
Test Machine Scheduling and Optimization for z/OS

Matthew Kaplan Tracy Kimbrel Kevin Mckenzie Richard Prewitt

Maxim Sviridenko Clay Williams Cemal Yilmaz

Abstract

We describe a system for solving a complex schedul-
ing problem faced by software product test organiza-
tions. Software testers need time on test machines
with specific features and configurations to perform
the test tasks assigned to them. There is a lim-
ited number of machines with any given configura-
tion, and this makes the machines scarce resources.
Deadlines are always short. Thus, testers must re-
serve time on machines. Managing a schedule for a
large test organization is a difficult task to perform
manually. Requirements change frequently, making
the task even more onerous, yet scheduling is done
by hand in most teams. Our scheduling system is
able to take into account the many and varied con-
straints and preferences that a team of human users
inevitably has.

1 Introduction

Software testing in large enterprise development cen-
ters is complex and expensive. Large test organiza-
tions, responsible for simultaneously testing numer-
ous products, face serious difficulty scheduling testing
tasks in a way that satisfies test configuration require-
ments, resource limitations imposed by system avail-
ability, and capacity of physical test resources. Inef-
ficient scheduling of test runs can lead to underuti-
lization of both human and physical resources, which
can, in turn, lead to disruption of the software de-
velopment cycle, premature termination of the test
phase, and/or deferred delivery dates. Costs associ-
ated with poor utilization of test resources can easily
run into the millions of dollars for large software sys-
tems. Scheduling test activities by hand is tedious
and more importantly, it is likely to result in low-

M. Kaplan, T. Kimbrel, M. Sviridenko, C. Williams
and C. Yilmaz are with the IBM T.J. Watson Re-
search Center, Yorktown Heights, NY, 10598, USA (email:
{mmk,kimbrel,sviri,clayw,cyilmaz}@us.ibm.com)

K. McKenzie and R. Prewitt are with the IBM Systems &
Technology Group, Poughkeepsie, NY, 12601, USA. (email:
{kmckenzi,prewitt}@us.ibm.com)

quality schedules. Yet the problem of automating
scheduling to optimize resource utilization has re-
ceived little attention relative to other parts of the
testing process.

This paper describes a system that provides an au-
tomated solution to obtaining quality schedules. The
system, which is being developed for IBM’s enter-
prise operating system test center, collects informa-
tion from test-shop personnel about test resource fea-
tures and availability, testing tasks, and tester prefer-
ences and constraints. The system reformulates this
testing information as a system of constraints, from
which an optimizing scheduling engine computes ef-
ficient schedules during requested time periods. In
order to be readily available for use by testers and
test administrators, and to maintain an extendable
bank of test information, the system is implemented
as a J2EE-based web application, with information
stored in a relational database.

Our solution was motivated by the complexity of
effectively scheduling tests for z/OS development.
z/OS is the operating system for IBM’s eServer
zSeries mainframe computer line. z/OS is a very
large and complex software system, providing a com-
prehensive and diverse application execution environ-
ment. It must meet highly demanding performance
requirements while remaining up-to-date with respect
to the latest open and industry software technologies
and standards. Above all, z/OS must meet stringent
reliability requirements. More thorough descriptions
of the z/OS can be found at [8].

In the remainder of this section we briefly describe
the data-collection features of the system and enu-
merate requirements of the various participants in
the scheduling problem. We also briefly touch on
related research. Section 2 describes the mathemati-
cal model used to formalize the scheduling problem,
which serves as input to the optimizing scheduling
algorithm presented in Section 3. We report on the
system’s performance in Section 4, followed by direc-
tions for future work in Section 5.

27

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

1.1 Resources, Tasks, Testers, and

Administrators

We define a testing problem in terms of a set of test-
ing tasks, a set of computational resources on which
tests can be run, and a set of testers who have spe-
cific responsibilities for running the testing tasks. In
addition there are test administrators, who are in-
volved in decision-making regarding the definition of
the above-mentioned entities and control of the test-
generation process.

