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Abstract-Cluster ensembles seek a consensus across many 
individual partitions and the resulting solution is usually stable.  
Cluster ensembles are well suited to the analysis of DNA 
microarrays, where the tremendous size of the dataset can thwart 
the discovery of stable groups.  Post processing cluster 
ensembles, where each individual partition is weighted according 
to its relative accuracy improves the performance of the 
ensemble whilst maintaining its stability.  However, weighted 
cluster ensembles remain relatively unexplored, primarily 
because there are no common means of assessing the accuracy of 
individual clustering solutions. This paper describes a technique 
of creating weighted cluster ensembles suitable for use with 
microarray datasets.  A regression technique is used to obtain 
individual cluster solutions.  Each solution is then weighted 
according to its predictive accuracy.  The consensus partition is 
obtained using a novel modification to the traditional k-means 
algorithm which further enforces the predictability of the 
solution.  An estimate of the natural number of clusters can also 
be obtained using the modified k-means algorithm. Furthermore, 
a valuable byproduct of this weighted ensemble approach is a 
variable importance list.  The methodology is applied on two 
well-known microarray datasets with promising results.   

I. INTRODUCTION 

Cluster analysis plays a vital role in the understanding of 
large DNA microarrays. However, the large number of 
variables in these datasets can cloud the underlying groups, 
and traditional clustering algorithms may produce inaccurate 
or unstable results. This motivates the application of cluster 
ensembles to DNA microarrays. Cluster ensembles seek a 
consensus across many individual clustering solutions, often 
grown on smaller subsets of the data, with the aim of finding a 
stable partition. 

Cluster ensembles combine individual solutions in various 
ways. A common approach involves the creation of a co-
occurrence matrix for each clustering solution.  Basically, the 
( , )thi j  element of the co-occurrence matrix equals one if 
observational units i  and j  are clustered together by the 
algorithm and zero otherwise.  The co-occurrence matrices of 
each model within the ensemble are aggregated to give an 
overall co-occurrence matrix, where the ( , )thi j  element 
represents the percentage of times observational units i  and 
j  are clustered together. The overall matrix is a similarity 

matrix and can be split using a variety of clustering 
techniques, such as hierarchical clustering or partitioning 
around medoids [1].  

However, within a cluster ensemble there will be both 
“good” and “bad” partitions [2].  Assigning low weights to 
inaccurate co-occurrence matrices, and then taking a weighted 
aggregation of the individual co-occurrence matrices should 
improve the performance of the cluster ensemble.  However, 
weighting (post processing) individual clustering solutions 
within an ensemble remains relatively unexplored. Unlike 
regression and classification ensembles, where the accuracy of 
individual models can easily be gauged using a loss criterion 
between the predicted values and the observed response, there 
are no criteria suitable for assessing individual clustering 
solutions within an ensemble.  

Previously, we suggested a technique of weighting cluster 
ensembles for small datasets [3].  The accuracy of each 
clustering solution was assessed on the basis of its predictive 
error. The weighted cluster ensembles outperformed simple 
average ensembles and individual clustering models.  Here, 
we apply the technique with some modifications for large 
datasets to DNA microarrays.   

We propose that by using a regression technique, 
multivariate regression trees, as a clustering algorithm, each 
solution can be assessed according to its predictive accuracy.  
Previous literature has shown that multivariate regression trees 
double effectively as a clustering technique [4],[5]. If 
clustering in a low dimensional setting, the explanatory 
variables are replicated as the response variables (auto-
associative multivariate regression tree), and the clusters are 
found in the entire variable space. If clustering in a high 
dimensional setting, the dimension is first reduced using 
principal components analysis or factor analysis, and the 
resulting scores are used as the response variables [6].  The 
response set can be made as small as desired by taking the first 
q principal components or factors.  Searching in the reduced 
dimension space for clusters is particularly appealing when 
analyzing DNA microarrays where some variables serve only 
to distort the underlying grouping structure.  

By sampling explanatory variables, many trees can be 
grown.  Trees with high predictive accuracy are then given 
large weights.  The weighting procedure can easily be 
performed using any well-known regression post processing 
technique.  Here we use the forward stagewise approximation 
[7] to the lasso [8].   

