
Abstract— Discrete signal processing using fuzzy fractal 
dimension and grade of fractality is proposed based on the 
novel concept of merging fuzzy theory and fractal theory. The 
fuzzy concept of fractality, or self-similarity, in discrete time 
series can be reconstructed as a fuzzy-attribution, i.e., a kind of 
fuzzy set. The objective short time series can be interpreted as 
an objective vector, which can be used by a newly proposed 
membership function. Sliding measurement using the local 
fuzzy fractal dimension (LFFD) and the local grade of fractality 
(LGF) is proposed and applied to fluctuations in seawater 
temperature around the Izu peninsula of Japan. Several 
remarkable characteristics are revealed through “fuzzy signal 
processing” using LFFD and LGF. 

I. INTRODUCTION

Fuzzy fractal dimension and grade of fractality are 
proposed based on the novel concept of merging fuzzy 
theory [1], [2] and fractal theory [3]-[8]. Fractals and fractal 
dimensions have been investigated extensively by 
Mandelbrot [3]-[8] and have been applied to a wide range of 
scientific fields [9]-[12]. Various examples in image 
processing as an artificial intelligence for medicine have 
been reported by Zhou and Lu [13], and several examples in 
plant monitoring systems have been reported by O. Castillo 
and P. Melin [14], [15] based on the hybrid fuzzy-fractal 
approach for time series analysis. In addition, complex 
systems observed in various phenomena, often treated as 
“signal processing” in discrete dynamical systems, have 
been investigated by Waldrop [16]. The present paper 
proposes the application of sliding measurement using local 
fuzzy fractal dimension (LFFD) and local grade of fractality 
(LGF). The LFFD and LGF for such systems are calculated 
for the short time series inside the processing unit. Secular 
changes in both indices can then be obtained by successively 
sliding the unit and repeating the procedure. 

Although numerous methods for analyzing discrete time 
series have already been developed, the present study 
searched for fuzzy fractal structure hidden in the form of 
self-similarity in a dynamical system. In other words, the 
authors attempted analysis and application from a different 
approach with respect to the orbit of a dynamical system for 
“fuzzy signal processing”. 

As an application in the present paper, we describe a new 
fuzzy fractal approach for a system to monitor seawater 
temperature around Japan. Local fuzzy fractal dimension is 
used to measure the complexity of a time series of observed 
seawater temperature.  

II. FUZZY FRACTAL STRUCTURE

Generally, when the fractal dimension is calculated 
formally for a phenomenon that is not guaranteed to be 
fractal in nature, the fractal dimension depends on the 
observation scale [17].  In this case, the dimension is 
referred to as a scale-dependent fractal dimension.  
However, if the “fuzzy fractal dimension” can be treated as a 
function of the observation scale, then it may be possible to 
extend and apply the fuzzy fractal dimension to phenomena 
that are not originally fractal in nature [17].  That is to say, 
for example, characteristics in various time series can be 
treated as a “fuzzy fractal phenomenon” or a “fuzzy 
concept” from the viewpoint of fuzzy system. 

III. DEFINITION OF LOCAL FUZZY FRACTAL DIMENSION 
(LFFD) 

For a discrete time series, which can be considered as an 
objective vector, 
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the accumulated change N(r, k, L) can be defined as [18], 
[19]: 
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where 

L: length of the discrete time series, 
r: sampling interval. 

The accumulated change N(r, k, L) can also be redefined as: 
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where 

Dk: k-th local fuzzy fractal dimension, 
A: proportion constant. 

Therefore, 

ArDLkrN k loglog),,(log

Then, based on a regressive analysis, Dk obtained above is 
defined as the local fuzzy fractal dimension, and in this 
paper we will refer to LFFDk instead of Dk, as the k-th local 
fuzzy fractal dimension. 

