As in [6], this is achieved by following the theoretical
principles of Malone’s intrinsic qualitative factors for engag-
ing gameplay [3], namely challenge, curiosity and fantasy.
Quantitative measures for challenge and curiosity are used
from previous studies on quantitative reported entertainment
capture [6] in the Playware playground.

A mapping between the aforementioned factors (game
features) and the children’s notion of ‘fun’ or entertainment
(the two terms are used interchangeably herein) is derived
using a game developed on the Playware playground as
a test-bed. Each player’s individual characteristics (player
features), such as response time and foot pressure, are
recorded during each during game. Feedforward artificial
neural networks (ANNs) are trained using artificial evolution
on this gameplay experimental data to construct a function
mapping the examined game features and player features
to the reported player satisfaction preferences. The n-Best
(nBest) and the Sequential Forward Selection (SFS) [7]
feature selection methods are used to extract the minimal
subset of game and player features to be included in the
ANN model.

Single feature experiments demonstrate that the average
response time of children interacting with the playground is
the feature that yields the best (highest-performing) mapping
between game and player features and children’s expressed
preferences on entertainment. This result is consistent with
the reported impact (i.e. significant linear correlation) of the
average response time on reported entertainment in Playware
games [6]. When more than one feature is examined, the SFS
method generates feature subsets performing better overall
than the subsets generated by the nBest method. More specif-
ically, it finds a set of four features that yields the highest
performance in matching opponent’s and player’s behavior
to children’s perceived entertainment. Player features include
the player’s average response time with the playground, the
variance of the pressure force instances on the playground
and the number of interactions with the playground. The
game feature included in the most accurate model of player
satisfaction obtained is the level of curiosity generated by
the game opponents. Analysis of the obtained model shows
that different children (classified by their response time) have
different requirements on the levels of the curiosity factor for
the game to be judged entertaining.
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The work reported here is novel in that it isolates game
and player features attributed to reported entertainment in
physically demanding games and demonstrates a way of con-
structing a subjective model (a predictor of user preferences)
of reported entertainment grounded in statistical features
obtained from child-game interaction. The limitations of the
proposed methodology and its extensibility to other genres
of digital entertainment are discussed. Its generic use as
an efficient baseline for capturing reported entertainment in
physical interactive games in real-time is also outlined.

II. ENTERTAINMENT CAPTURE

There have been several psychological studies to identify
what is ‘fun’ in a game and what engages people playing
computer games. Theoretical approaches include Malone’s
principles of intrinsic qualitative factors for engaging game
play [3], namely challenge, curiosity and fantasy as well as
the well-known concepts of the theory of flow [8] incorpo-
rated in computer games as a model for evaluating player
enjoyment, namely GameFlow [9]. A comprehensive review
of the literature on qualitative approaches for modeling
player enjoyment demonstrates a tendency of overlapping
with Malone’s and Csikszentmihalyi’s foundational concepts.
Many of these approaches are based on Lazzaro’s ‘fun’ clus-
tering which uses four entertainment factors based on facial
expressions and data obtained from game surveys on players
[10]: hard fun, easy fun, altered states and socialization.
Koster’s [11] theory of fun, which is primarily inspired by
Lazzaro’s four factors, defines ‘fun’ as the act of mastering
the game mentally. An alternative approach to fun capture is
presented in [12] where fun is composed of three dimensions:
endurability, engagement and expectations.

Vorderer et al. [13] present a quantitative analysis of the
impact of competition (i.e. challenge) on entertainment and
identify challenge as the most important determinant of the
enjoyment perceived by video game (Tomb Raider) players.
They claim that a successful completion of a task generates
sympathetic arousal, especially when the challenge of the
task matches the player’s abilities. According to Choi et al.
[14], challenge and satisfaction appear as independent pro-
cesses, in contrast to the views of Malone [3] and Yannakakis
et al. [6] where satisfaction derives from the appropriate level
of challenge and other game components.