By taking the co-occurrence matrix given by each tree and 
multiplying it by the tree’s weight, and then summing the 
weighted co-occurrence matrices together, an overall 
“weighted co-occurrence matrix” is obtained.  This co-
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occurrence matrix can be considered the output of a weighted 
cluster ensemble approach.  The approach assumes that trees 
with high predictive accuracy produce “good” clusters.  Using 
predictive accuracy to assess cluster quality has previously 
been suggested [9],[10],[11].   

To partition the weighted co-occurrence matrix we 
introduce similarity-based k-means (SBK) [3].  SBK enforces 
the predictability of the solution by explicitly predicting the 
group structure found within the entire similarity matrix 
(including the covariance submatrices) shown to be important 
in [12].  An approximation to the natural number of clusters in 
the dataset can also be obtained with SBK using a technique 
modeled on [10].   

Furthermore, the underpinning weighted ensemble produces 
a list of variables (genes) that are important in differentiating 
the clusters.  A variable importance list gives experimentalists 
an idea of genes that may warrant further investigation as 
potential biomarkers particularly if the genes are 
differentiating between two groups (say cancer versus non-
cancer).   

We illustrate the weighted cluster ensemble approach on 
two well-known DNA microarray datasets. The clustering 
results are consistent with others in the literature. Some genes 
in the derived variable importance lists are known to be 
important in classifying the groups within the datasets. The 
estimates of the natural number of clusters tend to agree with 
the known number of classes in the data.  

II. THEORY

A. Multivariate Regression Trees 
Regression trees [13],[14] begin with all the data in one 

node.  At each stage, the regression tree partitions a non-split 
node in two.  Regression trees partition a node, t , into two 
subsets, tL and tR , on the basis of the value of an explanatory 
variable.  At each node all possible splits of each explanatory 
variable are considered.  The optimal split is saved for each 
node.  The node with the split that maximizes the decrease in 
R(T ) is partitioned at each stage.  R(T ) is given by: 

1( ) ( ) ( )
i

T

i i
x tt T

R T y y t y y t
n

          (1) 

where ix  is the vector of measurements of P explanatory 
variables for the ith observational unit; iy  is the vector of 
measurements of the response variables for the 
ith observational unit; T is the set of all terminal nodes and; 

( )y t is the mean response vector of terminal node t .
After growing the tree, the non-split nodes are deemed 

“terminal”.  The predicted value for a terminal node, tterm , is: 
1ˆ( )

i termterm

term i
x tt

y t y
n

                         (2) 

where the sum is over all iy such that i termx t  and ntterm
 is the 

total number of cases in the terminal node. 
The observational units in each of the terminal nodes are the 

clusters of the dataset: the terminal nodes are as homogeneous 

as possible reflecting an intuitive definition of a cluster.  The 
clusters are found in the response space and the explanatory 
variables that form the tree are deemed to be important in 
determining the clusters.  To allow multivariate regression 
trees to be applied in the traditional clustering framework 
where there are no response variables, auto-associative 
multivariate regression trees (AAMRTs) were suggested 
[4],[5].  AAMRTs replicate the explanatory variables as 
response variables and grow the tree using identical response 
and explanatory datasets.   

If the number of the variables is too large, AAMRTs may be 
confused by the redundant or ‘noise’ variables and may 
produce inaccurate results.  To overcome this flaw, the 
dimension of the response space can be reduced using either 
principal components or factor analysis.  Principal 
components analysis attempts to model the total variance of 
the original dataset, via new uncorrelated variables called 
principal components.  Factor analysis attempts to explain the 
variables by assuming that they can be generated as a linear 
combination of q  unobservable common factors (usually 
q P )  plus a unique factor [15].  We use either the 
principal component scores from the first q principal 
components or the factor scores from the q  factors as the 
response variables of the tree [6].  The clustering is obtained 
in the reduced dimension space as q  is less than P .  Trees 
grown using principal component scores are referred to as 
MRTPCs, and similarly, trees grown using factor scores are 
referred to as MRTFSs.   

B. Algorithm for creating ensembles of AAMRTs, MRTPCs, 
or MRTFSs  

Algorithm 1 shows the process used to grow an ensemble of 
regression trees such that they can be used to create a cluster 
ensemble. 