These elements have the following properties:

• A resource, or test system, is characterized by its
configuration, and an availability schedule. Con-
figuration information could include number and
types of processors, memory and network infor-
mation, operating system version, installed soft-
ware, and location. For our present purposes,
though, it is sufficient to consider a configuration
as defined in relation to tasks’ constraints; ad-
ministrators and/or testers specify, for each task,
which resources are compatible with it. A unique
resource identifier with associated descriptive in-
formation serves this purpose. Machines may
be shut down for maintenance, upgrades, etc..
Thus, availability schedules can be specified to
define when machines are available for use in
testing.

• A task, also known as a test session, is charac-
terized by: its length, i.e., the number of con-
tiguous test shifts required for the task to com-
plete; a description of which task resources are
suitable for test operation, specified as a set
of resource identifiers; and by a group of task

testers, charged with running the task, including
a specified owner who has primary responsibility
for the task. Most tasks are considered disrup-

tive, meaning that they require dedicated use of
the test resource. Non-disruptive tests are able
to run simultaneously with other non-disruptive
tasks on a resource. Each task is designated nor-

mal or priority ; priority tasks are to be sched-
uled in preference over non-priority tasks. Fi-
nally, some tasks may depend on the prior com-
pletion of other tasks; each task has a (possibly
empty) list of predecessor tasks.

• Good utilization of resources often demands that
testing be performed at inconvenient hours. Al-
though as a matter of necessity testers’ schedules
are driven by resource availability and testing de-
mands, there are limits on what can reasonably
be expected of test employees. Limiting policies

applying to all testers are imposed on consec-
utive shift assignments. In addition, testers can
specify scheduling preferences that relate to their
lives outside the workplace. Preferences can be
positive, i.e., preferred times for being assigned
testing tasks; or negative, i.e., times that the
tester would like to block off from testing assign-
ments.

Preferences are not binding and, while the sched-
uler attempts to assign testers to their preferred
slots, this cannot be guaranteed. To encourage
responsible use of negative preferences, quotas
can be established to limit the number of neg-
ative preferences that may be assigned to each
tester during a given period.

1.2 User Interface

Users of this system operate in large, potentially dis-
tributed test organizations. Administrators need to
monitor test assignments and testers need to pro-
vide their preferences in a uniform fashion even when
distance and differing time zones can limit personal
contact. Furthermore, the scheduling task inher-
ently takes individual inputs from the various par-
ties (administrators and testers), so it make sense
that these parties be able to provide their inputs
independently. These requirements of distribution,
asynchronicity, and user autonomy, with all informa-
tion collected into a single repository for scheduler
use, are well served by an enterprise web application.
Our pilot implementation is constructed using J2EE
(Java 2 Platform, Enterprise Edition) with informa-
tion stored in a relational database.

Users identify and authenticate themselves via an
enterprise-wide login ID/password repository. Based
on their login IDs, users are recognized as adminis-
trators or testers and appropriate sets of web pages
and navigation paths are made available. Testers are
able to work with their own preferences, while admin-
istrators can inspect information input by individual
testers, selectively accept requested preferences, and
initiate scheduling.

Tester input is relatively simple, consisting of a
tabbed panel for specifying two classes of tester-
relevant input: the tester’s profile containing, e.g.,
e-mail address, phone number and office location; and
the tester’s time preferences. The administration in-
terface is somewhat more complex, organized in a
two-dimensional tabbed structure with primary tabs
selecting scheduling entity (resource, task, tester,
scheduling period) appearing vertically, while role-
dependent horizontal tabs divide the information into
coherent subsets, such as profile information and pref-

28

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

erences in the case of testers. For each role, the up-
per part of the page contains a selection panel. Thus,
after selecting Resources from the vertical primary
tab panel, the resources panel is displayed, contain-
ing a selection list of available tasks on top, and a
horizontally-tabbed editing panel below. Administra-
tors select a role, then a role instance and information
category, to access the edit panel for the desired in-
formation. Using this interface, administrators can
define new tasks, testers, resources and scheduling
periods, as well as examine and/or modify their prop-
erties.

