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Abstract—We present the design and implementation of an open-set text-
independent speaker identification system using genetic Learning Classi-
fier Systems (LCS). We examine the use of this system in a real-number
problem domain, where there is strong interest in its application to tacti-
cal communications. We investigate different encoding methods for repre-
senting real-number knowledge and study the efficacy of each method for
speaker identification. We also identify several difficulties in solving the
speaker identification problems with LCS and introduce new approaches
to resolve the difficulties. Experimental results show that our system suc-
cessfully learns 200 voice features at accuracies of 90% to 100% and 15,000
features to more than 80% for the closed-set problem, which is considered
a strong result in the speaker identification community. The open-set capa-
bility is also comparable to existing numeric-based methods.

Keywords— classifier systems, genetic algorithms, language and speech,
machine learning

I. INTRODUCTION

This paper discusses the design and implementation of an
adaptive speaker identification system based on genetic learn-
ing classifier systems (LCS). Speaker identification (SID) can be
categorized into text-dependent and text-independent problems.
In text-independent speaker identification, the system should
identify the speakers regardless of the words spoken, while text-
dependent identification requires the speakers to say predeter-
mined words in order for the person to be identified. We can
also categorize the SID problem as closed-set or open-set. In
a closed-set SID system, the system decides the identification
of speakers from within a fixed set of known speakers. In fact,
the system force-identifies the input voice profile to the clos-
est speaker known to the system. Unlike the closed-set speaker
identification problem, the open-set SID problem does not as-
sume the number of speakers is fixed. An open-set SID system
can add new speaker profiles dynamically.

Open-set speaker identification is much harder than the
closed-set problem because it is difficult to decide whether to
introduce a new profile for a speaker or to identify the input as
one of the existing speakers. Unfortunately, the common ap-
proaches, including many statistical clustering methods, are not
suitable for the open-set problem because of their inflexibility.
Furthermore, both closed-set and open-set systems must be ro-
bust to noise and changes in voices of speakers, for example due
to illness. Many statistical methods are not flexible enough to
adapt to such changes dynamically after deployment.

LCS [16], [28], [12], [24] are open-ended adaptive learning
systems that can learn new rules for changing environments.
This adaptability motivated us to use LCS for the speaker identi-
fication problem. For the LCS model, we have chosen the XCS
classifier system [7] since XCS provides several improvements
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to the traditional LCS and it is more recently studied and up-
dated. To the best of our knowledge, our system is the first LCS-
based speaker identification system. We refer to our system as
Speaker Identification-Learning Classifier System (SID-LCS).

In order to design a LCS for the SID problem, we need to
represent voice features for the LCS in an appropriate classifier
format. We have studied several different encoding methods in-
cluding hyperrectangular, hyperspheroidal, and general hyperel-
lipsoidal methods [10], [7] for feature representation. Another
challenge in using XCS for speaker identification is the sheer
scope of the input data space. Existing XCS theoretical papers
[7], [27] have thus far analyzed problem domains with three di-
mensions, population sizes less than 6400, and unknown preci-
sion real numbers. The task set before our modified system en-
compasses 14 dimensions, population sizes reaching more than
half a million, and at least six digits of precision. We have de-
veloped new techniques for SID-LCS to improve the speaker
identification capability and address this complexity. Also pre-
sented is our algorithm for open-set discrimination, intended for
tactical communications [14].

Experimental results show that our system successfully learns
200 human voice features extracted from four different speakers
at accuracies of 90% to 100%. It can also learn 15,750 feature
vectors from 45 speakers at accuracies passing 80%. These can
be considered strong results in the speaker identification com-
munity [3]. Our system shows promising results in open-set
testing.

II. ORGANIZATION OF THE PAPER

This paper is organized as follows. Section IV presents previ-
ous research on the speaker identification problem and learn-
ing classifier systems. Section V describes the voice feature
vectors and the SID-LCS system developed. This section also
describes several encoding methods for voice features and the
open-set decision algorithm. Furthermore, we discuss effective
levels of applying genetic algorithms in SID-LCS and discuss
issues about using LCS for the complex SID problem space. In
Section VI, we present experimental results showing the per-
formance of SID-LCS in both closed-set and open-set problem
domains. Section VII presents conclusions and future research.