Algorithm 1: Growing an ensemble of trees 
1) Choose the number of individual trees in the ensemble, M .
2) If the trees in the ensemble are AAMRTs, replicate the 
original dataset as the response dataset, Y .  If the trees in the 
ensemble are MRTPCs calculate the first q  principal 
component scores as the response dataset, Y .  Or, if the trees 
in the ensemble are MRTFSs, calculate the first q  factor 
scores as the response dataset, Y .  The choice of q is left to 
the investigator.   
3) Create M  explanatory datasets by randomly sampling 
variables with percentage pv  from the original dataset.  Here 
we use pv 0.05 .  We stress that although the variables may 
be sampled to create different explanatory datasets, the 
response for each tree remains constant. 
4) Grow a tree using each explanatory dataset to k  terminal 
nodes (clusters).  Create a co-occurrence matrix for each 
tree, ( )C m , where the ( , )thi j  element of the matrix is one, if 
observational units i  and j  are in the same cluster (terminal 
node).  Create a variable importance list for each tree using 
Algorithm 5. 
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C. Lasso Heuristic 
A regression ensemble can be represented by: 

                    
1

( ) ( )
M

m m
m

F x f x                              (3) 

where ( )mf x  is the prediction of an observational unit x  by 
the mth  model - the ( )mf x  are usually of the same family of 
models but this is not mandatory; m  is the weight assigned 
to ( )mf x ; and M  is the number of models. 

The individual regression solutions are combined to form an 
ensemble by taking a weighted sum of the individual 
solutions.  Usually, the weights are an average of the number 
of models, 1 / M , see for example [7].  Post processing is a 
procedure which suggests choices of m   that reflect the 
relevance of each ( )mf x  [16].  Post processing usually 
achieves greater accuracy by enforcing parsimony.  The lasso 
[8] post processing procedure finds the weights that minimize 

1 1 1 1

ˆ arg min ( ) ( ) .
Tn M M M

i m m i i m m i m
i m m m

y f x y f x   (4) 

Here, the solution to the lasso is approximated with a 
forward stagewise algorithm [7] which is henceforth referred 
to as the “lasso heuristic”.  The algorithm is as follows: 

Algorithm 2: The lasso heuristic 
1) Set all weights to zero.  Choose  as a small number 
greater than zero, and choose the number of iterations, its , to 
be quite large. 
2) For 1:l its

* *

, 1 1

1

, arg min ( ) ( )

                                  ( ) ( ) .

Tn M

i m m i h i
h i m

M

i m m i h i
m

h y f x f x

y f x f x
      (5) 

* *
*ˆ ˆ ( ).

h h
sign                                                      (6) 

3) Finally,

1

ˆ( ) ( ).
M

m m
m

F x f x                                    (7) 

In the first step all weights are zero, and this is analogous to 
 in (4).  The parameter its  is inversely related to  in 

(4).  After the set number of iterations, many weights will still 
remain zero. 

D. Algorithm for producing a weighted co-occurrence matrix 
Algorithm 3 shows the process used to create a weighted co-

occurrence matrix. 
Algorithm 3: Producing a weighted co-occurrence matrix 

1) Create an ensemble of trees using Algorithm 1. 
2) Post process the ensemble of regression trees to find the 
weights using Algorithm 2.  Here, ( )m if x  is the prediction of 
observational unit i  using the thm  regression tree.  The 
response vector, iy  is given by: ix  if using AAMRTs or; the 

associated vector of q  principal component scores if using 
MRTPCs or; the associated vector of q  factor scores if using 
MRTFSs.
3) Create an overall co-occurrence matrix, C  by taking a 
weighted sum of the individual co-occurrence matrices: 

1

ˆ ( ).
M

m
m

C C m                                         (8) 

Taking a weighted sum of dissimilarity matrices created 
from different sources (where the weights were chosen in a 
“subjective way”) was suggested previously by [17].   

E. Similarity-based k-means 
Similarity-based k-means is a divisive clustering algorithm 

that takes a co-occurrence matrix, C , (similarity matrix) as 
input.  Formally, SBK seeks clusters to minimize either of the 
objective functions: 

min Ci, j Cr
i , j Srr 1

k 2

Ci, j COV (Sr ,Sr ' )
i Sr
j Sr '

2

r ' r
r ' 1

k

r 1

k

(9) 

or  

'

'

( , ), ,
1 , 1 '

' 1

min r r

r r
r

k k k

S Si j r i j
r i j S r r r i S

r j S

C C C COV (10)

where k  is the number of clusters; i, j index observational 
units i and j ; Sr is the set of observational units in the 
rth cluster; Ci, j is the (i, j)th  element of the co-occurrence 

matrix; Cr is the mean similarity of the rth cluster; and 

COV (Sr ,Sr ' )  is the mean similarity of the (covariance) matrix 
where the rows are given by the observational units in cluster 
r and the columns are dictated by the observational units in 
the r 'th cluster.  The covariance submatrices should be 
considered the number of times that observational units in one 
cluster are grouped with observational units in another cluster 
during the ensemble creation. 

