


Abstract- This paper considers a single machine scheduling
problem in which n jobs are to be processed and a machine setup
time is required when the machine switches jobs from one to the
other. All jobs have a common due date that has been
predetermined using the median of the set of sequenced jobs. The
objective is to find an optimal sequence of the set of n jobs to
minimize the sum of the job’s setups and the cost of tardy or
early jobs related to the common due date. Dominance
properties are developed according to the sequence swapping of
two neighborhood jobs. These dominance properties are further
embedded in the Simple Genetic Algorithm to improve the
efficiency and effectiveness of the global searching procedure.
Analytical results in benchmark problems are presented and
computational algorithms are developed.

I. INTRODUCTION

Single-machine scheduling problems are one of the
well-known problems that have been studied by many
researchers. The results not only provide the insights into the
single machine problem but also for more complicated
environment.
The problem considered in this paper is scheduling a set of n
jobs {1,2,….,n} on a single machine that is capable of
processing only one job at a time without preemption. All jobs
are available at time zero, and a job j requires processing
time jP . Machine setup time ijS is included as sequence

dependent. That is, the amount of machine setup required if
job i proceeds j may be different from when job j

precedes i . The objective is to complete all the jobs as close as
possible to a large, common due date d . To accomplish this
objective, the summation of earliness and tardiness is
minimized. The earliness of job j is defined as

 max 0,j jE d C  and its tardiness as  max 0,j jT C d  ,

where jC is the completion time of job j. Earliness and

tardiness penalties for job j are weighted equally. The
objective function is given by

Manuscript received October 30, 2006.
Shih-Shin Chen., is with Department of Industrial Engineering and
Management, Yuan-Ze University. (e-mail: s939506@mail.yzu.edu.tw).
Pei-Chann Chang is with the Department of information Management,
Yuan-Ze University. 135 Yuan-Dong Rd., Taoyuan 32026, Taiwan, R.O.C
(+886 03 4638800#2503 e-mail: iepchang@saturn.yzu.edu.tw).
Shih-Min Hsiung,is with Department of Industrial Engineering and
Management, Yuan-Ze University (e-mail: s945409@mail.yzu.edu.tw).
Chin-Yuan Fan is with Department of Industrial Engineering and
Management, Yuan-Ze University (e-mail: s948906@mail.yzu.edu.tw)

 
1 1

min
n n

j j j
j j

Z E T d C
 

     (1)

The inclusion of both earliness and tardiness costs in the
objective function is compatible with the philosophy of
just-in-time production, which emphasizes producing goods
only when they are needed. The early cost may represent the
cost of completing a product early, the deterioration cost for
perishable goods or a holding (stock) cost for finished goods.
The tardy cost can represent rush shipping costs, lost sales and
loss of goodwill. Some specific examples of production
settings with these characteristics are provided by Ow and
Morton[15], Wu et al.[21], Su and Chang [17] and Su and
Chang[18]. The set of jobs is assumed to be ready for
processing at the beginning which is a characteristic of the
deterministic problem. As a generalization of weighted
tardiness scheduling, the problem is strongly NP-hard.

The single-machine E/T problem was first introduced by
Kanet[13]. Since then many researchers worked on various
extensions of the problem. Baker and Scudder [5] published a
comprehensive state-of-the-art review for different versions of
the E/T problem. Kanet[13] examined the E/T problem with
equal penalties and unrestricted common due date. A problem
is considered unrestricted when the due date is large enough
not to constrain the scheduling process. He introduced a
polynomial-time algorithm to solve the problem optimally.
Hall [10] extendedKanet’s work and developed an algorithm
that a set of optimal solutions for the problem based on some
optimality conditions. Hall and Posner [12] solved the
weighted version of the problem with no setup times.
Azizoglu and Webster [3] introduced a B&B approach to
solve the problem with setup times; however, they assumed
that setup times are not sequence dependent. Other
researchers worked on the same problem but with a restricted
(small) due date (see for example Bagchi et al.[4], Szwarc
[19], Szwarc [20], Hall et al. [10], Alidaee and Dragan [1],
and Mondal and Sen [14]. However, none of the previous
papers considered sequence-dependent setup times.