Iida’s work on metrics of entertainment in board games
was the first attempt in the area of quantitative ‘fun’ mod-
eling. He introduced a general metric of entertainment for
variants of chess games depending on average game length
and possible moves [15]. Other work in the field of quanti-
tative entertainment capture is based on the hypothesis that
the player-opponent interaction — rather than the audiovisual
features, the context or the genre of the game — is the
property that contributes the majority of the quality features
of entertainment in a computer game [16]. Based on this
fundamental assumption, a metric for measuring the real time
entertainment value of predator/prey games was designed,
and established as efficient and reliable by validation against
human judgement [17], [18]. Further studies by Yannakakis

and Hallam [19] have shown that Artificial Neural Networks
(ANN) and fuzzy neural networks can extract a better estima-
tor of player satisfaction than a human-designed one, given
appropriate estimators of the challenge and curiosity of the
game and data on human players’ preferences.

A step further to entertainment capture is towards games
of richer human-computer interaction and affect recognizers
which are able to identify correlations between physiological
signals and the human notion of entertainment. Experiments
by Yannakakis et al. [20] have already shown a signifi-
cant effect of children’s average heart rate on children’s
reported entertainment in action games played in interactive
physical playgrounds. Moreover, Rani et al. [21] propose a
methodology for detecting anxiety level of the player and
appropriately adjusting the level of challenge (e.g. speed) in
the game of ‘Pong’. Physiological state (hear-rate, galvanic
skin response) prediction models have also been proposed
for potential entertainment augmentation in computer games
[22]. Similar work in adjusting a game’s difficulty include
endeavors through reinforcement learning [23], genetic algo-
rithms [24], probabilistic models [25] and dynamic scripting
[26]. However, the aforementioned attempts are based on the
assumption that challenge is the only factor that contributes
to enjoyable gaming experiences while results reported have
not been cross-verified by human players.

Following the theoretical principles reported from Malone
[3], Koster [11] and Yannakakis [18], this paper is primarily
focused on the contributions of game opponents’ behavior to
the real-time entertainment value of the game. We argue that
among the three dimensions of ‘fun’ (endurability, engage-
ment, expectations) defined in [12] it is only engagement
that is affected by the opponent since both endurability and
expectations are based primarily on the game design per
se. Given a successful interactive game design that yields
high expectations and endurability, we only focus on the
level of engagement that generates ‘fun’ (entertainment).
However, instead of being based on empirical observations
of children’s entertainment, the work presented here uses
quantitative measures for Malone’s entertainment factors of
challenge and curiosity (as introduced in [6]). On that basis, a
mapping between the two aforementioned factors, children’s
play recorded features and their expressed preferences is
constructed using experimental data obtained from a survey
experiment with children playing with Playware playground
(see Section III).

III. PLAYWARE PLAYGROUND

The Playware [2] prototype playground consists of several
building blocks (i.e. tangible tiles) that allow for the game
designer (e.g. the child) to develop a significant number
of different games within the same platform. The overall
technological concept of Playware is based on embodied AI
[27] where intelligent physical identities (tiles) incorporate
processing power, communication, input and output, focus-
ing on the role of the morphology-intelligence interplay in
developing game platforms. See [6], [2] for further details
on Playware playground.
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Fig. 1. A child playing the Bug-Smasher game.

A. Bug-Smasher Game

The test-bed game used for the experiments presented
here is called ‘Bug-Smasher’. The game is developed on a
6 x 6 square tile topology (see Fig. 1). During the game,
different ‘bugs’ (colored lights) appear on the game surface
and disappear sequentially after a short period of time by
turning a tile’s light on and off respectively. A bug’s position
is picked randomly according to the predefined level of the
bugs’ spatial diversity. Spatial diversity is measured by the
entropy (H) of the bug-visited tiles.

The child’s goal is to smash as many bugs as possible by
stepping on the lighted tiles. Bug-smasher has been used as
a test-bed in previous work; further details can been found
in [6], [20] and [28].

IV. EXPERIMENTAL DATA

The Bug-Smasher game has been used to acquire data of
children’s judgement on entertainment. Three states (‘Low’,
‘Average’, and ‘High’) are used for each of the two enter-
tainment factors of challenge and curiosity summing up to 9
different game states. The fantasy factor is not investigated
through this survey since the focus of this paper is on the
opponent (bug) contribution to entertainment. See [28] for
fantasy’s positive impact on entertainment in Bug-Smasher.