Because of the mean squared and absolute error terms in the 
objective functions (9) and (10), SBK can be viewed almost 
entirely in the prediction sense.  The algorithm seeks to 
predict the entire co-occurrence matrix using the cluster and 
covariance means.  In doing so, observational units with high 
similarity are grouped together.  A validity criterion [12] is 
imposed to ensure that the clustering ideology prevails over 
the prediction ideology.  The validity criterion dictates that 
clusters must have higher mean similarities than their 
covariance matrices.  The SBK algorithm is given by 
Algorithm 4.  

Algorithm 4: SBK 
1) Choose the number of clusters and an initial partition of the 
data.  Here, we use initial partitions given by both hierarchical 
clustering of the co-occurrence matrix and entirely random 
partitions.  Choose the objective function; either the mean 
squared error (9) or absolute error (10). 
2) Visit each observational unit and assign it to the cluster 
which will result in the largest decrease of the objective 
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function.  Before moving the observational unit ensure that the 
validity criterion is upheld. 
3) Update the mean similarity of: the cluster the observational 
unit has left; the cluster the observational unit has joined; and 
all appropriate covariance means. 
4) Repeat steps two and three until no more reassignments of 
the observational units take place. 

F. Cluster number estimation 
An approximation to the natural number of clusters in the 

dataset can also be obtained with SBK by considering the 
average predictive capability of the algorithm, for any number 
of clusters, k .  The estimate closely resembles the figure of 
merit (FOM) method proposed by [10].  FOMs are a method 
of authenticating clusters by assessing the “predictive power” 
of a clustering technique.  FOMs require no a priori 
knowledge of group membership.  FOMs have been shown to 
provide an accurate estimate of the natural number of clusters 
[5],[10].  FOMs assess the “predictive power” of a clustering 
algorithm by leaving out a variable p , clustering the data 
(into k  clusters), then calculating the root mean square error 
(RMSE) of p relative to the cluster means: 

2

1

1( , ) ( )
i r

k

ip r
r x S

RMSE p k x x p
n

             (11) 

where ipx is the measurement of the thp variable on the 

ith observational unit; n is the number of observational units; 
Sr is the set of observational units in the rth cluster; ( )rx p is
the mean of variable p for the observational units in the 
rth cluster.

Each variable is omitted and its RMSE calculated.  These 
RMSEs are summed over all variables to give an aggregate 
FOM (AFOM): 

1
( ) ( , ).

P

p
AFOM k RMSE p k                       (12) 

The AFOM is calculated for each k , and adjusted for cluster 
size to give AFOMadj (k) .

It is simple to expand the above AFOM theory to the results 
obtained by SBK.  Here, no variables are removed from the 
dataset; the random nature of SBK introduces enough 
variability.  Simply, if the dataset is clustered into k  clusters 
and this process is repeated P  times, then the AFOM (k)  is 
defined as 

AFOM (k) 1
n2 Ci, j Cr (p)

2

i, j Sr ( p)r 1

k

p 1

P

 (13) 

where Sr (p)  is the set of observational units in cluster r  on 
the pth  run; Cr (p) is the mean similarity of the observational 
units in cluster r  on the pth  run; Ci, j is the (i, j)th  element of 

the co-occurrence matrix; and n2 is the dimension of the 
similarity matrix.  Here, the adjusted figure of merit is given 
by: 

2

2

( )( ) .adj
AFOM kAFOM k

n kP
n

                       (14) 

The AFOMadj  is obtained for varying levels of k  and the 
“elbow” of the graph is selected as the optimal number of 
clusters.

G. Variable Importance 
Multivariate regression trees allow for an easy calculation of 

a variable importance list.  Although many definitions of 
variable importance exist, such as those that consider 
surrogate splits [13], we apply a very simple (but naive) 
definition of variable importance.  Our definition of variable 
importance, if applied to only one tree grown on the entire 
dataset would over-inflate the importance of some variables 
and underestimate the importance of others.  However, our 
reasoning is that the random sampling of variables to build 
each tree will give some stability to our variable importance 
list that would otherwise not exist.  We calculate a variable 
importance list for each tree in the ensemble using Algorithm 
5.  The variable importance list for the entire ensemble is then 
the weighted sum of the variable importance lists for each 
tree, using the weights given by the lasso heuristic of 
Algorithm 2. 