In most of the E/T literature, it has been assumed that no
setup time is required. In many realistic situations, however,
setup times are needed and are sequence-dependent. In
general, scheduling problems with sequence-dependent setup
times are similar to the traveling salesman problem (TSP),
which is NP-hard [9]. Coleman [7] presented a 0/1 mixed
integer programming model (MIP) for the single-machine E/T
problem with job-dependent penalties, distinct due dates, and
sequence-dependent setup times. Coleman’s work was one of

A Genetic Algorithm with Dominance Properties for Single Machine
Scheduling Problems

Shih-Shin Chen, Pei-Chann Chang, Shih-Min Hsiung, Chin-Yuan Fan.

98

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

the few papers that dealt with the E/T problem with
sequence-dependent setup times, but only for a small number
of jobs. Chen [6]addressed the E/T problem with batch
sequence-dependent setup times. He showed that the problem
with unequal penalties is NP-hard even when there are only
two batches of jobs and two due dates that are unrestrictively
large. Allahverdi et al. [2] reviewed the scheduling literature
that involved setup times. In their review, very few papers
addressed the E/T problem with setup times, and no papers
ever tackled the problem as addressed in this research with the
development of dominance properties. As a result, this paper
fills the gape of proving some dominance properties for E/T
problem with setup times in a single machine scheduling
problem.

II. PROBLEM STATEMENTS

We consider the sequence-dependent scheduling problem
with a common due date. The common due date model
corresponds; for instance, to an assembly system in which the
components of the product should be ready at the same time,
or to a shop where several jobs constitute a single customer's
order (Gordon et al., [10]). It is shown in Cheng [7] that an
optimal sequence in which the b-th job is completed at the
due-date. The value of b is given by:








odd.isnif1)/2(n
even,isnifn/2

b (2)

The optimal common due-date (k*) is the sum of processing
times of jobs in the first b position of the sequence; i.e.,

bCk* (3)

As soon as the common due date is assigned, see Fig. 1,
jobs can be classified into two different groups that are either
early or tardy. The early group is from position 1 to position b
and the late group is from position b+1 to position n
respectively. The following notations are employed in the
latter section.
[j]: job in position j
A: the set of tardy jobs
B: the set of early jobs

[][1]j jAP  ：Adjusted processing time for the job in position

[j +1] preceded by the job in position [j]
b : the median position

[][1]j jAP  is actually the processing time of job j+1 with setup

time. Thus, [][1]j jAP  is equal to [j][j 1] j 1PS   .

Our objective is to minimize the earliness/tardiness cost.
The formulation is given below.

Minimize
1

()
n

i i
i

Z E T TT TE


    (4)

where
TT: Total tardiness for a job sequence
TE: Total earliness for a job sequence

n-1

[j][j 1]
j b

TT (n-j)AP




 (5)

b

[j-1][j]
j 1

TE (j-1)AP


 (6)

[1] [b-2] [b-1] [b] [b+1] [b+2] [b+3] [n]

[0][1]AP [b-3][b-2]AP [b-2][b-1]AP [b-1][b]AP [b][b+1]AP
[b+1][b+2]AP [b+2][b+3]AP [n-1][n]AP

d

.....

Fig. 1. A figure demonstrates the total earliness and total tardiness in our problem

III. DERIVATIONS OF DOMINANCE PROPERTIES

We consider the problem of scheduling n jobs in a single
machine and derive the dominance properties (necessary
conditions) of the optimal schedule. In this section, we use the
objective function ()(Z) for total absolute deviation of
schedule  . To derive the dominance properties for
schedule, we consider interchanging two adjacent jobs and
nonadjacent jobs within the schedule, and prove some
intermediate results. The adjacent interchange and
nonadjacent interchange of job i and job j are depicted at
figure 2(a) and 2(b) respectively.

x

y

.....i-1 i j j+1.....

i-1 j i j+1.....

2G1G 3G

(a) Adjacent interchange

x

y

.....i-1 i i+1 j-1.....

i-1 j i+1 j-1.....

j j+1

i j+1

.....

.....