We consider (as in [6]) the speed (S — in sec−1) that
the bugs appear and disappear from the game and their
spatial diversity (H) on the game’s plane as appropriate
measures to represent the level of challenge and the level of
curiosity (unpredictability) respectively [3] during gameplay.
The former provides a notion for a goal whose attainment
is uncertain and the latter effectively portrays a notion of
unpredictability in the subsequent events of the game —
the higher the H value the higher the bug appearance
unpredictability and therefore the higher the curiosity.

Seventy two normal-weighted (based on their body mass
index) children whose age covered a range between 8 and
10 years participated in an experiment. By experimental
design, each subject plays against two of the selected game

states in all permutations of pairs. The number of children
participated in the experiment is derived from 2 · C9

2 = 72
being twice the required number of all combinations of 2
out of 9 game states. In this experiment, each subject plays
two games (A and B) for 90 seconds each; the two games
differ in the levels of one or both entertainment factors of
challenge and curiosity. Each time a pair of games is finished,
the child is asked whether the first game was more ‘fun’
(see [12] for terminology used in experiments with children)
than the second game i.e. whether A or B generated a more
entertaining game. The 2-alternative forced choice (2-AFC)
approach is used since it offers several advantages for a
subjective entertainment capture: it minimizes the assump-
tions made about children’s notions of “fun” and allows a
fair comparison between the answers of different children.
Since our focus is to construct a model relating reported
entertainment preferences to game and player features that
generalises over the reports of different children 2-AFC is
preferred to a ranking approach [29]. Note also that, children
are not interviewed but are asked to fill in a questionnaire,
minimizing the interviewing effects reported in [29].

The child’s answers are used to guide the training of
an ANN model of reported entertainment (see Section V).
In order to minimize any potential order effects we let
each subject play the aforementioned games in the inverse
order too. Statistical analysis of the subjects’ answers shows
that no significant order effect occurs (rc = −0.102, p-
value= 0.224). The reported insignificant order effect also,
in part, demonstrate that effects such as a child’s possible
preference for the very first game played and the interplay
between reported entertainment and familiarity with the game
are statistically insignificant. The total number of game pairs
played equals 144; however, data from 137 game pairs are
used due to hardware (communication ports) failure during
seven games.

Since, with the current implementation of the Playware
platform, the only input to the system is through a Force
Sensing Resistor (FSR) sensor, quantitative individual play-
ing characteristics can only be based on three measurable
features: the state (position and LEDs color) of a pressed tile,
the time that a tile-press event took place and the pressure
force on a pressed tile. Pressed tile events are recorded in
real-time and a selection of nine personalized (individual)
player features are calculated for each child. These include
the number of smashed bugs over the total number of bugs
appeared P (i.e. child’s score); the number of interactions
with the game environment NI ; the average and the variance
of the response times (E{rt}, σ2{rt}); the average and the
variance of the distance between the pressed tile and the bugs
appearing on the game (E{Db}, σ2{Db}); the average and
the variance of the pressure recorded from the FSR sensor
E{p}, σ2{p}); and the entropy of the tiles that the child
visited HC .

A. Statistical Analysis

The aim of the statistical analysis presented here is to iden-
tify statistically significant correlations between children’s
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notion of entertainment and any of the aforementioned indi-
vidual player features and/or the quantitative entertainment
factors (game features): challenge and curiosity. For this pur-
pose the following null hypothesis is formed: The correlation
between observed children judgement of entertainment and
recorded player and game features, as far as the different
game states are concerned, is a result of randomness. The test
statistic is obtained through c(−→z ) =

∑Ns

i=1{zi/Ns}, where
Ns is the total number of game pairs played (Ns = 137)
and zi = 1, if the subject chooses as the more entertaining
game the one with the larger value of the examined feature
and zi = −1, if the subject chooses the other game in the
game pair i.

The obtained significant — significance equals 5%, high
significance equals 1% in this paper — effects of the selected
features on reported entertainment are: NI (c(−→z ) = 0.1678,
p-value = 0.0298), E{rt} (c(−→z ) = −0.2262, p-value =
0.0050), σ2{rt} (c(−→z ) = −0.1532, p-value = 0.0435),
E{p} (c(−→z ) = 0.1678, p-value = 0.0298) and σ2{p}
(c(−→z ) = 0.1970 p-value = 0.0129). These effects appear
to be commonsensical since the Bug-Smasher game belongs
to the genre of action physical games where the level of
engagement of the user tends to have a significant effect on
the number of interactions and the reaction time of the player
[30]. In Bug-Smasher, the more a child is entertained the
more (NI ) and harder (E{p}) she/he tends to interact with
the game platform. This behavior generates lower average
response time (E{rt}) and higher average pressure on the
tiles (E{p}). Moreover, it appears that the variability of the
aforementioned individual characteristics (σ2{rt}, σ2{p})
does have an effect on reported entertainment too. The
obtained highly significant effect of E{rt} is consistent with
previous experiments on the Bug-Smasher game [6].