Algorithm 5: Variable importance list for a single tree 
1) For each variable, p  sum the R(t)  for all splits made by 
that variable within the tree to obtain the variable importance 
of p , pVI .  Mathematically, pVI is given by: 

 where 
the node is 
split by 

( )p
t T

p

VI R t                                (15) 

where  

( ) ( ) ( )
i

T

i i
x t

R t y y t y y t                  (16) 

and
R(t) R(t) (R(tL ) R(tR ))                   (17)  

and t  designates the parent node; and tL   and tR  designate 
the left and right nodes respectively. 
If a variable is not included in the predictor set of a particular 
tree, its corresponding variable importance for the tree is zero. 
2) Standardize the variable importance for the tree such that 
the individual importances sum to one. 

H. Cluster Evaluation 
Assessing the validity and accuracy of clustering algorithms 

is not a straightforward task.  Various algorithms have been 
suggested in the recent literature, see for example [10] and 
[18].  However, in this paper we use datasets with known 
classifications and we assume these to be the gold standard.  
As such, we report only the number of “misclassifications” 
(similar to [9] and [19]), but recognize that in real world 
settings this is not possible. 
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III. DATA

Two well known microarray datasets were analyzed.  The 
reader is directed to the references for detailed information 
regarding these datasets.  The first dataset, ‘Alon’ [20], 
contains 62 samples measured on 2000 genes.  There are 22 
samples of normal colon tissue, and 40 samples of tumor 
tissue.  The 100 variables with the largest variance were used 
in this analysis.  The dataset, available from the R package 
‘dprep’ [21], was preprocessed by taking the logarithm (base 
10), and standardizing the tissues and genes to have zero mean 
and unit standard deviation.   

The second dataset, ‘Golub’ [22], contains 72 samples 
measured on 6817 genes.  The number of genes was decreased 
to 3571 using the steps of [23].  There are 47 samples of Acute 
Lymphoblastic Leukemia (ALL) and 25 samples of Acute 
Myeloid Leukemia (AML).  The ALL class can be further 
divided into two subgroups consisting of 38 B-cell ALL and 9 
T-cell ALL.  The 100 variables with the largest variance were 
used in this analysis in the same manner as [23].  The dataset, 
(which has already been log transformed and row 
standardized) available from the R package ‘dprep’, was 
preprocessed by standardizing the genes to have unit standard 
deviation.   

IV. PROCEDURE

The individual tree models in the ensemble require the 
specification of the number of terminal nodes and the 
minimum terminal node size.  To assess the sensitivity of the 
results to varying values of these parameters, we ran 
Algorithm 1 with either (1,5,10) minimum terminal node size 
and either (2,4,6) terminal nodes.  There were 3*3=9 choices 
of parameters and an ensemble of trees was grown for each 
choice.  We also grew an ensemble with random inputs to the 
parameters.  Each tree within the ensemble was randomly 
assigned a minimum terminal node size and number of 
terminal nodes from the above sets.  This resulted in a total of 
10 ensembles being grown for each of AAMRTs, MRTFSs, 
and MRTPCs.  There were therefore 30 ensembles created for 
each dataset.  All ensembles were grown to 500 trees.  The 
parameter q  was taken to be 10. 

The M co-occurrence matrices for a set of parameters and 
response type were weighted using Algorithms 2 and 3.  The 
weighted co-occurrence matrices were then split using SBK.  
When splitting co-occurrence matrices the minimization 
criteria (9) and (10) of SBK were used and both results are 
shown.  The results reported were the most frequently 
occurring using 15 different starting points.  The datasets were 
split to a maximum of 10 clusters so that the AFOM graphs 
could be obtained.  However, the reported results are those 
when the co-occurrence matrix was split to the known number 
of groups in the data.  Variable importance lists were also 
obtained.  All analysis was conducted using [24]. 

V. RESULTS  

A. Alon Dataset 
The results of applying SBK to the weighted co-occurrence 

matrices created by each of the ensemble types are reported in 

Table I.  The first row shows the number of terminal nodes of 
the trees in the ensemble.  The second row shows the 
minimum terminal node size of the trees in the ensemble.  The 
‘R’ in both the first and second rows corresponds to the 
ensembles of trees grown on random parameter (minimum 
terminal node size and number of terminal nodes) values.  The 
types of trees in the ensemble are shown in the final three 
rows.  The reader will see that there are ten ensembles grown 
for each response type.  The number of misclassifications 
using SBK with (9) is shown as the top number of the cell, and 
the number of misclassifications using (10) is shown as the 
bottom number of the cell. 

