

Abstract—A recent competition course scheduling

competition saw many solution approaches which constructed

an initial solution, and then improved that solution using local

search. The initial solution appears to be crucial for the local

search to be effective and in this work we propose a tiling

technique which can quickly construct a solution which we hope

can be used as a good starting point for a local search

procedure.

I. INTRODUCTION

 The Metaheuristics Network sponsored an International

Timetabling Competition in 2003 [12], involving a course

scheduling problem. Several competitors provided solution

approaches, all of which relied upon the establishment of an

initial neighborhood, followed by a swapping phase. The

focus of those solutions is on the swapping phase, which

used techniques such as simulated annealing, tabu search and

the Great Deluge algorithm. The creation of the initial

neighborhood was done randomly or employed a

straightforward prioritizing mechanism. Our work centers

on a construction algorithm, utilizing a tiling technique,

which provides a feasible solution which can serve as a solid

base for the swapping phase. Our approach creates the initial

solution within a few seconds, enabling the overwhelming

majority of processing time to be dedicated to the swapping

phase.

II. PROBLEM DEFINITION

The competition problem is a sample university course

timetabling problem. It consists of a set of events to be

scheduled in 45 timeslots across five days and nine periods.

Each event must take place in one of a set of n rooms

provided for each instance. Each event is attended by a set

of students. Rooms are constrained by room size and

features, eliminating the possibility of certain events from

being held in a given room. Other hard constraints of the

problem include students only attending one event on a given

day and time period, and only one event scheduled per day

and period in a room. Meeting all hard constraints for each

event constitutes a “feasible” solution.

The problem also contains soft constraints. Violating a

soft constraint leads to a penalty and the quality of a solution

Manuscript received November 4, 2006.

Douglas L. Moody (email: dmoody@citytech.cuny.edu) and Amotz Bar-

Noy (email: amotz@sci.brooklyn.cuny.edu) are with the City University of

New York Graduate Center, Department of Computer Science. Graham

Kendall is with the School of Computer Science & IT, University of

Nottingham, UK (email:gxk@cs.nott.ac.uk).

is given by the summation of all penalities. Hence, solutions

with the least penalties represent the best solutions. The soft

constraints causing penalties are:

• a student has a class in the last slot of the day;

• a student has more than two classes

consecutively;

• a student has a single class on a day

A review of the submitted solutions shows that most

approaches were in at least two phases. Typically, the first

phase was to build an initial feasible solution. The second

and subsequent phases performed some form of search

algorithm looking to swap previously scheduled events.

Burke and Newall describe this evolutionary approach in [2].

The method of creating the initial solution varied as well

as the search algorithms; at least in the top four solutions.

Kostuch [10] had the best set of results. The approach taken

was to place events into timeslots, and then attempt to assign

rooms. If a feasible solution could not be obtained, then the

algorithm randomly unscheduled a set of events and tried

again. Twenty-five runs with different seeds were used to

achieve the best feasible solution. Burke and Bykov[3] and

Bykov[4] used a modified Brelaz (saturation degree)

algorithm. Events were analyzed for the number of timeslots

available. Events with the lowest number of timeslots were

scheduled first. Shaerf [7] used a random placement of

events for the initial feasible solution, while Courdreau [6]

did not create a feasible solution before the swapping phase.

This approach relies on the swapping phase to not only

improve the solution but also develop a feasible solution.

III. OUR APPROACH

Our approach is a constructive algorithm, which does not

incorporate any steps depending upon random value input.

The algorithm builds the schedule event by event in an

ordered fashion. If a timeslot is not available, then a

backtracking procedure is performed, unscheduling and re-

scheduling events, until the event can be placed.

One aspect of this problem is an event’s contribution

toward the penalty count cannot always be fully determined

until all the timeslots in the same day as the event are

scheduled. There is always the possibility that another event

placement will cause this event to be the only event of the

day for a student, or be one of three or more consecutive

classes. This characteristic of the problem reduces the

Construction of Initial Neighborhoods for a Course Scheduling

Problem Using Tiling

 D. Moody, A. Bar-Noy and G. Kendall, Member, IEEE

187

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

effectiveness of the construction algorithm approach, since

the partial solution value cannot be obtained adequately.

 However, the constructive approach has relevance in

producing the initial solution, which a local search algorithm

can operate upon. We seek a good quality initial solution

that can be found in a few seconds, and provides a good

starting point for the search algorithm. Cormen discusses

building upon initial solutionss in [5].