On the other hand it appears that reported entertainment
cannot be objectively modeled according to the levels of
challenge (c(−→z ) = 0.0, p-value = 0.5382) and curiosity
(c(−→z ) = 0.0909, p-value = 0.1448) since there exists a
level of personalization which has to be included as a factor
in entertainment modeling. The feature selection procedure
presented in Section VI allows the designer to choose specific
individual player features that can successfully map between
children’s behavior, game features and reported entertain-
ment.

V. EVOLVING ANN
The proposed approach to entertainment modeling is based

on selecting a minimal subset (see Section VI) of game
and player features and constructing a quantitative user
model that predicts the children’s reported entertainment
preferences. For this purpose, a fully-connected feedforward
ANN for learning the relation between the selected game and
player features (ANN inputs) and the “entertainment value”
(ANN output) of a game is presented. The assumption is that
the entertainment value y of a given game is an unknown
function of player and game features which the ANN will
learn. The children’s expressed preferences constrain but do
not specify the values of y for individual games but we

assume that the child’s expressed preferences are consistent.
Since there are no prescribed target outputs for the learning
problem (i.e. no differentiable output error function), ANN
training algorithms such as back-propagation are inapplica-
ble. Learning is achieved through artificial evolution [31] and
is described in Section V-A.

The sigmoid function is employed at each neuron, the
connection weights take values from -5 to 5 to match with
input values normalized into [0, 1] before they are entered
into the ANN. In an attempt to minimize the controller’s size,
it was determined that a single hidden-layered ANN architec-
ture, containing 20 hidden neurons, is capable of successfully
obtaining solutions of high fitness. This was determined by
considering the performance of ANN architectures with up to
two hidden layers containing up to 30 hidden neurons each.

A. Genetic Algorithm

A generational genetic algorithm (GA) [32] is imple-
mented, which uses a fitness function that measures the
difference between the children’s reported preferences of
entertainment and the model output value y. The ANN is
itself evolved. In the algorithm presented here, the ANN
topology is fixed and the GA chromosome is a vector of
ANN connection weights. The algorithm is described briefly
in this section since it has previously presented in [6].

A population of N (N is 1000 in this paper) networks is
initialized randomly. Initial real values that lie within [-5,
5] for their connection weights are picked randomly from
a uniform distribution. Then, at each generation: (a) Each
member (neural network) of the population is given two ni-
tuple (where ni is the number of game or player features)
values one for opponent/game A and one for opponent/game
B for each pair j of games played in the survey experiment
(Ns = 137) — see [6] for further details. In each case it
returns two output values, representing the level of ‘fun’
in each game, namely yj,A and yj,B . (b) Each member
i of the population is evaluated via a fitness function fi

that promotes the matching between ANN outputs (y) and
children’s reported answers (see [6]). A high fitness results
if the ranking of yj,A and yj,B matches the expressed
preference of the children for each game pair j. (c) A fitness-
proportional selection method is used. (d) Montana and Davis
[33] crossover and Gaussian mutation are applied (see [6]).

The algorithm is terminated when either a good solution is
found (f > 0.95fmax; where fmax is the maximum fitness)
or a large number of generations g is completed (g = 10000).

VI. FEATURE SELECTION

There are two different feature selection schemes applied
and compared in this paper. Given both the individual player
features and the game features presented in section IV the n
Best Features Selection (nBest) and the Sequential Forward
Selection (SFS) methods are applied. The nBest selection
method picks the n individually best features (with regards
to a performance function) from the feature subset.The SFS
method, by contrast, is a bottom-up search procedure where
one feature is added at a time to the current feature set.
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The feature to be added is selected from the subset of the
remaining features so that the new feature set generates
the maximum value of the performance function over all
candidate features for addition [7].