That is, 

kk DLFFD

IV. FUZZY CONCEPT OR ATTRIBUTION OF FRACTALITY

The local fuzzy fractal dimension itself is thought to 
express the extent to which the time series pattern is 
complex in a processing unit on the long time series.  In 
contrast, it might be necessary to derive some new kinds of 
scales to express the degree of strength of the fractal 
performance.    Therefore, in the present work, we have 
adopted the “local grade of fractality”, LGF, to satisfy the 
above-mentioned necessity.  The LGF consists of the 
degree-of-freedom-adjusted contribution ratio, which is 
popular and often used in the fields of the multivariate 
analysis or statistics, to show the smoothness of fit of the 
regressive line.  The reason for this is because the use of 
only six measurement points increases the influence of 
observation errors, which necessitates that observers be 
aware that the influence of errors must be taken into account. 
Accordingly, it can be understood from this condition that 
the greater the LGF, the greater the fractality in the time 
series of the change pattern or fluctuation. 

V. LOCAL GRADE OF FRACTALITY (LGF) 
A method for obtaining the LFFD from the information on 

six plots has already been proposed as the Six-Point 
Evaluation Method [19], and the degree-of-freedom-adjusted 
contribution ratio that indicates how well the regression line 
fits is called the local grade of fractality (LGF). This LGF is 
related to the fractality associated with the “manner of 
change” of the said time series, and indicates the extent of 
fractal strength. In the case of a perfect mathematical fractal, 
the LGF is 1, while, alternately, the LGF becomes a value 
close to 0 when there is absolutely no fractality. In other 
words, this may be considered as being equivalent to “grade” 
in so-called fuzzy logic, and is equivalent to the “extent of 

fuzziness of fractality” being quantized within the range 
(0,1). 

Further, as described later, changes in LGF can be 
investigated by a sliding measurement, and so the 
association between the strength of fractality in the “manner 
of change” for the time series of the said physical quantity 
and the original physical phenomenon can be discussed. 

The LGF is defined as follows using each variance (mean 
square: MS) in a variance table for regressive analysis, such 
as TABLE I described later. 
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where 
Ve: error variance, 
VT: total variance, 

Then we obtain 

10 LGF .

  Therefore it is evident that the LGF possesses enough 
qualifications for the so-called “grade” in fuzzy theory. 

Moreover, as the regression analysis in this instance is 
performed on six measurement plots, it is well known that 
regression analysis is extremely susceptible to the influence 
of measurement error. To avoid the over-evaluation of the 
regression-based contribution ratio, the contribution ratio 
must be evaluated after the error variance possessing a one 
degree-of-freedom has been subtracted from the sum of 
squares (SS) caused by regression.  

VI. CALCULATION PRINCIPLES FOR FUZZY SIGNAL 
PROCESSING (NUMERICAL VALUE EXAMPLE)

This section explains in concrete terms the series of 
processes leading up to the preceding paragraph. For 
example, chaotic fluctuation (discrete dynamical system 
orbit) caused by logistic mapping on the assumption that 
control parameter a=3.95 with suitable initial value is 
adopted to calculate each LFFD and LGF for a time series of 
length 120. 

Generally, when observations are performed by changing 
the observation scale (sampling interval; r=1, ... , 6), six time 
series, such as those shown in Fig. 1, are obtained. 

Next, Fig. 2 displays the relationship between r and the 
accumulated change (actual working distance) N on which 
the power function is fitted. 

From Fig. 2, the LFFD and LGF are found to be 1.205 and 
0.9817, respectively. 

Next, the graph is replotted using the natural logarithm of 
both axes in Fig. 2, and the results are presented in Fig. 3. 
The negative gradient of the regression line in this figure 
reconfirms that the LFFD is 1.205.  
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Fig. 1. Time series generated by six kinds of sampling interval 
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Fig. 2. Curve fitting by power function, and calculation for LFFD and LGF 

log N  = -1.205 log r  + 3.9472
LFFD =1.205
LGF = 0.9817
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Fig. 3.  Regressive line fitting on log-log plane 

Also, TABLE I shows the variance analysis for this 
regression procedure. 

Incidentally, the "graph shape" of the power function is 
self-similar. In other words, as N is usually k-D times if r is 
generally k times, the graph need not be rewritten anew; only 
the scale of the graph should be redefined. 

TABLE I
VARIANCE ANALYSIS FOR REGRESSION
BY SIX-POINT EVALUATION METHOD

SV SS DF MS Fo
R 3.187982 1 3.187982 269.2283
e 0.047365 4 0.011841
T 3.235347 5 0.647069

where 
SV: Source of Variation, 
SS: Sum of Squares, 
DF: Degree of Freedom, 
MS: Mean Square, 

Fo: Observed F value, 
R: Regression, 
e: Error, 
T: Total. 