To generate a schedule, an administrator selects
a scheduling period, optionally selects tester pref-
erences to accept or reject for this scheduling run,
and then initiates scheduling. The system generates
the schedule by selecting information relevant to the
scheduling period from the repository and passing it
as input to our optimizing scheduler, which is de-
scribed in later sections and is the main focus of this
paper. The resulting schedule assigns tasks, with as-
sociated testers, to resources at designated dates and
shifts. This schedule is displayed for inspection by the
administrator, and can be distributed electronically
to relevant testers.

All scheduling data is stored in the repository, mak-
ing it a simple matter to regenerate a previous sched-
ule if the need arises.

1.3 Related Literature

An introduction to the z/OS operating system and
the hardware architecture can be found in [7]. Back-
ground on z/OS testing (challenges, methodology)
can be found in [8].

General background on scheduling models and
methodologies can be found in [4]. Perhaps the most
closely related previously studied problem is known
as timetabling [6]. In a typical application, class-
rooms must be allocated to classes, satisfying (non)-
concurrency constraints similar to our “sliding win-
dow” constraints. However, classrooms (which cor-
respond to our machines) are allocated exclusively;
i.e., there are no classes corresponding to our “non-
disruptive” jobs.

More sophisticated local search techniques than
our simple method have been applied to timetabling
and similar problems. These include simulated an-

nealing, tabu search, and genetic algorithms; see, for
example, [1].

We omit a more detailed discussion of related prob-
lems and methods in this extended abstract.

2 Mathematical Model

Summarizing the requirements for our scheduler, we
have the following constraints and preferences.

• Testing must be completed by a set date in order
to meet product deadlines.

• Some tasks may be more critical than others;
for instance, a development organization may be
waiting on the results.

• Different machines have different features (num-
ber of processors, memory capacity, network
communication capabilities, etc.), so a workload
may require a member of a certain subset of ma-
chines.

• Some disruptive test workloads require exclusive
access to a machine; others may share machines
with other workloads.

• There may be precedence constraints between
tasks.

• Machines may be unavailable for scheduled
maintenance activities.

• A task may require (a specific set of) several peo-
ple to be present. Tasks requiring the same per-
son or persons to be present must be separated
in time; i.e, testers cannot work round-the-clock.

• Testers have preferred times at which they would
like to be able to do their testing (typically the
same for most testers: daytime shifts Monday-
Friday, of course). Testers also have times at
which they do not want to do testing (usually
overnight and weekend shifts).

We make these requirements concrete and model our
scheduling problem formally as described in the fol-
lowing subsections.

2.1 Enviroment

We are given a set of test tasks (jobs) J =
{J1, . . . , Jn}, a set of machines M = {M1, . . . ,Mm}
on which the jobs from the set J will be processed,
and a set of testers U = {U1, . . . , Uk}.

Each job Jj ∈ J has associated processing time
pj and a set of possible machines {M1, . . . ,Mmj

} on
which job Jj can be processed.

Let F be a forest representing precedence con-
straints for the set of jobs J , i.e., J is the vertex
set of F and each directed edge (i, j) represents the
constraint that job Jj cannot start before job Ji fin-
ishes its processing.

29

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Each job is either disruptive or non-disruptive.
Non-disruptive jobs can be processed on the same
machine at the same time but each disruptive job re-
quires the exclusive access to a machine. Let D be
the set of disruptive jobs and J \ D be the set of
non-disruptive jobs.

Every job Jj has a priority PRj ∈ {0, 1}, i.e. job
Jj is either regular (PRj = 0) or it has high priority
(PRj = 1) and must be scheduled even if it decreases
the quality of the schedule for regular jobs.