The SFS method is used since it has been successfully
applied in a wide variety of feature selection problems yield-
ing high performance values with minimal feature subsets:
see [34], for example, for further discussion and application
to the classification problem of process identification in
resistance spot welding. On the other hand, the nBest method
is used for comparative purposes being the most popular
technique for feature selection. Features selected by each
method constitute the input vector of the evolving ANN.
The feature selection procedure followed here evaluates the
usability of each one of the features available and obtains the
minimal feature subset that performs best in the classification
between games reported as entertaining and games reported
as non-entertaining (see Section V).

To evaluate the performance of each feature subset the
available data is randomly divided into training and val-
idation data sets consisting of 2/3 and 1/3 of the data
respectively. The performance of an ANN model is measured
through the average classification accuracy of the ANN
in three independent runs using the leave-one-out cross-
validation technique on the training and validation data sets.
Since we are interested in the minimal feature subset that
yields the highest performance we terminate the feature
selection procedure (nBest or SFS) when an added feature
yields equal or lower validation performance than the per-
formance obtained without it.

A. Single Feature Performance

The experiment presented here tests the validation per-
formance of single individual player and game features.
Given the selected feature (ANN input), ANNs are evolved
by following the approach presented in Section V-A and
evaluated through the leave-one-out cross-validation method
(see Section VI). The training and validation performance
of each of the individual player and game features are
presented in Table I where features are ranked by validation
performance.

The impact of the recorded response times (rt) is demon-
strated in Table I; both the average and the variance of
these values generate the highest cross-validation perfor-
mances (see also [6] for the impact of E{rt} on reported
entertainment in the Bug-Smasher game). Results obtained
show the incapability of a single feature to successfully
model reported entertainment in Bug-Smasher. Given that
the best performed feature (E{rt}) yields a cross-validation
performance of 62.22% it becomes apparent that more fea-
tures are required to effectively model children’s notion of
entertainment. Moreover, it appears that results presented
in Table I are consistent with the correlates of reported
entertainment presented in Section IV-A. In fact, three out
of four best features of Table I yield statistically significant
effects on reported entertainment (see Section IV-A).

TABLE I
TRAINING AND VALIDATION PERFORMANCE OF INDIVIDUAL PLAYER

AND GAME FEATURES. E{rt} AND σ2{rt} IS THE AVERAGE AND THE

VARIANCE OF THE RESPONSE TIME RESPECTIVELY; σ2{Db} IS THE

VARIANCE OF THE DISTANCES BETWEEN THE PRESSED TILE AND THE

BUGS APPEARING ON THE GAME; NI IS THE TOTAL NUMBER OF

INTERACTIONS; H IS THE QUANTITATIVE MEANS FOR THE GAME

CONTROLLABLE FEATURE OF CURIOSITY; E{p} IS THE AVERAGE

PRESSURE FORCE RECORDED FROM THE FSR SENSOR; HC IS THE

ENTROPY OF THE TILES THAT THE CHILD VISITED; σ2{p} IS THE

VARIANCE OF THE PRESSURE FORCES RECORDED FROM THE FSR
SENSOR; E{Db} IS THE AVERAGE DISTANCE BETWEEN THE PRESSED

TILE AND THE BUGS APPEARING ON THE GAME; S IS THE

QUANTITATIVE MEANS FOR THE GAME CONTROLLABLE FEATURE OF

CHALLENGE AND P IS THE TOTAL NUMBER OF SMASHED BUGS.

Feature Training Performance (%) Validation Performance (%)

E{rt} 69.47 62.22

σ2{rt} 67.91 61.11

σ2{Db} 68.54 56.67

NI 66.36 56.67

H 66.04 55.56

E{p} 64.17 53.33

HC 59.81 53.33

σ2{p} 66.73 51.11

E{Db} 65.42. 51.11

S 43.93 46.67

P 65.42 43.33

B. More Features: Selection Method Comparison

This section presents experiments for finding the minimal
feature subset that yields the highest classification perfor-
mance in matching the ANNs output with children’s reported
answers on entertainment in unknown data (validation data
set). For this purpose, the two feature selection methods
described in Section VI are applied and compared. The initial
subset (ANN input) for both methods includes the feature
that performs best in the single feature experiment: E{rt}.
ANNs are evolved by following the approach presented in
Section V-A. The data is partitioned in training (2/3 of total
data) and validation (1/3 of total data) portions and the
leave-one-out cross-validation technique is used to obtain the
classification performance of the ANNs.