VII. HOW TO OBTAIN LOCAL GRADE OF FRACTALITY
(NUMERICAL VALUE EXAMPLE)

LGF becomes the following from the results of TABLE I 
if definition equation (6) is applied: 

9817.0
647069.0
011841.01LGF

Furthermore, the same result is obtained using the 
following equation if the approach of subtracting one error 
variance from the sum of squares caused by regression is 
applied: 

9817.0
235347.3

011841.0187982.3LGF

(Proof) 
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where 
ST: sum of squares for total, 
SR: sum of squares by regression, 
Se: sum of squares for error 
Ve: error variance, 
VT: total variance, 

e degree of freedom for error. 

VIII. MATHEMATICAL PROPERTIES
     OF LOCAL FUZZY FRACTAL DIMENSION

This section considers the mathematical properties of the 
local fuzzy fractal dimension proposed in this paper. 

[Property 1] 

The values of the local fuzzy fractal dimension are 
invariable even if a constant value is added to each value in 
the discrete time series. 

(8)

(9)

(10)

(11)
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(Proof 1) 
Property 1 is self-evident even if a constant value is added 

as the accumulated change is ultimately obtained using the 
differences between each value owing to the properties of 
definition equation (2). 

[Property 2] 
The values of the local fuzzy fractal dimension are 

invariable even if each value in the discrete time series is 
multiplied by a constant value. 

(Proof 2) 
The local fuzzy fractal dimension as the gradient is 

invariable and Property 2 is self-evident as the regression 
line can be shifted in parallel translation when the 
accumulated change is obtained using the product of each 
value owing to the properties of definition equation (2) with 
logarithmic conversion. 

Moreover, from the above two properties, it is evident that 
even if each value in the original time series undergoes a 
so-called standardization, where the mean value of the time 
series is subtracted and divided by the standard deviation, 
the values of the local fuzzy fractal dimension remain 
invariable. 

[Property 3] 
The values of the local fuzzy fractal dimension can be 

expected to be almost constant without depending on L, if 
unit width L is sufficiently large when the same properties in 
the time series are considered as being retained in the unit. 

(Proof 3) 
When unit width L (length of observed time series) in 

which local fuzzy fractal dimension LFFD (i.e. here D
instead of LFFD) is measured is extremely long, the 
accumulated change Nr' that is equivalent to the actual 
working distance can also be expected to be as follows, if L
is increased s times: 

rr sNN '

rr NsN loglog'log

From equation (4), using Nr instead of N(r, k, L),

ArDNr logloglog

Then, 

sArDNr log)loglog('log

Due to this fact, the graph of log Nr' is formed by shifting 
the graph of log Nr in parallel translation by log s in the 
forward direction of the vertical axis, and its gradient –D is 
invariable. 

Accordingly, when unit width L is extremely long, and the 
same properties of the time series (e.g. the control parameter 

in this term is invariable in case of logistic time 
development) are considered as being retained in that term, 
then it can be fully predicted that the local fuzzy fractal 
dimension obtained from the said time series will not be 
depend on unit width L (length of time series). 

IX. CALCULATION FOR LOCAL FUZZY FRACTAL DIMENSION 

We assume that a unit having width L is installed on the 
long time series 

},,,,,,,{ 121210 Lkkkk xxxxxxx

related to some physical quantity targeted for observation, 
and that this unit is progressively slid to the right in 
increments of a single epoch for each successive calculation. 

Here, the series of processes (i.e. the procedure for 
calculating the regression coefficient) after logarithmic 
conversion in the processing unit is expressed by functions f
and F.  If the Six-Point Evaluation Method (i.e. evaluation 
of six plots) is adopted for regression analysis, then LFFDk
can be expressed as: 
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In other words, equation (17) can also be called the mean 
local fuzzy fractal dimension in the observation scale (i.e.
sampling interval) r = 1 to 6 in the processing unit. 
  And LFFD corresponds to a kind of “property” or 
“manner of change” in the time series. 