III. CONTRIBUTIONS OF THE PAPER

This paper presents the feasibility of using learning classifier
systems for the SID problem. The main contributions are:
1. It is the first attempt to solve the SID problem using LCS.
2. It introduces and invites the LCS community to the SID prob-
lem.
3. It identifies the complexity of the SID problem using LCS.
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4. It investigates the strength and weakness of the LCS system
within the domain of the SID problem.
5. It shows the open-set capability of LCS and introduces the
voting method for improving the identification capability.
6. It examines the performance potential of altering input pa-
rameters and reducing classifier complexity.

IV. BACKGROUND

In this section, we briefly review feature extraction methods
for voice signal processing and a traditional speaker identifica-
tion method. We also introduce the learning classifier systems
and discuss XCS [8], an implementation of LCS and its exten-
sion, XCSR, for real-valued parameters.

A. Voice Feature Extraction and Statistical SID Algorithm
(LBG-VQ)

Most speech processing concepts and systems are based on
vocal parameterization and pattern matching or classification.
The biological speech production mechanism is transformed to
a mathematical representation, known as the Linear Predictive
Coding (LPC) model. LPC is the foundation of the vocal pa-
rameterization. The basic intent of LPC model is to represent
the vocal tract as an all-pole, time-varying filter. When the bi-
ological mechanism is considered in this way it allows for the
simplification of the human speech production mechanism into
an engineering schematic, capturing the biological mechanism
in which the air is thrust from the lungs, passing the vocal cords,
through the pharynx, and then out the mouth and nasal cavity.
With each person, these physical attributes are unique to that
individual [15].

All speech production, beginning with a cognitive process,
ends with an acoustical waveform. Once the acoustical wave-
form is derived, it is carried through transmission media, which
could include atmospheric propagation (in air), transducer inter-
faces, and analog or digital delivery systems. When a sample
of audio data is collected, the computer characterizes it as an
audio waveform. The audio waveform can be translated into a
physical state of the vocal tract through LPC [15].

The parameters representing the vocal tract information can
be used to derive the LPC filter coefficients. Parameter sets can
be derived from the LPC model, such as the LP Cepstrum, which
give us the cepstral feature vectors [22].

The real cepstrum is defined as the inverse Fourier transform
of the logarithm of the magnitude Fourier transform. The cep-
stral coefficients can be derived both from the filter bank and
linear predictive analyses described above. Filter-bank analysis
represents the signal spectrum by the log-energies at the out-
put of a filter-bank, where the filters are overlapping band-pass
filters spread along the frequency axis [21]. This representa-
tion gives a rough approximation of the signal spectral shape
while smoothing out the harmonic structure. Cepstral coeffi-
cients have rather different dynamics - the higher coefficients
show the smallest variances [21]. SID-LCS is able to account
for the smaller variances in order to reduce the search space.

Once the cepstral feature vectors were generated from each
audio sample, traditional methods as in [18], [11], [4], [25],
[23] then involved the generation of codebooks for each speaker.
Popular techniques to generate codebooks for each speaker are

based upon the LBG VQ (Linde-Buzo-Gray Vector Quantiza-
tion) algorithm. The LBG VQ algorithm clusters input vectors
from training vector files, and finds 128 centroids. The oper-
ation of the algorithm is to continuously reassign feature vec-
tors to clusters and update cluster centroids until no further re-
assignment is necessary. Codebooks contain 128 codewords;
each codeword is a 14-dimensional vector of 32-bit floats.

Once the speaker was characterized in this way, the speaker
could be identified from that closed set in the future. However, if
the speaker was not a member of the predefined set, the system
forced a decision, and resulted in an erroneous prediction. Also,
the choice of 128 as the number of codewords per speaker was
arbitrary. We continue to examine methods for the system to
choose this number based on the number of speakers and input
vectors.

The codebooks are compared against test vector files, which
are in the same format as the training vector files. Each speaker
has its own file of test vectors. They contain 4 seconds of audio
data that has been converted into cepstral vectors. The short time
length of the testing files is consistent with the short utterances
available from tactical communications [14].