1G 2G 3G

(b) Nonadjacent interchange
Fig 2. The two types of interchanging method

1 2 3()xZ G G G    (7)

1 2 3()yZ G G G     (8)

where
1G : the objective value of X for job(s) before job i

2G : the objective value of X for jobs between job i
and job j

3G : the objective value of X for job(s) after job j

2
G : the objective value of Y for jobs between job j

99

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

and job i

3
G: the objective value of Y for job(s) after job i

We will compare schedules X with schedule Y by
finding the conditions under which X is better than Y . It
does not matter for adjacent interchange or nonadjacent
interchange, for a given schedule jobs i and job j will be in
one of the following status:
1. Job i is early and job j is early
2. Job i is early and job j is on-time
3. Job i is on-time and job j is tardy
4. Job i is tardy and job j is tardy
Because the objective of adjacent and nonadjacent
interchange is different, there are totally 8 conditions
corresponding to the two exchanging type. Except for the
above statuses, there exist one status that is considered in
nonadjacent interchange which is:
5. Job i is early and job j is tardy
With above descriptions, we prove the dominance properties
under these statuses one by one in detail. There are four
dominance properties of the adjacent interchange are proofed
at section A and five dominance properties is for the
nonadjacent interchange shown at section B.
A. Dominance Properties of Adjacent Interchange

When we exchange two adjacent jobs (see the figure 2), the
objective corresponding to jobs (job [i] and job [j]) in position
i, i+1, and i+2 are changed while others are the same. These
objective terms in position i, i+1, and i+2 are different.
Consequently, when we subtract the)(YZ  with)(XZ  ,
redundant terms are reduced.
Lemma 1a. In a given schedule X , for any two adjacent
jobs (job i and job j) are early, then the total deviation
of)(YZ  is better than)(XZ  only when

[i 1][] [j][] [][j 1](i-1)() (j-1)() (j)()j i iAP AP AP  

[-1][i] [][] [][1](i-1)() (j-1)() (j)()i i j j jAP AP AP   

Proof:
The objective terms of)(XZ  and)(YZ  are shown as
following:

2

1 [][1]
1
(k-1)

i

k k
k

G AP







2 [1][] [][](i-1) (j-1)i i i jG AP AP 

b n-1

3 [k-1][] [k][k 1]
1 k b
(k-1) (n-k)APk

k j
G AP 

  
  

2 [i 1][] [][](i-1) (j-1)j i jG AP AP
 

b n-1

3 [-1][] [k][k 1]
1 k b
(k-1) (n-k)APk k

k i
G AP 

 

  

We now derive the condition under which)()(YX ZZ  .
For this purpose, we obtain the value of)()(XY ZZ  .

Let X =)()(XY ZZ  and is given by

X =)()(3322 GGGG  . From the above expression, we
see that 0X when the following condition is satisfied.

[i 1][] [j][] [][j 1](i-1)() (j-1)() (j)()j i iAP AP AP  

[-1][i] [][] [][1](i-1)() (j-1)() (j)()i i j j jAP AP AP   

From the above condition, we see that if X<0, then the
schedule Y is better than the schedule X ; i.e.,)(YZ  <

)(XZ  . For this case, job j will come before job i.

After we show the first lemma in detail, the latter 8 lemmas
can be proven in the same way

Lemma 2a. In a given schedule X , for any two adjacent
jobs (job i and job j) are early and on-time, then the total
deviation of)(YZ  is better than)(XZ  only when

[i 1][] [j][] [][j 1](i-1)() (j-1)() (j)()j i iAP AP n AP   

[-1][i] [][] [][1](i-1)() (j-1)() (j)()i i j j jAP AP n AP    

.Lemma 3a. In a given schedule X , for any two adjacent
jobs (job i and job j) are on-time and tardy, then the total
deviation of)(YZ  is better than)(XZ  only when

[i 1][] [j][] [][j 1](i-1)() (n-i)() ()()j i iAP AP n j AP   

[-1][i] [][] [][1](i-1)() (n-i)() (j)()i i j j jAP AP n AP    

Lemma 4a. In a given schedule X , for any two adjacent
jobs (job i and job j) are tardy and tardy, then the total
deviation of)(YZ  is better than)(XZ  only when

[i 1][] [j][] [][j 1](n-i 1)() (n-j 1)() (j)()j i iAP AP n AP     

[-1][i] [][] [][1](n-i 1)() (n-j 1)() (j)()i i j j jAP AP n AP      

B. Dominance Properties of Nonadjacent Interchange
If we consider the jobs are nonadjacent, the corresponding

objective terms are changed in position i, i+1, k, and k +1.
Thus, compared with the adjacent neighborhood interchange,
there is an extra term when we compare the)(XZ  and

)(YZ  .
Lemma 1b. In a given schedule X , for any two
nonadjacent jobs (job i and job j) are both early, then the total
deviation of)(YZ  is better than)(XZ  only when

[i-1][j] [j][i 1] [j-1][i] [i][j 1](i-1)(AP) (i)(AP) (j-1)(AP) (j)(AP)    .