There is a set of testers Sj = {Uj1 . . . , Ujs
} as-

sociated with each job. The primary constraint as-
sociated with testers is the so-called sliding window

constraint : for every pair of jobs (tests) Jj and Ji

such that Sj ∩ Si 6= ∅, Ji must be scheduled to start
at least B time periods after the completion of Jj or
vice versa. In other words, each tester must have B

periods off between tests. In our initial application,
schedule granularity is such that a unit of time cor-
responds to an 8-hour shift, and B is 2, or 16 hours.

It will be convenient to define the undirected graph
G = (J , E) of incompatibility constraints. We de-
fine the edge set E as follows: if Sj ∩ Si 6= ∅ then
(Jj , Ji) ∈ E. The graph G is a convenient way to
encode the sliding window constraint. If there is an
edge (Jj , Ji) ∈ E, then the processing of jobs Jj and
Jk must be separated by at least B time periods.

Finally, each machine Mi, i = 1, . . . ,m has a set
of non-availability time intervals associated with it.
During these intervals the machine Mi cannot be used
for processing of any task.

2.2 Positive and Negative Preferences

For every job we have a set of positive preferences: pe-
riods in which the associated team of testers responsi-
ble for it would like the job to be processed. For each
job we are given a set of time windows [t1, t1 + pj],
[t2, t2 +pj], . . . , [tq, tq +pj]. Analogously, for each job
we have a set of negative preferences, times at which
team would not like the job to be processed. For each
job we are given a set of time windows [t′

1
, t′

1
+ pj],

[t′
2
, t′

2
+ pj], . . . , [t

′

w, t′w + pj]. All remaining time in-
tervals are considered neutral.

Ideally we would like to assign each job to be pro-
cessed in a time interval preferred by the team of
testers. Unfortunately, we may have conflicts of pref-
erences for different tester teams. Our goal is to as-
sign jobs to machines to maximize the number of pos-
itive preferences that are satisfied and minimize the
number of negative preferences that are violated.

Additionally we would like our schedule to be envy-
free or fair in some sense. We do not want a schedule
in which some testers get all their positive preferences

satisfied and some get all their negative preferences
violated. There are many natural ways to incorporate
such fairness constraints into the objective function.
We handle this as described in the next section.

2.3 Objective Function

Since we use the local search technique for finding
the schedule, we do not need to define the value of
a schedule explicitly. Given two schedules we need
only to define which schedule is better. This is a very
general mechanism that can be tailored as desired by
different organizations with different needs. In this
section we describe the notion of “better than” used
in our present application.

Some constraints are absolute; thus we never con-
sider schedules that violate them. They are

• job/machine compatibility;

• precedence;

• “sliding window” constraints as described previ-
ously;

• exclusivity for disruptive jobs.

Other constraints are softer: a low-priority job may
be cancelled if necessary, and user preferences can be
relaxed.

Our first goal is to schedule as many priority jobs
as possible, and then to schedule as many regular jobs
as possible. Next we try to minimize non-preferred
time slot assignments in a fair way. We first try to
bring all testers down to a bound on maximum num-
ber of bad assignments. Next we try to minimize the
number of testers with this number of bad assign-
ments, and finally to minimize the total number of
bad assignments. Similarly, we try to raise the min-
imum number of good assignments over all testers,
then minimize the number of testers at this mini-
mum level, and finally to maximize the total number
of good assignments. However, if any tester receives
all good time slots, we do not consider that tester
when determining the minimum number of good slots
for any tester. A single tester with no jobs, for in-
stance, would cause this value to be 0 and render it
meaningless.

For each job, one tester is designated as the “main
tester” for the job. For purposes of determining
schedule fairness as described later, we count only
jobs for which a tester is the main tester when we
try to even out the numbers of good and bad as-
signments across the testers. Let bad(u) and good(u)
denote the numbers of time slots assigned to jobs for
which u is the main tester and u has negative and

30

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

positive preferences, respectively. However, if all of a
tester’s assignments are preferred, then good(u) = ∞
for that tester.