B. The Learning Classifier Systems

Learning classifier systems [17], [8], [24], [28], [1] are ca-
pable of learning and adaptation through the combinations of
ideas from rule-based systems, reinforcement learning, evolu-
tionary computing, and other heuristics. The system attempts to
find appropriate state and action sets through numerical rewards
from trial and error and by using genetic algorithms.

Usually, the steady state genetic algorithm (GA) is employed
by LCS and operates over the whole rule-set at each iteration.
In general, the GA uses roulette wheel selection to determine
which rules will be the parent rules depending on their fitness.
Those selected parent rules produce offspring via mutation and
crossover in the usual way. The offspring replace existing rules.
Replacement targets are often chosen based on the fitness values
they received so far [5]. There are many variations from this
traditional LCS. Readers are referred to [5] and [13] for more
information about LCS.

B.1 XCS

XCS [2], [8] improves traditional LCS in several ways. When
input is introduced to XCS, the system tries to match the input
to its population. If no match exists, covering is activated. De-
fault covering generates new classifiers that match with the input
for each possible action, not just the desired action of the input.
This covering procedure with a prediction value makes it pos-
sible to generate a complete mapping from the problem domain
to the set of actions. Unlike the traditional LCS, the fitness of
classifiers in XCS is not based on the payoff received but on the
accuracy of predictions. In other words, it makes a “best guess”
prediction based on the payoff expected for each possible action.
The prediction error ε estimates the mean absolute deviation of
the prediction. Prediction Array P forms to contain the payoff
prediction values of each possible action. For details of fitness
update in XCS, see [7].

The system next forms an action set A depending on the sum
of prediction values in the match set. Another difference is
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that the GA takes place in this action set instead of the popu-
lation [8]. In this way, XCS extends the traditional LCS to rein-
forcement learning. It also provides a way for solving complex
problems which have many possible state-action mappings [5].
A detailed description of XCS can be found in [8].

B.2 XCS with continuous real-valued inputs

Since many real-world problems are not easily expressed in
ternary representation, there have been attempts to represent
problems from the real number domain [27] using XCS. Re-
cently, Butz [7] discussed a real-valued XCS system called
XCSR. XCSR is different from XCS in the input interface, mu-
tation operator, and in the details of covering [27]. XCSR also
uses an encoding method that is more suitable to real-number
problem domains.

B.3 Various encoding methods for real-valued input

Several ways of representing conditions are available in XCS.
First, there are center-spread encoding and lower-upper bound
encoding that form hyperrectangular conditions in the problem
space by setting the boundaries for each dimension. The dif-
ference between center-spread encoding and lower-upper bound
encoding lies in their way of representing the boundary. They re-
sult in a similar condition structure but require slightly different
forms of mutation and crossover. For details, see [6]. Recently,
Butz [7] introduced new kernel-based spherical and ellipsoidal
encoding methods.

The condition parts for the encoding methods are as follows:
1. Clu = ((l1, u1), (l2, u2), ..., (ln, un))
2. Ccs = ((c1, s1), (c2, s2), ..., (cn, sn))
3. Cs = (m1,m2, ...,mn, σ)
4. Ce = (m1,m2, ...,mn, σ1, σ2, ..., σn)
5. Cg = (m1,m2, ...,mn, σ1,1, σ1,2, ..., σn,n)

Fig. 1 shows three examples of a hyperellipsoidal condition
in the 3-dimensional problem space. It forms more general con-
dition structures than the hyperspheroidal encoding. The fol-
lowing lists the matching conditions for each of the encoding
methods:
fi = value of ith dimension of feature vector, where i ∈ I

1. Mlu=

{
true if li ≤ fi ≤ ui,∀i ∈ I

false otherwise

2. Mcs=

{
true if ci − si ≤ fi ≤ ci + si,∀i ∈ I

false otherwise

3. Ms=

{
true if θs ≤ cl.ac

false otherwise

where cl.ac = exp
(‖fi−mi‖

2

2σ2

)