[i-1][i] [i][i 1] [j-1][j] [j][j 1](i-1)(AP) (i)(AP) (j-1)(AP) (j)(AP)    

Lemma 2b. In a given schedule X , for any two
nonadjacent jobs (job i and job j) are early and on-time, then
the total deviation of)(YZ  is better than)(XZ  only
when

[i-1][j] [j][i 1] [j-1][i] [i][j 1](i-1)(AP) (i)(AP) (j-1)(AP) (j)(AP)n    

[i-1][i] [i][i 1] [j-1][j] [j][j 1](i-1)(AP) (i)(AP) (j-1)(AP) (j)(AP)n     

.
Lemma 3b. In a given schedule X , for any two
nonadjacent jobs (job i and job j) are on-time and tardy, then
the total deviation of)(YZ  is better than)(XZ  only
when

[i-1][j] [j][i+1] [j-1][i] [i][j+1](i-1)(AP)+(n-i)(AP)+(n-j+1)(AP)+(n-j)(AP)

[i-1][i] [i][i+1] [j-1][j] [j][j+1](i-1)(AP)+(n-i)(AP)+(n-j+1)(AP)+(n-j)(AP)

100

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Lemma 4b. In a given schedule X , for any two
nonadjacent jobs (job i and job j) are both tardy, then the total
deviation of)(YZ  is better than)(XZ  only when

[i-1][j] [j][i 1] [j-1][i]

[i][j 1]

(i 1)(AP) (i)(AP) (n-j 1)(AP)

(j)(AP)

n n

n





    

 

[i-1][i] [i][i 1] [j-1][j]

[j][j 1]

(i 1)(AP) (i)(AP) (n-j 1)(AP)

(j)(AP)

n n

n





     

 
.

Lemma 5. In a given schedule X , for any two jobs (job i
and job j) are early and tardy, then the total deviation
of)(YZ  is better than)(XZ  only when

[i-1][j] [j][i 1] [j-1][i] [i][j 1](i-1)(AP) (i)(AP) (n-j 1)(AP) (j)(AP)n     

[i-1][i] [i][i 1] [j-1][j] [j][j 1](i-1)(AP) (i)(AP) (n-j 1)(AP) (j)(AP)n      

.

IV. IMPLEMENTATION OF GENETIC ALGORITHM
WITH DOMINANCE PROPERTIES

A. Development of the Hybrid Algorithm
These dominance properties can work as a standalone

heuristic or to be integrated with exact algorithm or
metaheuristic. This paper proposes a two-phase hybrid
algorithm that combines these dominance properties with
genetic algorithm, which is genetic algorithm with dominance
properties as GADP in short. The first phase is the solution
construction phase where a random solution is generated. At
the same time, a general pair-wise interchange (GPI), which is
a neighborhood search method, is applied. When we use GPI
iteratively, we can obtain a set of constructed solutions. The
pseudo code of the main procedure and the first phase are
demonstrated as the following:
Algorithm 1: Main()
Population: It represents the solutions (chromosomes) in
genetic algorithm.

popSize: The population size
1. initializePopulationSize()
2. for i = 0 to popSize do //The first phase
3. Population [i] GPI()
4. End for
5. Genetic Algorithm() //The second phase

Algorithm 2: GPI()
1. sequence generateRandomSolution()
2. for i = 0 to n do
3. for increment = 1 to 3 do
4. for pos = 0 to n - increment do
5. dominanceProperty(sequence, pos, pos+

increment)
6. End for
7. if sequence doesn’t be changed do
8. break;
9. End if
10. End for
11. End for
12. return sequence

Consequently, the time-complexity of the phase 1 is O(n2)
and the constructed solutions are employed into the second
phase while the genetic algorithm does selection, crossover,
and mutation.
B. A Small Example of the First Phase

The primary idea of the dominance properties is to compare
the result of)(XZ  and)(YZ  . If)(YZ  <)(XZ  , the
exchanged schedule is better than previous one. In order to
explain the first phase clearly, there is an eight jobs example
that is presented. The following is the adjusted processing
time matrix and the AP25 means the job 2 before job 5 whose
corresponding processing time is 3.