Table II presents the above-mentioned comparative study
between nBest and SFS. SFS appears to generate feature
subsets that yield higher validation performance than fea-
ture subsets generated by nBest. The best cross-validation
performance (77.77%; average of 70%, 73.33% and 90%)
is achieved when the ANN input contains E{rt}, σ2{p},
H and NI . The binomial-distributed probability of this
performance to occur at random is 0.0019 demonstrating sta-
tistical significance and providing evidence for this solution’s
robustness. Note that, challenge is absent from the obtained
feature subset indicating that the spatial diversity of the
bugs (curiosity) has a higher impact on children’s reported
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entertainment than the speed of the game (challenge).
Difficulties in obtaining higher classification accuracy are

found in experimental noise in both the recorded features
and the children’s answers on self reports. Even though
comparative fun analysis is a reliable and established method
for capturing reported entertainment in computer [18] and
mixed-reality [6] games, it generates a significant amount
of uncertainty in subjects’ reported answers. Uncertainty
appears when the two games played are not significantly dif-
ferent with regards to the entertainment value they generate
for the player and therefore cannot be distinguished.

TABLE II
VALIDATION PERFORMANCE OF INDIVIDUAL PLAYER AND GAME

FEATURES AND THEIR RESPECTIVE BINOMIAL DISTRIBUTED P-VALUES.
E{rt} AND σ2{rt} IS THE AVERAGE AND THE VARIANCE OF THE

RESPONSE TIME RESPECTIVELY; σ2{p} IS THE VARIANCE OF THE

PRESSURE FORCES RECORDED FROM THE FSR SENSOR; σ2{Db} IS THE

VARIANCE OF THE DISTANCES BETWEEN THE PRESSED TILE AND THE

BUGS APPEARING ON THE GAME; H IS THE QUANTITATIVE METRIC OF

CURIOSITY AND NI IS THE TOTAL NUMBER OF INTERACTIONS.

Features nBest pnBest Features SFS pSFS

E{rt} 62.22 0.1270 E{rt} 62.22 0.1270

σ2{rt} 58.88 0.2179 σ2{p} 67.77 0.0400

σ2{Db} 44.44 0.2551 H 68.88 0.0307

NI 46.67 0.4277 NI 77.77 0.0019
H 52.22 0.4759 σ2{rt} 63.33 0.1002

For reasons of space, only the feature subset {E{rt},
σ2{p}, NI , H} with the highest validation performance
(90.00%, in one of the three learning attempts) is presented
in this paper. Note that, the qualitative features of the surfaces
plotted in Fig. 2 appeared in all three different learning
attempts of the cross-validation procedure for this feature
subset.

Fig. 2 illustrates the trained ANN output with regards to
σ2{p} and NI for six points in the (E{rt}, H) search space.
These values constitute the combinations of two E{rt} states
(0 and 1 named Fast and Slow respectively), and the three
states used for H (0.33, 0.66 and 1 named Low, Average
and High respectively). The above presentation helps towards
interpreting the mapping between σ2{p}, NI and reported
entertainment according to how fast children react with the
playground and the level of curiosity.

As seen from Fig. 2, fast children (E{rt} = 0) appear to
enjoy average and high curiosity values except when high NI

values are combined with low values of σ2{p} (see Fig. 2(e)
and Fig. 2(f)). Fast children’s preference for low levels of
curiosity is met only when their behavior combines low
values of NI and high values of σ2{p} (see Fig. 2(d)). On
the other hand, slow children appear to prefer low curiosity
levels except when the NI value they generate is low and
combined with either very high or very low σ2{p} values
(see Fig. 2(a)). Average curiosity levels are preferred by slow
children in many fewer cases; that is when their NI value
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(a) E{rt} = 1.0 (Slow), H = 0.33 (Low)
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(b) E{rt} = 1.0 (Slow), H = 0.66 (Average)
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(c) E{rt} = 1.0 (Slow), H = 1.0 (High)
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(d) E{rt} = 0.0 (Fast), H = 0.33 (Low)
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(e) E{rt} = 0.0 (Fast), H = 0.66 (Average)
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(f) E{rt} = 0.0 (Fast), H = 1.0 (High)

Fig. 2. The trained ANN (f = 95.85) that yields the highest validation
performance (90.00%): ANN output y (entertainment value) with regards to
σ2{p} and NI for all six combinations of two E{rt} states (Slow, Fast)
and three H states (Low, Average, High).

is low and σ2{p} value is high or when their NI value is
high and σ2{p} value is low (see Fig. 2(b)). Finally, high
curiosity is rarely preferred by slow children and this occurs
only when their NI values are low independently of their
σ2{p} value (Fig. 2(c)).