4. Me=

{
true if θe ≤ cl.ac

false otherwise

where cl.ac = exp−
∑(‖fi−mi‖

2

2σ2

i

)

Fig. 1. Illustration of two point crossover of hyperellipsoid in 3-dimensional
space.
Topmost: Ce1 = (0.1, 0.2, 0.5, 0.4, 0.2, 0.1)
Lower Right: Ce2 = (0.3, 0.2, 0.1, 0.1, 0.2, 0.2)
Lower Left: Ce3 = (0.1, 0.2, 0.1, 0.1, 0.2, 0.1)

5. Mg=

{
true if θg ≤ cl.ac

false otherwise

where cl.ac = exp−
(∑

n
i=1

(
∑

n
j=1

((fj−mj)σ
2

ij))

2

)
For crossover, the crossover point can be anywhere in the
condition-action part. Mutation happens with certain proba-
bility in the condition part. Fig. 1 shows a simple example
of crossovers in 3-dimensional space for hyperellipsoid. The
crossovers are applied to the topmost and lower-right conditions.
The lower-left condition is the offspring which has m1,m2 and
σ3 from the topmost condition and the rest of them from the
lower-right condition. For details of mutation and crossover
in hyperspherical, hyperellipsoidal and general hyperellipsoidal
conditions, see [7].

V. THE SPEAKER IDENTIFICATION LEARNING CLASSIFIER

SYSTEM (SID-LCS)

In this section, we introduce our new SID-LCS derived from
the XCS. SID-LCS has been implemented based on XCSJava
1.0 by Butz. We will discuss the SID problem domain, proper
encoding methods for voice features of 14-dimensional real
numbers in section V-A and several issues in the SID-LCS learn-
ing in section V-B. The new voting mechanism for better per-
formance in the testing phase is described in section V-E. We
discuss a decision algorithm for open-set SID in section V-D.

A. Feature Vectors

Voice feature extraction is done by the LPC model explained
in Section IV-A. The speaker’s voice is sampled for 4 seconds
and this data goes through the LPC algorithm explained above.
The result is a list of approximately 250 14-dimensional vectors
of real numbers. Fig. 2 shows 240 feature vectors extracted
from 4 seconds of voice for one speaker. Each feature vector
F = (f1, f2, ..., f14) is presented to SID-LCS’s input interface
and matched against the condition part of the classifiers in the
current population. If dimensional dependencies are unknown,
as in this case, it is advantageous to apply more flexible con-
dition structures as discussed in [7]. We employed hyperrect-
angles using lower-upper bound, hyperspheroids, and general
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Fig. 2. feature vectors extracted from 4 seconds of female voice. x axis repre-
sent dimensions and each line is a single feature vector.

hyperellipsoids for SID-LCS.

B. Complexity of the SID-LCS problem

We have attempted to answer the question of exactly how
many feature vectors are sufficient to accurately classify an ar-
bitrarily large number of human voices. This is important for
the in-set/out-set case as well, because there must be an under-
lying base of accurately-classed, in-set speaker vectors to com-
pare against. When considering tactical communications, there
are timeliness and data availability factors in real-world SID that
limit how many input vectors the system will be able to see be-
fore needing to make a decision. The input vectors take the
form of a list of 14 real numbers, with at least 6 digits of preci-
sion each - a search space of at least (106)14 number strings (10
digits, 6 places, 14 sets). The system must develop rules able
to decide how similar two input vectors can be while still being
classified properly.

For a given set of speakers, there will be a few different cases
for each input vector from each speaker:
1. When the population of classifiers for a set of speakers is ini-
tially empty, the base case will simply add a matching classifier
for the input vector to the population through a covering call.
2. When the next input vector for a given speaker is similar
enough to an existing classifier for that speaker, it will not need
covering since the match set already contains the existing, simi-
lar classifier. The new input thus gets “absorbed” by the classi-
fier for a previously covered vector. This is different from sub-
sumption because it is not subject to the experience and boolean
tests used for subsumption determination. The “absorption” rate
will depend on the encoding method and covering range - larger
ranges result in more absorption and thus smaller (potentially
less accurate) populations. Since all the hyperspace encoding
methods employ some form of real-to-boundary mapping, this
absorption will affect all of them to some degree. Potentially
useful information for distinguishing two speakers can be lost in
this way if the covering range is not fine enough to create sep-
arate classifiers. The match set will also contain the classifiers

for other speakers which happen to be similar to the current in-
put, causing confusion for the system when the match set is too
large.
3. When the next input vector is distinct enough (as determined
by the covering range or boundary of existing classifiers), it will
be added to the population as a new classifier, taking up another
small section of the “coverable space” available.