Table 1.
The adjusted processing time of eight jobs

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

27 6 18 21 7 14 11
25 29 13 9 17 20 22
8 15 24 29 3 21 10

21 16 12 18 27 5 13
23 13 4 16 22 30 8
15 9 23 17 20 6 16
4 14 21 28 17 19 7

18 24 7 13 15 21 28

Suppose a sequence [0, 5, 1, 6, 4, 2, 7, 3] is generated
randomly which means the first job is job 0 and the second job
is the job 5, and so on. In the beginning, the first job
interchanges with the second job, the second job exchanges
with the third job, and so on. Thus, the following steps
illustrated these results step-by-step.

Iteration 1:
Step 1: (Apply Lemma 1a.)

X : [0, 5, 1, 6, 4, 2, 7, 3]

Y : [5, 0, 1, 6, 4, 2, 7, 3]

)(YZ  -)(XZ  = (1)(15-7) + (2)(27-9) = 44（>0）
So we do not exchange the job 0 and job 5.

Step 2: (Apply Lemma 1a.)

X : [0, 5, 1, 6, 4, 2, 7, 3]

Y : [0, 1, 5, 6, 4, 2, 7, 3]

)(YZ  -)(XZ  = (1)(27-7) + (2)(17-9) + (3)(6-20)
= -6 (＜0)

Because Y is better than X , job 5 and job 1 are
swapped, and the new sequence is [0, 1, 5, 6, 4, 2, 7,
3].

Step 3: (Apply Lemma 2a.)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [0, 1, 6, 5, 4, 2, 7, 3]

)(YZ  -)(XZ  ＝(2)(20-17) + (3)(19-6)
+ (4)(20-17) = 57（＞0）

There is no change of the sequence.
Step 4: (Apply Lemma 3a.)

101

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [0, 1, 5, 4, 6, 2, 7, 3]

)(YZ  -)(XZ  ＝(3)(20-6) + (4)(30-17)
+ (3)(21-4) = 145 (>0)

There is no action on the current sequence.
Step 5: (Apply Lemma 4a.)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [0, 1, 5, 6, 2, 4, 7, 3]

)(YZ  -)(XZ  ＝(4)(21-17) + (3)(29-4) + (2)(8-10)
= 87 (>0)

There is no action on the current sequence.
Step 6: (Apply Lemma 4a.)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [0, 1, 5, 6, 4, 7, 2, 3]

)(YZ  -)(XZ  ＝(3)(8-4) + (2)(7-10) + (1)(24-13)
= 17 (>0)

We do not exchange the job 2 and job 7.
Step 7: (Apply Lemma 4a.)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [0, 1, 5, 6, 4, 2, 3, 7]

)(YZ  -)(XZ  ＝(2)(24-10) + (1)(13-13)
＝28 (>0)

There is no action on the current sequence.
Iteration 2:

Step 1: (Apply Lemma 1b.)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [5, 1, 0, 6, 4, 2, 7, 3]

)(YZ  -)(XZ  ＝(1)(9-27)+(2)(25-17)+(3)(14-6)
＝22 (>0)

Because Y is not better than X , we don’t
exchange job 0 and job 5.
Step 2: (Apply Lemma 2b.)

X : [0, 1, 5, 6, 4, 2, 7, 3]

Y : [0, 6, 5, 1, 4, 2, 7, 3]

)(YZ  -)(XZ  ＝(1)(14-27) + (2)(19-17)
+ (3)(9-6) + (5)(9-17)
＝-40（<0）

Because Y is better than X , job 1 and job 6 are
swapped, and the new sequence is [0, 6, 5, 1, 4, 2, 7,
3].

Step 3: (Apply Lemma 5.)