The results of applying SBK to the co-occurrence matrices 
created by the ensembles of AAMRTs and MRTPCs are fairly 
consistent across minimum terminal node size and number of 
terminal nodes.  The misclassification rates of SBK applied to 
the co-occurrence matrices created by the AAMRT and 
MRTPC ensembles grown with random parameters are a fair 
compromise of the misclassifications using set parameters.  
The misclassification rates of applying SBK to the co-
occurrence matrices created by ensembles of MRTFSs are less 
stable than the other two ensemble types.   

The AFOM graphs tend to indicate that the weighted co-
occurence matrices should be split to three clusters.  A sample 
AFOM graph (with error bars) is shown in Fig. 1.  It was 
obtained by applying SBK with (9) to a weighted co-
occurrence matrix constructed by MRTPCs with random 
parameters.  Growing to three clusters improves the results 
considerably as shown in Table II.  There is a high degree of 
similarity between the misclassification rates of applying SBK 
to the co-occurrence matrices of the ensembles of AAMRTs 
and MRTPCs. Growing these ensembles with random 
parameters gives a compromise of the misclassifications using 
the set parameters.  On the other hand, using random 
parameters with ensembles of MRTFSs does not give 
solutions that are representative of ensembles with set 
parameters.  

The top five important variables using each response type 
are presented in Table III.  The variables are presented in 
decreasing order of importance.  There is a degree of overlap 
between the response types, particularly using ensembles of 
AAMRTs and MRTPCs.   

TABLE I 

NUMBER OF MISCLASSIFICATIONS FOR THE ALON DATASET – TWO CLUSTERS 
Number of 
terminal nodes 

2 4 6 R 

Minimum 
terminal node 
size

1 5 10 1 5 10 1 5 10 R 

9 9 13 15 15 7 14 15 7 13 AAMRT
14 14 14 15 15 10 15 15 10 13 
14 14 9 15 16 7 16 6 7 13 MRTPC
13 13 13 15 15 10 15 13 10 12 
22 22 22 7 22 10 9 6 10 12 MRTFS
22 22 22 8 13 9 13 6 9 10 
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TABLE II 

NUMBER OF MISCLASSIFICATIONS FOR THE ALON DATASET – THREE CLUSTERS 
Number of 
terminal nodes 

2 4 6 R 

Minimum terminal 
node size 

1 5 10 1 5 10 1 5 10 R 

10 10 10 9 9 6 7 7 6 8 AAMRT
10 10 10 10 10 10 8 11 10 9 
10 10 10 9 9 7 7 6 7 8 MRTPC
10 10 10 9 9 10 8 8 10 8 
8 7 10 7 6 7 6 6 7 13 MRTFS
8 7 8 9 9 10 6 6 10 12 

Fig. 1. AFOM graph for the Alon dataset.

TABLE III 

IMPORTANT VARIABLES FOR THE ALON DATASET 
Ensemble Gene description  

Human 11 beta-hydroxysteroid dehydrogenase type II mRNA, 
complete cds 
ACTIN, AORTIC SMOOTH MUSCLE (HUMAN) 
H. sapiens mRNA for hevin like protein 
P24050 40S RIBOSOMAL PROTEIN 

AAMRT

Human mRNA for fibronectin (FN precursor) 
Human 11 beta-hydroxysteroid dehydrogenase type II mRNA, 
complete cds 
ACTIN, AORTIC SMOOTH MUSCLE (HUMAN) 
H. sapiens mRNA for hevin like protein 
PUTATIVE 126.9 KD TRANSCRIPTIONAL 
REGULATORY PROTEIN IN YSW1-RIB7 INTERGENIC 
REGION (Saccharomyces cerevisiae) 

MRTPC

TRANSLATIONAL INITIATION FACTOR 2 BETA 
SUBUNIT (HUMAN) 
P24050 40S RIBOSOMAL PROTEIN 
Human CO-029 
Human 11 beta-hydroxysteroid dehydrogenase type II mRNA, 
complete cds 
H. sapiens mRNA for novel DNA binding protein 

MRTFS

SELENIUM-BINDING PROTEIN (Mus musculus) 

B. Golub Dataset 
The results of splitting the weighted co-occurrence matrices 

created by each of the tree types are shown in Table IV.  The 
misclassification rates using SBK on co-occurrence matrices 

created by ensembles of AAMRTs and MRTPCs are similar.  
Using these two types of trees with random parameters also 
gives misclassification rates that are representative of the set 
parameters.  Again, SBK applied to the co-occurrence 
matrices created by MRTFSs does not produce as stable 
results as with the other two types of trees.   