Thus we compare two schedules based on the fol-
lowing measures, in this order. The first one for which
one schedule is better than another determines the
winner.

1. Number of priority jobs scheduled. (Larger is
better.)

2. Number of non-priority jobs scheduled. (Larger
is better.)

3. Maximum number maxbad of negative-
preference slots assigned to any tester. (Smaller
is better.)

4. Number of testers u such that bad(u) = maxbad.
(Smaller is better.)

5. Total number of negative-preference assign-
ments. (Smaller is better.)

6. Minimum number mingood of preferred slots as-
signed to any tester that does not get all jobs
assigned to preferred slots. (Larger is better.)

7. Number of testers u such that good(u) =
mingood. (Smaller is better.)

8. Total number of preferred assignments. (Larger
is better.)

2.4 Practical Simplifications

The problem defined above is very difficult in its
full generality. It includes many classical machine
scheduling problems that are intractable both from
practical and theoretical viewpoints. In particu-
lar our problem includes job shop scheduling, paral-
lel machine scheduling with precedence constraints,
graph coloring, and other problems. Fortunately,
practical instances of our problem are much easier
than worst case.

The first simplification is that most jobs have unit
processing time; even when testers have long jobs that
might require several time periods, they prefer to split
the jobs into manageable pieces of eight hours each
(one time period). On the other hand, sometimes
we have jobs that run for days, but in real life such
jobs can be scheduled during weekends, and thus they
tend to have preferred time periods that are undesir-
able for most other teams of testers.

The second simplification is that real life prece-
dence constraints are very easy. In the test instances

we obtained from the customer there were no prece-
dence relations between jobs. The customer expects
testers to use this feature in the future, but the ex-
pectation is that simple chain precedence constraints
are enough to model all real life instances.

Another simplification is that the incompatibility
graph G has a simple structure. In most cases there
is only one tester associated with a job. This means
that graph G consists mainly of disjoint cliques. Some
jobs have more than one tester assigned, but these
jobs tend to be jobs with long processing times and
appear rarely in the real life instances.

Finally, the system in general is underutilized. The
total job processing time is less than half of the num-
ber of machines multiplied by the planning horizon
length.

Our scheduler is capable of producing a schedule on
arbitrary problem instances, but we would not expect
it to perform well on the hardest ones. These sim-
plifications make the problem tractable in practice.
We describe below in section 4 our scheduler’s per-
formance on both a real problem instance obtained
from our customer and on a more challenging instance
generated randomly.

3 Algorithm

As was mentioned before, we use the Local Search
Framework to design an algorithm for finding an ap-
proximate solution to our problem.

3.1 Finding a Feasible Solution

On the first step we are trying to find a feasible sched-
ule of jobs within the planning horizon H. The pri-
mary goal of the first step is to find a schedule that
assigns as many jobs as possible without considering
more sophisticated goals such as fairness.

More precisely, we fix two nonnegative integers
NegBound and PosBound, where NegBound is an
upper bound on the total number of negative pref-
erences for each tester that may be violated and
PosBound is a lower bound on the number of posi-
tive preferences for each tester that must be satisfied.
If at some point a tester gets more than PosBound

of its preferences satisfied the algorithm treats all re-
maining positive preferences as neutral. By using the
greedy algorithm for fixed NegBound and PosBound

and enumerating over possible values for these num-
bers we find the minimal NegBound for which the
algorithm finds the feasible solution. For this value of
NegBound we find the maximal value of PosBound

such that each tester gets at least PosBound of pos-
itive preferences satisfied.

31

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

We now describe the greedy algorithm for fixed
NegBound and PosBound. The greedy algorithm
builds the schedule time period by time period. Let
τ ∈ 1, . . . ,H be the current time period. First the al-
gorithm finds the set of unscheduled jobs with either
no predecessors or all predecessors already completed
by the time τ . Let J1 be this set of jobs.