X : [0, 6, 5, 1, 4, 2, 7, 3]

Y : [0, 6, 4, 1, 5, 2, 7, 3]

)(YZ  -)(XZ  ＝(2)(17-19) + (3)(13-9)
+ (4)(17-9) + (3)(23-4) ＝97（>0）

We do nothing on the current sequence.
Step 4: (Apply Lemma 3b.)

X : [0, 6, 5, 1, 4, 2, 7, 3]

Y : [0, 6, 5, 2, 4, 1, 7, 3]

)(YZ  -)(XZ  ＝(3)(23-9) + (4)(29-9) + (3)(13-4)
+ (2)(22-10) ＝173（>0）

Thus, it is not necessary to change the current
schedule.
Step 5: (Apply Lemma 4b.)

X : [0, 6, 5, 1, 4, 2, 7, 3]

Y : [0, 6, 5, 2, 7, 1, 4, 3]

)(YZ  -)(XZ  ＝(4)(22-9) + (3)(7-4) + (2)(29-10)
+ (1)(16-13) ＝102（>0）

There is no action on the current sequence.
Step 6: (Apply Lemma 4b.)

X : [0, 6, 5, 1, 4, 2, 7, 3]

Y : [0, 6, 5, 1, 4, 3, 7, 2]

)(YZ  -)(XZ  ＝(3)(16-4) + (2)(13-10)
+ (1)(7-13) =36（>0）

Because the difference is greater than 0, the schedule
remains the same.

In the iteration 3, the first job may exchange with the fourth
job, the second job might be swapped by the fifth job, and so
on. Because the procedure is the same, the remaining
procedure is the same in iteration 2. After we describe the
procedures,

V. EXPERIMENT RESULTS

The testing instances are designed by Rabadi et al.[16]and
the job size of each instance includes 10, 15, 20, and 25. The
property of the processing time range contains low, median,
and high. Because each combination has 15 similar instances,
the total number of instance is 180 (4*3*15). Finally, the
proposed algorithm GADP is compared with Simple Genetic
Algorithm. The stopping criterion of SGA and GADP is to
have examined 100,000 solutions. Because the first phase is
used to construct initial solutions for GA, there are 100
solutions examined at the first phase. To compare the
performance of these algorithms, the research employs the
average relative error ratio, which is

%100*/)(OptOptavgObj  while the avgObj is the average
objective value and the Opt solution is obtained from
literature. The table 2 is the empirical results of this
experiment, which includes some selected instances. The
complete result table is available on our website at
http://ppc.iem.yzu.edu.tw/publication/sourceCodes/singleMa
chineWithSetupTime/. Then, table 3 shows the average
relative error ratio of all the 180 instances for each algorithm.

The table 2 and table 3 show GADP is completely superior
to SGA for all instances in average. Moreover, the total
relative average error ratio of SGA and GADP are 12.748%
and 7.917% respectively. There is only one exception that
SGA is better than GADP in the first instance of job size is 10
and type is high at table 2.

102

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Table 2.
The experimental results for the three different algorithms (partial instance)

First Phase SGA GADP

Type Size k Opt Min Mean Max Min Mean Max Min Mean Max

Low

10
10
10
15
15
15
20
20
20
25
25
25

1
2
3
1
2
3
1
2
3
1
2
3

423
378
384
801
794
753
1293
1306
1299
1830
1828
1903

433
392
387
950
916
887
1683
1723
1752
2694
2758
2900

442.2
405.6
391.73
990.9
983.67
928.2
1835.1
1828.6
1838.2
2879
2979.2
3034.1

462
421
398
1032
1011
975
1942
1894
1910
2997
3150
3145

423
378
384
805
794
753
1312
1320
1363
1968
1874
1996

436.42
378.97
393.13
852.45
856.48
798.39
1391.3
1427
1444.6
2076.7
2051.3
2154.4