The AFOM graphs indicate splitting to three clusters will 
produce the optimal results.  A sample AFOM graph is shown 
in Fig. 2.  The graph was obtained by applying SBK with (9) 
to the weighted co-occurrence matrix constructed by 
AAMRTs with a minimum terminal node size of five and two 
terminal nodes.   

Splitting the weighted co-occurrence matrices uncovers the 
three known subgroups in the data.  The misclassification rates 
are shown in Table V.  The table may indicate that if the 
minimum terminal node size of the trees is too large, the 
misclassification rates of SBK suffer.  Again, splitting the co-
occurrence matrices created by ensembles of AAMRTs and 
MRTPCs produces similar, stable results.  However, splitting 
the co-occurrence matrices of ensembles of MRTFSs using 
SBK produces unstable results across set tree parameters. 
Also, the results are not indicative of the set parameters when 
the trees use random parameters.   

The top five variables using each tree type are shown in 
Table VI.  Again, there is a large degree of overlap amongst 
the ensembles of AAMRTs and MRTPCs.   

TABLE IV 

NUMBER OF MISCLASSIFICATIONS FOR THE GOLUB DATASET – TWO CLUSTERS 
Number of 
terminal nodes 

2 4 6 R 

Minimum 
terminal node 
size

1 5 10 1 5 10 1 5 10 R 

9 9 9 10 10 2 10 10 4 9 AAMRT
9 9 9 10 10 9 10 9 9 9 
9 9 9 10 10 10 10 10 4 9 MRTPC
9 9 9 10 9 10 10 10 10 9 
13 13 17 7 7 11 10 12 12 10 MRTFS
13 13 17 19 19 9 10 11 5 10 

Fig. 2. AFOM graph for the Golub dataset. 
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TABLE V 

NUMBER OF MISCLASSIFICATIONS FOR THE GOLUB DATASET – THREE CLUSTERS 
Number of terminal 
nodes

2 4 6 R 

Minimum terminal 
node size 

1 5 10 1 5 10 1 5 10 R 

7 7 6 3 3 3 7 9 8 7 AAMRT
3 3 6 5 3 3 8 8 8 6 
3 3 6 3 3 3 3 3 7 8 MRTPC
6 6 6 5 3 5 3 3 9 8 
7 7 18 5 5 17 3 5 16 3 MRTFS
7 7 18 5 13 4 16 4 13 2 

TABLE VI 

IMPORTANT VARIABLES FOR THE GOLUB DATASET 
Ensemble Gene description  

MB-1 gene 
LGALS1 Ubiquinol-cytochrome c reductase core protein II.  
PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 
PRECURSOR
DFD component of complement (adipsin) 

AAMRT

Zyxin 
MB-1 gene 
Zyxin 
PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 
PRECURSOR
GLUTATHIONE S-TRANSFERASE, MICROSOMAL 

MRTPC

DFD component of complement (adipsin) 
Growth factor receptor tyrosine kinase (STK-1) mRNA 
AFFX-M27830_5_at (endogenous control) 
GLYCOPHORIN B PRECURSOR 
CAPG Capping Protein (actin filament) gelsolin-like 

MRTFS

MDK Midkine (neurite growth-promoting factor 2) 

VI. DISCUSSION

Firstly, we noticed no major trends with minimum terminal 
node size and number of terminal nodes.  There may have 
been a very small effect of minimum terminal node size on the 
misclassification rate of SBK (three clusters) applied to the 
co-occurrence matrices of the Golub dataset.  Because the 
smallest subgroup contains only nine observational units, if 
the minimum terminal node size was set too high (i.e. 10), this 
group could not be recovered perfectly.   

The two criteria of SBK did not produce remarkably 
different results: criterion (9) could be performing slightly 
better than criterion (10).  As the ultimate aim of SBK is 
prediction, it may be wise to employ the more commonly used 
squared error loss criterion. 