X. MEMBERSHIP FUNCTION
          FOR LOCAL GRADE OF FRACTALITY

Likewise, if the process for calculating the local grade of 
fractality, LGF, that indicates how well the regression line 
fits is expressed by function g, which possesses the 
prescribed computational procedure and the Six-Point 
Evaluation Method is adopted, then LGFk can be expressed 
as:

)(
})6:1|)],,(,({[

Fractal k

k rLkrNrgLGF
xμ

where μFractal is a kind of complex and particular 
“membership function” on the fuzzy concept “fractal”. 
Then we obtain 

10 LGF .

Therefore the LGF corresponds to “fuzziness of fractality” 
in the objective time series changes, and possesses enough 
qualifications as the so-called “grade” in fuzzy theory. 
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XI. SLIDING MEASUREMENT

The unit having width L is slid successively on the long 
time series of the physical quantity targeted for observation 
according to the above procedure, and the specified 
regression analysis is repeated.  

That is, since each of the individual LFFDs and LGFs
can be calculated for the k-th unit (observed time series or 
objective vector)  

},,,,{ 121 Lkkkkk xxxxx ,

changes in the LFFD and LGF time series can be observed if 
k is increased successively.  Ultimately, if these three time 
series (i.e. the time series of the original physical quantity 
targeted for observation, the LFFD time series, and LGF 
time series) are judged from an entirely analytical standpoint, 
then various characteristic properties can be obtained.  Fig. 
4 shows the concept of sliding measurement using LFFD 
and LGF based on the above procedure [19]. 

...……………..Original discrete time series (Long time series)……………………..

................Series of local fuzzy fractal dimension (LFFD)....................

................Series of local grade of fractality (LGF)................................

Processing unit (Short time series or Objective 

vector) 

Fig. 4. Sliding measurement using LFFD and LGF 

XII. APPLICATION TO FLUCTUATIONS
        IN SEAWATER TEMPERATURE 

A. Outline 
We describe in this section a new fuzzy fractal approach 

for monitoring system in seawater temperature.  We use the 
concept of the local fuzzy fractal dimension to measure the 
complexity of a time series of observed seawater 
temperature.  Continuous observation of the fluctuations in 
seawater temperature is an important aspect of studying 
changes in weather patterns.  The sea surface constitutes 
the boundary between the atmosphere and the sea, with heat 
exchange constantly occurring between these two bodies.  
As a result, fluctuations in seawater temperature can be 
employed as an index, with daily, seasonal and secular 
changes being most apparent in the surface layer (0 to 15 m).  
In the present study, the characteristics of fluctuations in 
seawater temperature in the near-surface layer (0-15 m) were 
observed and these properties were used to propose a 
method for estimating the seasonal boundary.  In order to 
achieve these aims, we decided to use LFFD and LGF as a 
measure of the complexity from the viewpoint of “fuzzy 
signal processing”.  

B. Research Methods 
The meteorological characteristics of the near-surface 

layer were obtained at a point off the Izu Peninsula (Usami, 
Ito City, Japan) by placing temperature data loggers at three 

depths: 5 m (upper layer), 10 m (middle layer) and 15 m 
(lower layer). The loggers were set to continuously measure 
seawater temperatures at 1-hour intervals.  The discrete 
time series data was averaged on a daily basis and the 
differences in time series data for seawater temperatures 
between levels were compiled (between water depths 10 m 
and 5 m, and 15 m and 5 m), and then LFFD and LGF were 
calculated according to the previously specified method.  
Time series data was also subjected to moving average 
analysis (with sample count set to 30 epochs to account for 
the influence of the tides) to assess the characteristics of 
changes in the time series. 

C. Analytical Results and Consideration for LFFD 
Fig. 5 shows an example of the difference time series in 

seawater temperature, LFFD change, and the moving 
difference average between water depth 15 m and 5 m from 
2003/7/4 through 2004/7/4.  The following characteristics 
were obtained from an analysis of the data obtained from the 
near-surface layer: 
1) Upon creating a difference time series between seawater 

temperatures at each depth with respect to the 
temperature at 5 m, and having observed the results 
obtained from the moving average (sample count set to 
30 epochs), it was found that negative values were 
generally observed in the summer and positive values in 
the winter, suggesting the existence of a seasonal 
boundary. 