The obtained effects of curiosity in reported entertain-
ment are consistent, in part, with previous studies on the
Bug-Smasher game [6]. In that study the relation between
challenge, curiosity and average response time was reported
through a lower scale experiment of 28 children. It was
found that fast children liked games independently of cu-
riosity whereas children reacting slowly with the playground
preferred games of low curiosity levels.

VII. CONCLUSIONS & DISCUSSION

This paper introduced feature selection methods for ob-
taining minimal feature subsets that successfully model chil-
dren’s notion of entertainment through the Bug-Smasher
game played on the Playware playground. More specifically,
the nBest and the SFS feature selection methods were applied
and compared demonstrating the ability of SFS in finding
feature subsets that yield higher validation performance.

The fittest ANN solution presented derives from a feature
subset of four features: {E{rt}, σ2{p}, NI , H}. Experi-

ments with additional features (inputs of the ANN) could
not improve the model’s validation performance. This model
manages to map between children’s average response time,
the variance of their force pressure on the tiles, the number of
interactions with the playground, the game feature of curios-
ity and the children’s notion of gameplay entertainment with
a cross-validation accuracy of 77.77% (binomial-distributed
p-value = 0.0019). The main reason for not obtaining a higher
cross-validation performance appears to be the experimental
noise existent in the self-reports designed for comparative
entertainment (fun) analysis. Moreover, the learned mapping
between {E{rt}, σ2{p}, NI , H} and children’s notion of en-
tertainment showed that, in general, fast responding children
show a preference for high curiosity games whereas slow
responding children tend to prefer games of low curiosity.
The obtained results are consistent with previous work on
the impact of the factors of challenge and curiosity and the
average response time in Playware games [6].

The main limitation of the proposed approach lies within
the complexity of entertainment as a mental state. The
generated y value cannot be regarded as a mental affective
state approximator but as a correlate of expressed children’s
preferences on entertainment. However, this correlate serves
the purposes of this work well as far as entertainment
modeling is concerned. In addition, Malone’s entertainment
factor of fantasy is omitted from the results in this paper since
the focus is on the contribution of the opponent behaviors to
the generation of entertainment; however, fantasy’s positive
impact on reported entertainment has been reported in a
previous study [28].

Even though the comparative fun protocol (2-AFC) used
serves well the purpose of this work, a 4-alternative forced
choice (4-AFC) approach is considered for future experiment
protocol design. Children will be able to choose among the
following alternatives: one game is more “fun” than the other
(2-AFC), both games are equally “fun”, neither game was
“fun”. This protocol would provide more information for the
machine learning process and eliminate the noise generated
by 2-AFC.

The entertainment modeling approach presented here
demonstrates generality over the majority of action games
created with Playware since the quantitative measures of
challenge and curiosity are estimated through the generic
features of speed and spatial diversity of the opponent on
the game’s surface. Thus, these or similar measures could
be used to adjust player satisfaction in any future game
development on the Playware tiles. However, each game
demonstrates individual entertainment features that might
need to be extracted and added on the proposed measures
and therefore, more games of the same and/or other genres
need to be tested to cross-validate this hypothesis.

The proposed approach can be used for adaptation of
the game opponents (e.g. bugs) according to the player’s
individual playing style, based on reaction time, recorded
pressure on tiles and amount of interactions, and as far as
the curiosity factor of entertainment is concerned. Given the
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real-time average response time of a child, the variance of
his/her pressure forces on the tiles and the number of times
he/she interacts with the environment, the partial derivative
of the model output ϑy/ϑH can be used to appropriately
adjust the level of entropy (curiosity) of the opponent for
the entertainment value y to be augmented. Such a direction
constitutes an example of future work on Playware and
computer games. The level of engagement or motivation of
the user/player/gamer of such interactive environments may
be identified and augmented by the use of the presented
approaches.
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