We use “tiling” as a means to create the initial

neighborhood in a constructive manner. Bar-Noy and

Moody [1] demonstrated that tiling was an effective

approach for the traveling tournament problem to quickly

develop a neighborhood within ten or less percentage points

of the best known solutions. The tiles for that problem were

a set of games that were to be scheduled sequentially within

a team’s overall schedule. Tiles were placed in a team

schedule, as long as hard constraints were not violated with

tiles in other teams’ schedules. Kingston [8,9] also used tiles

for set of classes in a high school scheduling environment.

For our problem, a tile represents a set of events that will

be scheduled in the same day and in period x and period x+1,

where x the number of periods available without penalty (8

in the competition). The events in the tile relating to the

same period, must not share any students, since this would

violate the hard constraint of a student attending two events

in one timeslot. Additionally, the tile provides a “break” in

the student’s schedule. Since no student attends more than

one event in a tile, the student has a break between period x

and period x+1. After the tiles are created and placed,

remaining events are placed and backtracking employed if

necessary.

The tiling approach can also be viewed as creating the

“macro event” defined by McCollum [11]. The macro event

is a collection of events that can be associated together. This

association may be because a student would take them as a

block, or in our case, that the events are independent of each

other. The ability to recognize relationships between events

(beyond the obvious constraints) is key for tile or macro

event usage.

IV. PREPROCESSING STEPS

The Metaheuristics Network competition problem is

presented by a series of files that indicate the following

relationships:

• Rooms to Features

• Features to Events

• Students to Events

By transitivity, rooms to events can easily be calculated.

This information can be analyzed to determine the key

relationship in the problem – event to event conflict due to

students. The event-event relationship is helpful in two ways.

We give a value to the relationship equal to the number of

students required to attend both events. For hard constraints,

the relationship specifies which events can share timeslots

that have the same day and period. All event-event

relationship values between all events in the same day and

period timeslot must be zero. For soft constraints, the

relationship provides input on the potential violation of the

three or more consecutive classes for a student. If two events

have an event-event relationship that is positive and the

events are scheduled in consecutive timeslots, these events

may lead to a soft constraint violation, given the events

scheduled around the pair.

The final step of the preprocessing phase is to calculate

the degrees of each event. The degree of an event is the

number of room, period combinations that are possible for

the event. Initially, this value is the number of time periods

(45) multiplied by the number of allowable rooms for the

event, since each event can be placed in any timeslot, if no

other events are scheduled. In the next phase as events

become scheduled, the degrees for events will decrease.

V. CREATING THE TILES

 Prior to placing any events, a set of “tiles” is created

from the information of the instance. A tile is a set of up to

2n (n is the number of rooms) events in the instance. In the

Metaheuristics Network competition, this value was usually

ten. Considering the events of a tile in two sets of size n, the

first set was simply a set of events that could co-exist in the

same day and time period. Searching by lowest event degree,

the first n events that had an event-event relationship of zero

were chosen for the tile. Also the event cannot have already

been assigned to another tile. After the first set of events for

the tile was chosen, a second set was selected. Again,

considering remaining events in lowest degree order, events

were chosen that had zero event-event relationship with all

events in the first set, and the events already assigned to the

second set. The second requirement of an event in the

second set is similar to the first set’s requirements. However

the cross-set event-event relationship number guarantees a

student taking an event in the first set of the tile, will not

have a class in the second set. Hence the student taking any

event in the tile has a “break” in his or her daily schedule.

This break will help reduce the possibility of receiving

penalties for the consecutive classes for a student constraint.

Figure 1 illustrates this point.

This information can be analyzed to determine the key

relationship in the problem – event to event conflict due to

students. The event-event relationship is helpful in two ways.

We give a value to the relationship equal to the number of

students required to attend both events. For hard constraints,

the relationship specifies which events can share timeslots

that have the same day and period. All event-event

relationship values between all events in the same day and

period timeslot must be zero. For soft constraints, the

relationship provides input on the violation of the three or

more consecutive classes for a student. If two events have an

188

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

event-event relationship that is positive and the events are

scheduled in consecutive timeslots, these events may lead to

a soft constraint violation, given the events scheduled around

the pair.

Fig. 1. Tiles slotted in periods 5 and 6

Tiles placed in periods 2, 4 and 6 in each day would

provide a solution with zero soft constraint violations for

consecutive student classes during the first 8 periods.

The requirement for the creation for a tile is a set of events

that cover all rooms for two time periods (2n), each of which

has a zero value for the event-event relationship. With 200

students, 400 events and an approximate average of 17

events per student for most instances, it was difficult to

create a sufficient number of tiles for most instances. The

requirement was relaxed to allow an overlap of up to two

students between an event in the first set of the tile and the

second set. This does not necessarily guarantee a soft

constraint violation, as the preceding event to the tile, or the

subsequent event, may not match the students appearing in

events within both sets of the tile. For all instances we were

able to create at least ten tiles. Some tiles were created with

fewer than n (number of rooms) events in each set due to

event-event relationships.