C. Generalization/Specialization

Generalization means to recognize environmental situations
having equivalent consequences, but to do so using internal
structure of significantly less complexity than the raw environ-
mental data [2]. Thus, generalization can help the system to be
robust to noisy situations. The input space in the SID problem,
as shown in Fig. 2, is large but it has some consequences that
permit generalization. Kovacs’ Optimality hypothesis [29] sug-
gests that XCS can develop a complete, accurate and maximally
compact solution for a given problem. XCS has subsumption
procedures to further assist generalization. One of them is GA
subsumption which checks an offspring classifier to see if its
condition is logically subsumed by the condition of an accu-
rate and sufficiently experienced parent. If so, the offspring is
not added to the population, but the parent’s numerosity is in-
cremented. The other subsumption procedure is action set sub-
sumption which takes place in every action set. To be a sub-
sumer, a classifier must first be sufficiently accurate and suffi-
ciently experienced. This can be adjusted by changing ε0, θsub

where ε0 is an error threshold and θsub is a threshold for ex-
perience. In SID-LCS, we have selectively applied both GA
subsumption and action set subsumption depending on the ex-
periment.

However, we also need a proper amount of specialization
for the open-set environment. In multi-class problems such as
the SID problem, generalization over different speakers can be
harmful because the system attempts to find the most general
and smallest classifier set that can cover all classes altogether.
Therefore, even for the open-set problem, we need to generate
classifiers that are specified between different speakers in the
in-set. In this way, we may evolve classifiers that are maximally
generalized and at the same time, specialized enough for differ-
ent speakers.

D. The Open-set Decision Algorithm

We have introduced an algorithm for making the open-set de-
cision for SID-LCS. As discussed in section IV-B.1, XCS tends
to provide complete mappings between state-action. Therefore,
for the open-set problem, the system either has no classifiers for
the new input from out-set speaker or has some classifiers with
low prediction values. The system makes the open-set decision
based on this information (see [7] for details of prediction val-
ues). Let S be a set of actions, ai, such that S = {ai|Pai

> θA},
where θA is a threshold value for in-set speaker prediction val-
ues, Pai

is the prediction value for action ai, and ai is an action,
i.e., speaker i’s identifier, where i in in-set. The system makes
the in-set/out-set decision, i.e., A = {ai, out-set} as follows.

A =

{
argmaxai

(Pai
) if S �= ∅

out-set otherwise
(1)
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Thus, the range of A is from 0 (out-set) to number of in-set
speakers. To make this decision the system is trained in the
same way as the closed-set training.

E. Voting method

Once the system is trained with a sufficient number of vec-
tors and to a desired accuracy, the actual testing can start. Since
we get hundreds of vectors from only 4 seconds of voice data,
it is reasonable to let the system decide based on multiple vec-
tors. We can also assume that a certain number of consecutive
vectors are from the same speaker. Since the system has been
trained with each single feature vector, it can still make a deci-
sion based on a single vector first. When the system makes a
certain number of decisions, it starts the voting process. If the
winner from this voting has enough votes, the decision is final-
ized. Otherwise, system asks for more vectors until it reaches
the available limit.

Fv =

{
false if win[i] > θvw

true otherwise
(2)

If Fv is true, the system can keep introducing more votes to
reach a more accurate decision. So far, we have only used sim-
ple majority voting with a threshold θvw (minimum vote) for an
open-set decision.