Next we further decrease the set of jobs J1 to in-
corporate the sliding window constraint. For each job
Jj ∈ J1 if there is another job Ji that completes at
time τ − 1 or τ − 2 and there is an edge (Ji, Jj) ∈ E

then we delete the job Jj from J1. Let J2 ⊆ J1 be
the set of remaining jobs. Now we can schedule an
arbitrary subset of jobs from J2 during the time pe-
riod τ without violating the precedence and sliding
window constraints.

On the next step we associate a reward Rjs for
starting job Jj ∈ J2 on machine Ms at time τ .

1. If machine Ms is incompatible with job Js, i.e.
Js cannot be processed on Ms, then Rjs = 0.

2. If there is a disruptive job running on machine
Ms at time τ (which must have starting time
< τ) then Rjs = 0 for all jobs Jj ∈ J2.

3. If there is a non-disruptive job running on ma-
chine Ms at time τ then Rjs = 0 for all disruptive
jobs Jj ∈ J2.

4. If the main tester associated with job Jj has ≥
NegBound negative preferences violated by the
current schedule and the time period τ belongs
to the set of negative preferences for Jj , then
Rjs = 0 for all machines Ms.

5. If the interval [τ, τ + pj] overlaps with machine
non-availability intervals then then Rjs = 0 for
such machines Ms.

6. Otherwise, the reward Rjs defined as follows.
Let h(j) be the height of the job in the prece-
dence constraint forest F , i.e. the length of the
longest path F from Jj to a leaf (a job that does
not have any successors in the precedence rela-
tion).

(a) Rjs = 100(1 + 10PRj)(1 + h(j)) if time pe-
riod τ belongs to the set of positive prefer-
ences for Jj and the main tester has at most
PosBound of positive preferences satisfied
by the current schedule.

(b) Rjs = 10(1 + 10PRj)(1 + h(j)) if time pe-
riod τ is neutral for for Jj or the main tester
has at least PosBound of its positive pref-
erences satisfied by the current schedule.

(c) Rjs = (1+10PRj)(1+h(j)) if time period τ

is a negative preference for Jj and the total
number of negative preferences violated by
the current schedule for the main tester is
at most NegBound.

Note that rewards are defined somewhat arbitrar-
ily and we could choose many other functions. The
important property of the reward function is that it
is monotone with respect to user preferences.

After computing the reward for each job and ma-
chine combination, we solve the weighted maximum
matching problem (also known as the assignment

problem; see, for example, Ajuha et al. [2]) of pair-
ing jobs with machines by a straightforward greedy
algorithm. A job may be started on a machine only
if it has a positive reward. After matching as many
jobs as we can, we move on to the next time step.

3.2 Local Improvements

Our Local Search algorithm utilizes two types of local
improvements.

1. If it is possible to add a currently unscheduled
job to the schedule without moving other jobs
and the new schedule is better than the old
one, then do so. (Note that with our particu-
lar better-than relation, the new schedule will
always be better, but for other relations it might
not be).

2. Take any two jobs j and k such that j is already
scheduled; k may or may not be scheduled. Start
k at the starting time of j in the old schedule and
on the same machine, and start j in an arbitrary
feasible location. If any such move is feasible and
improves the schedule, accept it.

We search for the second type of improvement only
if the first type cannot improve the current schedule.

4 Experimental performance

We made no attempt to minimize the running time
of our scheduler. Running times on all instances de-
scribed below were modest and we will not discuss
them further. Instead, we focus on schedule quality.

In our z/OS application, test schedules are deter-
mined on a weekly basis, and time slots are 8-hour
shifts. Thus our time horizon is 21 time slots. In
simple test cases obtained from our users, there were
4 machines and 17 testers typically with a total of
21 jobs. Our scheduler found ideal schedules in these
cases: all testers received preferred slots for all their

32

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

jobs. These instances corresponded to slow weeks
in our users’ environment. In the future, we expect
much more demanding problems.