Splitting the co-occurrence matrices of ensembles of 
AAMRTs and MRTPCs with SBK produced similar 
misclassification rates.  The variable importance lists of these 
two ensembles were also alike.  This indicates that the actual 
AAMRTs and MRTPCs were similar.  The similarity between 
the results of AAMRTs and MRTPCs has been noted 
elsewhere [6].  The misclassifications using these two tree 
types were fairly stable.  Furthermore, using random 
parameters gave a compromise misclassification rate of the 
ensembles grown using set parameters.   

On the other hand, ensembles of MRTFSs, although capable 
of creating optimal solutions, tended to be fairly unstable and 
without any discernable pattern across minimum terminal 

node size and number of terminal nodes.  A representative 
solution was not found by using random parameters.   

The poor results obtained using MRTFSs were surprising.  
In a previous study these trees have been shown to outperform 
AAMRTs and MRTPCs on datasets perturbed by noise 
variables [6].   

In the previous study the results of MRTPCs were generally 
stable to the number of factors.  Here, we see that the stability 
of MRTPCs also extends to other parameters: the number of 
terminal nodes and minimum terminal node size.   

The AFOM graphs indicated that there were three clusters 
within each dataset.  The results were improved when the co-
occurrence matrices of the Alon dataset were split to three 
clusters.  Splitting the co-occurrence matrices of the Golub 
dataset unearthed the subgroups of the dataset.  Generally, the 
misclassification rates agreed with other studies (see [25] and 
[19]).  However, it is difficult to make a direct comparison 
because of different standardization (amongst other things).    

The variable importance measures indicated similar genes 
across tree type.  This was particularly evident with the 
important genes of ensembles of AAMRTs and MRTPCs.  
The genes deemed to be important by the algorithm agreed 
with those found in supervised classification studies.  For 
example, the Zyxin gene of the Golub dataset is commonly 
selected in classification rules in [26].  In [22] Zyxin, MB-1, 
and adipsin are illustrated as genes useful in distinguishing 
AML from ALL.  To highlight the power of the variable 
importance lists, we took the top five variables found by the 
ensemble of AAMRTs in Table VI and grew a single AAMRT 
using only these variables. For the two group case, the number 
of misclassifications decreased to four; and for the three group 
case, the number of misclassifications decreased to five. The 
variable importance lists here are derived without external 
knowledge of the grouping structure.  Therefore, these 
important variables may determine not only known groups but 
also smaller subgroups.  The important variables warrant 
further investigation as biomarkers.   

Finally, because of the stability and dimension reduction 
associated with the ensembles of MRTPCs, we suggest using 
these trees to create the weighted co-occurrence matrices.  If 
suitable parameters of the ensemble were unknown prior to 
analysis, it is advisable to use randomly selected values.  With 
further research, weighted ensembles of MRTFSs could also 
give accurate clustering solutions.  The optimal dimension of 
the response space deserves further investigation. 

VII. CONCLUSION 

Cluster analysis is an essential exploratory technique, often 
applied as a first step in the analysis of a large microarray 
dataset [27].  Cluster ensembles have been shown to give 
improved accuracy and stability over individual clustering 
solutions, in many fields [28],[29],[30] including 
Bioinformatics [19].  The improvements afforded by cluster 
ensembles on large datasets parallel results obtained with 
regression and classification ensembles.  It is mooted that 
greater accuracy is attainable if the researcher is willing to 
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take a weighted aggregation of the individual clustering 
models to give the ensemble.   

This research suggested a technique of creating a weighted 
cluster ensemble suitable for large datasets.  Each cluster 
model, a multivariate regression tree, was weighted according 
to its predictive strength.  The clusters were found in the 
response space of each tree; either the entire dataset, or the 
reduced dimension space constructed with the factor scores or 
the principal component scores of the dataset.   

The resulting weighted co-occurrence matrix was split using 
SBK and the clusters agreed with the known groupings in the 
data.  Interestingly, the technique uncovered two known 
subgroups in one dataset.  Weighted co-occurrence matrices 
created with MRTPCs produced the most stable results across 
the datasets.  Because of their stability and dimension 
reduction we recommend MRTPCs as the preferred tree type.   

A valuable byproduct of the ensemble technique was an 
indication of the variables that were important in determining 
the clusters.  Growing a single AAMRT on the variables 
selected as important, decreased the number of 
misclassifications. The important variables could warrant 
further investigation; some variables (genes) could be 
biomarkers of a disease.   
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