VI. EXPERIMENTS

We have used the TIMIT voice data from DARPA [26] for
training and testing our SID-LCS system. Our TIMIT data sub-
set provides features from 50 male voices and 50 female voices,
generated by the feature extraction method explained in Sec-
tion IV-A. More than 1000 feature vectors are available for each
speaker .

Unless mentioned, parameters were set as follows: α =
0.1, β = 0.2, δ = 0.1, ν = 5.0, θGA = 25, ε0 = 10, θdel =
20, pX = 0.1, pM = 0.1, Pdontcare = 0.2, θsub = 20, r0 =
0.3, θr = 0.85, θe = 0.7, θg = 0.45. These parameters were
chosen based on results from previous experiments and consid-
eration of [7].

N specifies the maximal number of microclassifiers in the
population. α is the rate of distinction between accurate and
nonaccurate classifiers, β is the learning rate, δ specifies the
fraction of the mean fitness in the population under which the
fitness of a single classifier is considered in the deletion method,
ν used in the power function in the fitness evaluation of a clas-
sifier, θGA specifies the GA threshold. ε0 is the error threshold
under which the accuracy of a classifier is set to one, and must be
set according to the maximal payoff possible in an environment
(usually to one percent of this number). θdel is the experience
threshold over which the fitness of a classifier may be considered
in the deletion method, pX specifies the probability of applying
crossover during a GA application, pM specifies the probabil-
ity of mutating one attribute in the condition or the action of a
classifier during a GA application, Pdontcare is the probability
of using (1.0, 0.0) in one attribute during covering, θsub speci-
fies the required experience of a classifier to be able to subsume
other classifiers and r0 is the covering range used in the creation
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Fig. 3. System performance with various covering ranges.
cov2 = 0.2, cov3 = 0.3, cov5 = 0.5, cov7 = 0.7

of hyperrectangular conditions (li = fi − r0, ui = fi + r0). For
detailed explanation of these parameters, see [9].

By default, the experiments used an equal ratio for explo-
ration and exploitation. Each mode introduces one input at each
phase but fitness update and GA only takes place in exploration
mode. The experiments also used subsumption of classifiers.
The maximum population limit N is set depending on the size
of the input data of each experiment.

To test the learning capability, we study the number of speak-
ers the system can learn under various encoding schemes. We
present results from both closed-set and open-set experiments.
All of our experiments are conducted at least ten times, each
time using a different random seed and the results shown in
graph are averaged.

A. Covering range

When no matching classifier exists in the present population
for the current input, the system calls covering and introduces a
new classifier that covers an area including the point specified by
the current input. Covering range decides how much space the
new classifier will cover. If the covering range is appropriate, it
would cover enough area so that new inputs for the same speaker
are included while excluding the inputs from other speakers. As
shown in Fig. 2, the range of our voice feature is roughly −3.0 to
2.0. To see different behaviors of the system, we tried covering
ranges from 0.1 to 0.7. Fig. 3 shows the performance depending
on covering range. For this experiment, a covering range of
0.2 produced the best performance. Values between 0.2 and 0.3
have shown to be best so far, but it remains to be seen if this
holds for any N arbitrary speakers. Automating the way to find
the right covering range can be further investigated.

B. Dealing with complexity; Effects of Mutation/Crossover

A primary challenge in our use of XCS for speaker identifica-
tion is the vast scope of the search space: cepstral data with 14
dimensions, classifier population sizes reaching more than half
a million, and at least 6 digits of precision. As mentioned in sec-
tion V-B, this space contains on the order of (106)14 members.
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Fig. 4. Match set trendlines

Fig. 5. Growth of population and matchset (45 speakers, 350 vectors/speaker)

Attempts to use earlier versions of our modified XCS brought
much of the above complexity to our attention. A set of 80 input
vectors produced over 50,000 macroclassifiers and was barely
passing 400,000 iterations after a few months of Pentium 4 com-
putation. This is in comparison to a 3,000-macroclassifier pop-
ulation and 500,000-iteration experiments in [7].