We generated more challenging test cases ran-
domly, and we report here some of these. We as-
sumed the same 21-shift work week as before, but in-
creased the number of machines to 10. We randomly
chose down times for machines during overnight and
weekend shifts. For each of these 11 time units,
each machine was designated unavailable with prob-
ability 0.25. Thus the expected number of available
(machine, time) slots is 10 ·21−10 ·11 ·0.25 = 182.5.

We assigned 1 to 4 randomly chosen testers to each
job, with probability 0.8, 0.1, 0.05, and 0.05, respec-
tively; i.e., with probability 0.8 a job has 1 tester,
etc. Each job is disruptive with probability 0.9. Each
job has length equal to 1 shift with probability 0.85,
2 with probability 0.1, and 3 with probability 0.05.
Each job is assigned between 0 and 3 predecessor
jobs among those with lower indices (thus ensuring
acyclicity). The probabilities, from 0 predecessors to
3, are 0.8, 0.1, 0.05, and 0.05. Each job/machine
pair is compatible with probability 0.8. Finally, for
each job, each of the 5 weekday shifts is designated
“good” (i.e., a positive preference) with probability
0.9, and each of the 11 overnight and weekend shifts
is designated “bad” with probability 0.95.

We describe the scheduler’s performance at two
points as the number of jobs increases. Around 75
jobs, all jobs are scheduled but it becomes difficult
to avoid some bad assignments. Thus the interesting
measures of performance, according to our objective
criteria, are the numbers of good and bad assignments
and the degree to which these are spread among users
for fairness. Table 1 gives these values on three ran-
domly generated instances. The last column, labeled
“U.B. good,” represents an upper bound on the num-
ber of preferred assignments based on the number of
weekday slots (50) and the number of non-disruptive
jobs; i.e., if there are n non-disruptive jobs, at most
50+n−1 jobs can be placed in preferred slots. (There
may be tighter bounds in a given instance due to
other constraints.)

From the table we see that the scheduler performs
well regarding fairness, i.e., even distribution of pre-
ferred and non-preferred assignments, with one ex-
ception. In the case of an unlucky user receiving
2 non-preferred assignments, it turns out that this
user’s 5 jobs with a total of 8 time units cannot be
scheduled with fewer bad assignments, given the slid-
ing window constraints. We also see that the sched-
uler is always within 2 of the maximum possible num-
ber of preferred assignments.

We found that with 140 jobs or fewer, the algo-

max bad #max bad total bad

1 3 3

2 1 3

0 75 0

min good #min good total good U.B. good

0 3 53 54

0 1 50 52

1 17 54 56

Table 1: Scheduling performance on random in-
stances of 75 jobs each

rithm scheduled nearly all jobs. Most of the ex-
ceptions could not be scheduled even in an optimal
schedule due to sliding window constraints; i.e., some
unlucky tester was assigned too many jobs. With 160
or more jobs, nearly all available machine/time slots
were filled, so there is no point in adding more jobs.
Thus we focus on instances with 150 jobs (and 75
testers).

Since the first scheduling criterion is the number of
priority jobs scheduled, we examined the behavior of
the algorithm as the expected number of priority jobs
is increased from 0 to 80%. (Note 100% is in effect
no different from 0.) We present the results of three
test cases in Table 2 below.

We make the following observations and conclu-
sions from the experimental data about the primary
and secondary scheduling criteria. Recall that these
are the numbers of priority jobs scheduled and all jobs
scheduled, respectively. For lack of space we omit dis-
cussion of the other criteria.

• In all cases with 60% or fewer priority jobs, all
priority jobs are scheduled and thus the schedule
is optimal with respect to our first criterion.

• Machine utilization is in general very high, and
never less than 90%. Simultaneously, the num-
ber of priority jobs scheduled is always more than
97%, and the number of all jobs scheduled is
always more than 95%. We believe that these
values are quite good with respect to our users’
needs.