467
393
410
914
934
870
1478
1528
1607
2210
2252
2380

423
378
384
801
794
753
1310
1312
1312
1900
1864
1990

423.67
378
387.07
837.83
821.63
775.33
1375.8
1365.7
1387.5
1990.6
2005.5
2088.4

443
378
392
876
854
837
1458
1425
1490
2085
2173
2187

Med

10
10
10
15
15
15
20
20
20
25
25
25

1
2
3
1
2
3
1
2
3
1
2
3

372
510
495
982
949
837
1732
1499
1484
2149
2293
2271

375
513
495
1155
1124
953
2308
2194
2020
3381
3506
3504

394.77
539
518.17
1246
1261.2
1061.1
2551.2
2356.9
2192.7
3687.6
3865.7
3847

430
571
551
1347
1364
1140
2690
2504
2341
3872
4119
4045

372
510
495
982
949
837
1785
1599
1558
2436
2451
2460

398.19
518.55
512.61
1073.5
1064.7
907.7
1947.4
1749.2
1697.2
2747.3
2818.7
2826

462
534
542
1219
1249
1048
2154
1985
1946
3094
3293
3225

372
510
495
982
949
837
1801
1539
1496
2358
2450
2403

389
515.23
502.23
1034
1023
862.1
1883.5
1684.3
1614.4
2548.8
2656.2
2632.8

406
529
526
1125
1140
921
2009
1864
1801
2742
2845
2884

High

10
10
10
15
15
15
20
20
20
25
25
25

1
2
3
1
2
3
1
2
3
1
2
3

710
606
508
990
1346
1012
1664
1505
1654
2493
2772
2537

740
606
508
1212
1700
1142
2296
2133
2288
3849
4415
4124

745.07
644.7
517.7
1351.5
1793.6
1317.3
2651.1
2518.4
2676.7
4211.3
4887.4
4640.9

764
758
551
1446
1905
1466
2924
2780
2953
4485
5256
5134

710
606
508
996
1346
1012
1792
1711
1805
2583
2901
2845

720.32
643.35
519.42
1145.5
1440.2
1220.1
2087.6
1998.2
2111.9
3037.5
3499
3376.4

728
753
580
1448
1588
1475
2380
2371
2376
3513
4045
3894

710
606
508
993
1350
1012
1760
1569
1740
2649
2994
2742

722.27
606
512.8
1099.1
1438.2
1086.7
1941.3
1785.5
1965.9
2892.4
3303.8
3134.2

728
606
523
1192
1611
1156
2227
2065
2259
3094
3666
3528

Table 3.
The average relative error ratio for the three algorithms (%)

Type Size First Phase SGA GADP

Low 10 4.32 2.07 0.3117

15 24.345 6.177 3.217

20 43.821 10.636 7.055

25 59.314 13.67 9.74

Median 10 4.941 2.983 1.007

15 30.078 10.367 5.075

20 50.933 16.083 10.281

25 70.427 22.553 15.5

High 10 7.46 3.408 0.662

15 33.975 13.73 7.067

20 58.63 23.47 14.635

25 78.99 27.83 20.454

An ANOVA test is done, which shows that there is a
significant difference among the three algorithms. Table 4
shows Duncan group result that examines the pair-wise
relationship between three of them. It indicates that the
GADP is the best and SGA is second while first phase is the
worst. Though first phase sounds not good enough, it is
because the first phase is designed to generate a population
of initial solution for genetic algorithm and it examines only
100 solutions.

To show the convergence process for these algorithms, i.e.,
SGA and GADP, instance of job 25 and type is high that is
applied as a demonstration. Figure 3 shows a single run result
that GADP has the quickest convergence than SGA.

Table 4.
The Duncan grouping result for the three algorithms in mean

Duncan Grouping Mean N Method

A 1961.921 5400 First Phase

B 1513.179 5400 SGA

C 1439.981 5400 GADP

103

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

2800

3800

4800

5800

6800

7800

8800

0 200 400 600 800 1000

SGA
GADP

Fig. 3. The convergence diagram of the GADP and SGA in first instance of
25 jobs set with high range processing time

VI. DISCUSSION AND CONCLUSIONS

This paper examined the problem of scheduling a single
machine with sequence dependent setup times to minimize the
total tardiness, and some dominance properties are developed
for an optimal schedule. These dominance properties
determine relationship between a pair of jobs mathematically.
In addition, these dominance properties apply the general
pair-wise interchange and this method is further integrated
with genetic algorithm, which is called GADP. From the
experimental results, the first phase is able to construct better
initial solutions so that while GA applies these initial solutions,
it enables genetic algorithm to quickly converge to optimal
solution or near optimal solution. So the hybrid framework,
GADP, works more efficiently than a simple genetic
algorithm alone. This is an important problem that is
encountered in a wide variety of practical situations. For
future research, these dominance properties can be integrated
into a branch-and-bound algorithm which can further reduce
the number of nodes to be branched. Thus a more efficient
algorithm can be developed.