Once all tiles are created, they are placed in specific

timeslots within the schedule. Unlike the traveling

tournament problem addressed by Bar-Noy and Moody[1],

the placement of the tiles are independent of each other. In

the traveling tournament problem, tiles consisted of set of

games. Placement of a tile could conflict with previously

scheduled games. Bar-Noy and Moody used a backtracking

mechanism to move the tile in this situation. Within our

problem, the placement of tiles in unique timeslots can not

cause a hard constraint violation.

For each instance our approach generated ten tiles. The

tiles were then placed in the schedule as shown in figure 2.

Fig. 2. Tile placement within the schedule

We selected the above tile placement to minimize the

number of students violating the “taking more than two

classes consecutively” constraint. A tile placed at period x

represents a break in all student schedules for that day

between period x and x+1. Placing the tile at period 3 assures

us that only students with classes in the first 3 periods could

be assessed a penalty point, as the tile creates a break

between period 3 and 4. Placing the two tiles in periods 3

and 6 ensures that a break occurs every three periods

(including the ninth period if needed). We did not explore

the concept of moving tiles to different periods. Placing the

tiles closer together would provide a longer time period

block where absolutely no breaks could occur, while leaving

a time period block (possibly up to 5 periods), where

consecutive classes could be scheduled. In the latter

scenario, students could have more than 3 classes

consecutively, while in our approach, we have limited the

number of consecutive classes for a student to 3.

T1 represents the first tile created, which would contain

events with the lowest event degrees. As tiles are scheduled,

the degrees of the remaining events are changed. The tile is

placed first, and then the event pool is analyzed for next set

of events for the subsequent tile creation.

VI. PLACING THE REMAINING EVENTS

 After the ten tiles are placed, the remaining unscheduled

events, must be placed in the schedule. The construction and

backtracking method is used to place these events with the

algorithm shown in figure 3.

While (events remain)

 set schedule_flag to false

 Select event with lowest event degree

 set event timeslot to last timeslot of this event

 While (event day <= 5 and event period <= 8)

 Advance event timeslot to next day or period

 Check event conflicts

 If no event conflict then

 Make temp event placement in schedule

189

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

 Analyze event degree of remaining events

 If event degree of any event is negative

 set schedule_flag to false

 else

 set schedule_flag to true

 make permanent event placement

 push event onto schedule_stack

 if schedule_flag is false

 Advance event timeslot to next day/period

 end while

 If schedule_flag is false repeat for period =9

 If schedule_flag is false then

 pop event from schedule_stack

 Advance event timeslot to next day or period

 end select

end while
 Fig 3. Event Placement with Backtracking

 The algorithm attempts to schedule an event in the

period 1 to 8. If this is not successful, then the event is

considered for period 9. If this also unsuccessful, the stack of

scheduled events (including those scheduled through tiling)

is popped. The popped event is advanced (adding one to the

period of timeslot consideration) and re-scheduled.

An event with a negative event degree indicates that there

are no room / timeslot assignments that satisfy the event. In

this case, backtracking is performed.

The events are always selected by the lowest event degree.

These events have the least flexibility of timeslot and room

assignment, at this point in the scheduling process.

Only two instances required more than 200 backtracks.

Hence the algorithm produced a feasible solution with tiles

in a few seconds.

VII. RESULTS

We present our results in figure 4. We look at three major

criteria – how did the solution improve with tiling, how close

is our neighborhood to the best solutions, and does our

approach support the next search phase.

Fig. 4. Results

The table in figure 4 shows the solution value for the

initial neighborhood created using no tiling (zero tiles) for

the set of tiles as described above. The “Simple Swapping”

column represents the solution value after a rudimentary

algorithm is employed. The simple swapping algorithm

identifies the most expensive event in terms of penalty. For

example, the third consecutive event for a student would be

assessed the penalty point. The most expensive event is

compared with the next most expensive to see if a swap

would improve the solution. The comparison is done 10,000

times and the number of resulting swaps is shown in the fifth

column.

The first improvement column shows the benefit of

performing tiling over a straight forward construction

algorithm. The second column shows the impact of the

simple swapping phase. This column is provided to show

the relationship between the initial neighborhood phase and

the swapping phase. Similar improvement percentages

indicate that the tiling does not inhibit success during the

swapping phase.

The last two columns provide information from Kostuch,

who had the best results in the competition. This is the only

competitor who provided information on the value of the

initial neighborhood. Other submissions did not mention this

value, or did not achieve a feasible (and hence scoreable)

solution in the initial neighborhood. Kostuch’s initial

neighborhood value, achieved by taking the best of 50 seeds

190

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

is shown in column 8 and is compared to our tiling approach

in column 9 .