• When all priority jobs are scheduled, as we go
from left to right across the table, we would ex-
pect the total number of jobs scheduled to be
non-increasing. This is because a solution to an
instance on the right is valid for one to its left
and is optimal with respect to priority jobs in
this less-constrained instance. In some cases the
more-constrained instance has more jobs sched-
uled than the less-constrained instance. This

33

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

priority jobs 0% 20% 40% 60% 80%

jobs scheduled 146 147 147 145 146
pr. jobs scheduled n/a 45/45 73/73 94/95 114/115
utilization 92.7% 91.0% 91.5% 91.5% 92.7%

all jobs scheduled 143 145 144 143 144
pr. jobs scheduled n/a 35/35 53/53 82/82 117/120
utilization 90.7% 95.1% 96.7% 96.7% 92.9%

all jobs scheduled 149 148 147 147 145
pr. jobs scheduled n/a 34/34 59/59 92/92 117/119
utilization 94.3% 93.1% 93.1% 92.5% 91.4%

Table 2: Scheduling performance on random instances of 150 jobs each

means that the algorithm sometimes gets stuck
in a local maximum. The worst difference is 2.

• These random instances should be much harder
than our users’ real instances. The algorithm’s
good performance on these instances leads us to
project excellent performance on real instances
of this practical scheduling problem.

5 Conclusion and further work

We described the model and the algorithm we used to
solve a real-life test scheduling problem for the z/OS
test organization. The next phase of this project is
to generalize model and the algorithm to handle even
more complicated scheduling problems. In particular:

1. Some jobs could require more than one machine
at the same time. Such problems are usually
referred as scheduling with multiprocessor tasks
in the optimization literature.

2. Currently we schedule test teams project-by-
project and assume that resources do not overlap
across projects. This assumption is not necessar-
ily true in real-life. Some machines are used by
teams from different projects. The main problem
in handling this generalization is that the prob-
lem size increases dramatically and the running
time of our algorithms could become an issue.

3. Continual Optimization [3] is an approach to en-
able a system to react to events in real life in an
online fashion. To handle such events we need
to design an algorithm that can reschedule some
jobs or insert new ones without modifying the
rest of the schedule.

4. Currently we schedule on a weekly basis. In-
creasing the planning horizon could increase bot-

tleneck resource utilization and improve plan-
ning, but on the other hand it would increase
the running time of our algorithm.

5. The added complexity of these extensions may
require different and larger local search neigh-
borhoods. We may need to employ more sophis-
ticated search methods, such as those mentioned
in Section 1.3.

References

[1] Local Search in Combinatorial Optimization. Edited
by E. Aarts and J. Lenstra. Reprint of the 1997 orig-
inal [Wiley, Chichester; MR1458630]. Princeton Uni-
versity Press, Princeton, NJ, 2003.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows,

Prentice Hall, Englewood Cliffs, NJ.

[3] O. Gunluk O., T. Kimbrel, T., L. Ladanyi, B.
Schieber, and G. Sorkin. Vehicle Routing for Sedan
Service. Transportation Science, Vol. 40, No. 3, Au-
gust 2006, pp. 331-326.

[4] Handbook of scheduling: Algorithms, Models, and

Performance Analysis. Edited by Joseph Y.-T. Le-
ung. Chapman & Hall/CRC Computer and Infor-
mation Science Series. Chapman & Hall/CRC, Boca
Raton, FL, 2004.

[5] S. Loveland, G. Miller, R. Prewitt and M. Shan-
non, Testing z/OS: The premier operating system for
IBM’s zSeries server, IBM Systems Journal, Volume
41, Number 1, 2002, pp. 55-73.

[6] S. Petrovic and E. Burke. University Timetabling.
In Handbook of scheduling. Algorithms, models, and

Performance Analysis, edited by Joseph Y.-T. Le-
ung. Chapman & Hall/CRC Computer and Infor-
mation Science Series. Chapman & Hall/CRC, Boca
Raton, FL, 2004, chap. 45.

[7] ABCs of z/OS System Programming, IBM Redbooks,
2006. Available at http://www.redbooks.ibm.com

[8] www.ibm.com/servers/s390/os390/

34

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