REFERENCES

[1] Alidaee B, Dragan I.“A note on minimizing the weighted sum
of tardy and early completion penalties in a single machine: a
case of small common due date.”European Journal of
Operational Research 1997;96:559–63.

[2] Allahverdi A, Gupta JND, Aldowaisan T. “A review of
scheduling research involving setup consideration.”
OMEGA1999;27(2):219–39.

[3] Azizoglu M, Webster S. “Scheduling job families about an
unrestricted common due date on a single machine.”
International Journal of Production Research
1997;35(5):1321–30.

[4] Bagchi U, Sullivan R, Chang Y-L.“Minimizing mean absolute
deviation of completion times about a common due date.”
Naval Research Logistics Quarterly 1986;33:227–40.

[5] Baker KR, Scudder GD. “Sequencing with earliness and
tardiness penalties: a review.” Operations Research
1990;38(1):22–36.

[6] Chen Z-L. “ Scheduling with batch setup times and
earliness-tardiness penalties.”European Journal of Operational
Research 1997;96:518–37.

[7] Cheng, T.C.E., 1992. “Optimal single-machine sequencing and
assignment of common due-dates.”Computers and Industrial
Engineering 1992 ; 22, 115-120.

[8] Coleman BJ. “A simple model for optimizing the single
machine early/tardy problem with sequence-dependent setups.
Production and Operation Management 1992;1:225–8.

[9] French S. Sequencing and scheduling: an introduction to the
mathematics of the job-shop. New York: Wiley, 1982.

[10] Gordon, V., Proth, J.M., and Chu, C. “A survey of the
state-of-the-art of common due date assignment and scheduling
research. ” European Journal ofOperational research 2002; 139,
1-25.

[11] Hall NG, Kubiak W, Sethi SP.“Earliness-tardiness scheduling
problems, II: deviation of completion times about a restrictive
common due date.”Operations Research 1991;39(5):847–56.

[12] Hall NG, Posner ME.“Earliness-tardiness scheduling problems,
I: weighted deviation of completion times about a common due
date.”Operations Research 1991;39(5):836–46.

[13] Kanet JJ.“Minimizing the average deviation of job completion
times about a common due date.”Naval Research Logistics
1981;28:643–51.

[14] Mondal SA, Sen AK.“Single machine weighted
earliness-tardiness penalty problem with a common due date.”
Computers and Operation Research 2001;28(7):649–69.

[15] Ow, P. S., and Morton, E. T. “The single machine early/tardy
problem.”Management Science 35 ,1989.pp 177—191.

[16] Rabadi, G. Mollaghasemi, M. and Anagnostopoulos, G.C, “ A
branch-and-bound algorithm for the early/tardy machine
scheduling problem with a common due-date and
sequence-dependent setup time. ”Computers & Operations
Research Journal,2004; 31,pp. 1727-1731.

[17] Su, L.H. and Chang, P.C. “A Heuristic to Minimize A
Quadratic Function of Job Lateness on A Single Machine,”
International Journal of Production Economics, Vol. 55, No. 2,
1998,pp. 169-175.

[18] Su, L.H. and Chang, P.C.,”Scheduling n jobs on one machine
to minimize the maximum lateness with a minimum number of
tardy jobs,” Computers and Industrial Engineering, Vol.40,
No.4, 2001.pp.349-360.

[19] Szwarc W. “Sngle machine scheduling to minimize absolute
deviation of completion times from a common due date.”Naval
Research Logistics 1989;36:663–73.

[20] Szwarc W. “The weighted common due date single machine
scheduling problem revisited. Computers and Operations
Research”1996;23(3):255–62.

[21] Wu, S.D., Storer, R.H. and Chang, P.C.," One Machine
Rescheduling Heuristic With Efficiency and Stability as
Criteria," Computers and Operations Research, Vol. 20, No. 1,
1993.pp. 1-14.

104

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