VIII. CONCLUSIONS

The key result of the tiling approach is the positive impact

of tiling on the solution score. The percentage improvement

from adding the tiles averages 18.48%, with some instances

reaching nearly a 1/3 improvement. This improvement is

gained with negligible processing time. Our results involve

one run versus the “best” of a series of runs.

The second point is whether the construction of our

neighborhood prohibits the next phase of swapping from

being effective. A comparison of the %swap improvement

column shows nearly identical improvement rates before and

after tiling. Only two instances (18,10) favor the initial

neighborhood before tiling by more than 3%. Hence the

tiling provides a solid base for other swapping algorithms.

 The final comparison is between the solution value of

our approach to that of Kostuch. In two instances our result

beat that approach’s initial neighborhood, which is the best

of 50 runs using different seeds. The average difference

across all instances was 8.53%. While we would have liked

to provide a better solution in all instances, our approach

yields a relatively close solution, without the processing time

involved in Kostuch’s approach. This processing time

appears to average 55 seconds per instance. This would need

to be multiplied by 50 for the different seeds yielding almost

45 minutes processing time to achieve an initial

neighborhood approximately 8% better than our approach.

This 8% differential could be resolved within the swapping

phase, given the extra processing time saved in our

approach.

IX. FUTURE WORK

An obvious extension of our approach is to investigate

search algorithms and incorporate them into the

methodology. This would further justify our approach in

creating the initial neighborhood.

Also, we can investigate the creation of the tile process to

look for methods to include more events in the tiles, and

possibly utilize more than ten tiles. The problem could

support using 3 tiles in a day, placing the tiles in periods 2,3;

4,5; and 6,7. Also, the selection of the events to be the

starters for the tile could be analyzed more fully to see if a

more intelligent approach would yield better tiles.

Finally, the research will continue to focus on various

problems and identifying when and how the tiling approach

can add to the solution process. The tiling approach holds

the potential to aid in the construction of timetabling

solutions efficiently, with the ability to handle large

instances.

REFERENCES

[1] Bar-Noy, A. and Moody, D. “A Tiling Approach for Fast

Implementation of the Traveling Tournament Problem”, Practice and

Theory of Automated Timetabling (PATAT06, Brno, August 2006),

Conference Proceedings, pp. 351-358.

[2] Burke, E.K. and Newall, J.P. “A Multi-Stage Evolutionary

Algorithm for the Timetable Problem”, the IEEE Transactions on

Evolutionary Computation, Vol. 3.1. pp.63-74

[3] Burke, E.K. and Bykov, Y. “Solving Exam Timetabling Problems

with the Flex-Deluge Algorithm”, Practice and and Theory of

Automated Timetabling (PATAT06, Brno, August 2006), Conference

Proceedings, pp. 351-358.

[4] Bykov, Y. “The Description of the Algorithm for the International

Timetabling Competition”, International Timetabling Competition

Results. 31. March 2003.

http://www.idsia.ch/Files/ttcomp2002/bykov.pdf.

[5] Cormen , T. et al. , Introduction to Algorithms, Second Edition.

Boston: McGraw-Hill, 2001. pp. 1022,1054

[6] Courdeau, J.F. et al., “Efficient Timetabling Solution with Tabu

Search”, International Timetabling Competition Results. 31. March

2003. http://www.idsia.ch/Files/ttcomp2002/jaumard.pdf.

[7] Di Gaspero, L. and Schaerf, A. “A Multineighbourhood Local Search

Solver for the Timetabling Competition TTCOMP 2002, Practice and

and Theory of Automated Timetabling (PATAT04, Pittsburgh,

August 2004), Conference Proceedings, pp. 475-478

[8] Kingston, J. “Hierarchical Timetable Construction”, Practice and

Theory of Automated Timetabling (PATAT06, Brno, August 2006),

Conference Proceedings, pp. 196-208.

[9] Kingston, J. “A Tiling Algorithm for High School Timetabling”,

Practice and Theory of Automated Timetabling (PATAT04,

Pittsburgh, August 2004), Conference Proceedings, pp. 233-250.

[10] Kostuch, P. “The University Course Timetabling Problem with a 3-

Phase Approach”, Practice and and Theory of Automated Timetabling

(PATAT04, Pittsburgh, August 2004), Conference Proceedings, pp.

251-266.

[11] McCollum, B. “University Timetabling: Bridging the Gap between

Research and Practice”, Practice and Theory of Automated

Timetabling (PATAT06, Brno, August 2006), Conference

Proceedings, pp. 15-33.

[12] Paechter, B. “International Timetabling Competition”. Metaheuristics

Network. 31 March 2003.

191

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