2) If the seasonal boundary is defined as the day on which 
the plus/minus values of the moving average are 
reversed for the first time, then seasonal boundaries in 
this analysis are estimated to be October 17 and April 11.  
In the summer, the differences between seawater 
temperatures at each depth can be represented as a 
negative value because the seawater temperature near 
the sea surface is warmed by insolation and is thus 
warmer than the seawater in the lower layers.  
Conversely, in the winter, the difference between 
seawater temperatures at each depth assumes a positive 
value because the phenomenon is reversed. 

3) The unusually cold summer of 2003 in Japan caused a 
reversion in seawater temperature, with the difference 
between temperatures becoming temporarily positive.  
And an increase in LFFD was observed, most notably 
during the period of August 15-19, the near-surface 
layer could be said to have temporarily entered a mode 
typical of winter. 

4) Although the decrease in LFFD probably arose at the 
summer/fall boundary as a consequence of a phase 
transition to a regular mode from the cold summer, 
further comparisons and observations should be 
undertaken for a typical year so as to better understand 
the influence of the cold summer.  An increase in 
LFFD is seen at the winter/spring boundary, because it 
is likely that the difference time series in seawater 
temperature became unstable at the onset of the 
following season and probably increased. 

(22) 
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5) Despite similarities between LFFD values, the 
corresponding time series patterns were always found to 
differ. 
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Fig. 5. Difference time series in seawater temperature, LFFD change and 
moving difference average between water depth 15 m and 5 m from 
2003/7/4 through 2004/7/4 

XIII. CHARACTERISTICS OF LGF CHANGE
         BEFORE SEASONAL BOUNDARY 

This section presents an example of an LGF-related time 
series. In the preceding section, various phenomenal 
analyses were attempted with the emphasis placed on LFFD 
as opposed to LGF. It has been decided, however, to attempt 
to study the relationship between changes in LGF and the 
said physical quantity, too.  

Fig. 6 shows a 30-point moving difference average 
between water depth 15 m and 5 m, and the time series of 
the LGF (i.e. extent of strength of fractality) in a seawater 
temperature difference series (5 to 15 m). The following 
property can be read if the point of intersection between the 
0° C reference line and the 30-point moving average is 
assumed to be the seasonal boundary [19]. 
(Property) 

"As a premonitory phenomenon of a seasonal boundary, 
there is a temporary peaking of the LGF, and this is followed 
by the seasonal boundary when the LGF changes to a 
decreasing state." 

The "decrease in LGF" refers to the place where the 
fractality in the “manner of change” of the said time series 
weakens. However, as this mechanism is completely 
unknown, observations must be continued and a careful 
investigation into whether or not this kind of property occurs 
at all times must be conducted. 
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Fig. 6. 30-point moving difference average of seawater temperature 
between water depth 15 m and 5 m from 2003/7/4 through 2004/7/4, and 
LGF change with seasonal boundary 

XIV. CONCLUSIONS

In the present paper, fuzzy fractal dimension and grade of 
fractality were proposed based on the novel concept of 
merging fuzzy logic and fractal theory. In addition, sliding 
measurement for “fuzzy signal processing” using a local 
fuzzy fractal dimension (LFFD) and local grade of fractality 
(LGF) were proposed. The authors were able to quantize an 
index related to the characteristics of orbits in a short-term 
discrete time series. The method was then applied to the 
characterization of the changes in seawater temperature 
around Izu Peninsula, Japan. The difference time series for 
seawater temperatures between water depths of 5 m and 15 
m was compiled, and the LFFD and LGF were calculated 
according to the prescribed method. The LFFD was found to 
decrease at the summer/fall boundary and increase at the 
winter/spring boundary. A method was proposed for 
estimating the seasonal boundary based on the temperature 
reversion phenomenon observed in the near-surface layers of 
seawater. In addition, the LGF will be useful in monitoring 
seawater temperature using “fuzzy signal processing”. This 
phenomenon may provide a highly sensitive sensor with 
LFFD and LGF in a weather monitoring system. 
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