Given the desire to process many more than 80 input vec-
tors at a time, and based on suggestions in [2], our experiments
turned to disabling mutation and crossover. When the parame-
ters pX and pM are set to zero, the system can avoid creation of
many thousands of extra items in the classifier list, at the cost of
possibly discovering more ideal combinations of speaker vec-
tor data and the resulting speaker choice. As a result of this
tradeoff, the system gains significantly in computation speed,
but loses only a few percent of correctness. The classifier list is
also smaller and easier for a human to analyze for patterns.

One pattern of interest is that the system contains classifiers
which are the “anti-answer” to the speaker identification ques-
tion. That is to say, although these classifiers give the wrong
answer from our perspective (not the correct speaker for the vec-
tor presented), they accurately predict that the system will give
zero reward if the anti-answer is chosen. Precedent for such pat-

terns was noted in [2]. This could possibly be put to use in a
multi-step identification scheme.

While the no-mutation/crossover tradeoff was sufficient to al-
low timelier experiments on 900 input vectors (45 speakers, 20
vectors each), this was not the case for an even larger input set:
12,000 input vectors from 100 speakers (120 vectors each). At-
tempts to have XCS process these enormous datasets brought a
return to the O(months) experiment rate, with 500,000 macro-
classifier populations causing out-of-memory crashes and even
fewer iterations completed.

In order to further reduce the search space, we modified the
covering method involved in match set creation. Since the sys-
tem is initially in a training mode, and the trainers know the
correct input-action pair for each vector, the system is given this
information during the covering step. This allows the system to
only create new classifiers for a single possible action per input,
rather than broadening the search space into input-action pairs
for every other possible speaker as well as the expected speaker.
Disabling the creation of ’default action’ classifiers cuts another
50% of population size.

At this stage the system is back to timeliness for very large in-
put set sizes. However, we now start to run into another problem
- the input data itself. For a covering range of 0.2, the pared-
down system creates a macroclassifier population about two-
thirds the size of the input set. Interestingly, the number of clas-
sifiers associated with each speaker is roughly equal - it might
be expected to decrease for later speakers as more of their vec-
tors get absorbed into previously-covered classifiers (See section
V-B).

Fig. 4 shows an example of the match set distribution over
the course of an experiment. The distribution is composed of
intermingled trendlines for each input vector, which follow the
general pattern of changes in the overall population. Of inter-
est are the trendline breaks, where the population is decreasing
along with the match set size. The system performance does not
decrease during these phases, suggesting that further beneficial
generalization and reduction of the population is possible.

The tapering variance of the feature vectors, noted in IV-A,
suggests that reducing the feature vector dimensionality could
further speed up the training and testing phases of SID-LCS
without reducing performance. Indeed, as displayed in Fig. 5,
initial experiments in this vein show upwards of 10% improve-
ment in correctness for large input sizes, brought about by the
ability to reintroduce mutation and crossover without sacrific-
ing timeliness. Disabling action mutation has also shown slight
benefits here.

We made an attempt to gauge the data similarity of 125,000 of
our input vectors. The system was set to behave as if all 125,000
vectors were for a single speaker. The resulting macroclassi-
fier population was one-third of the input list size, with a fairly
consistent classifier creation rate across the input iterations. We
believe that the overall data “self-similarity” will be a deciding
factor in XCS performance on the SID problem.

C. Effects of Various Encoding Methods

Butz [7] shows that different encoding methods can show
much better performance according to their dependencies on
dimension. Because our voice features do not show clear di-
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Fig. 6. Comparisons between various encoding methods (4 males, 20 feature
vectors for each).

Fig. 7. Decision distribution. (10 males, 20 feature vectors for each). Hyper-
rectangular (solid) vs. Hyperspheroidal (dashed).

mensional dependencies, we tried several different encoding
methods and observed the system performance. Three encoding
methods are being tested with the SID-LCS system: hyperrect-
angular, hyperspheroidal and general hyperellipsoidal encoding
methods. Fig. 6 shows the percent correct and the population
size in tens for each encoding method over iterations. As shown
in the graph labeled cSph, the SID-LCS with hyperspheroidal
conditions can correctly identify 80% of 80 feature vectors from
four speakers. Graph pSph shows that the hyperspheroidal en-
coding method needs a smaller number of rules than other en-
coding methods, converging to about 300 rules around itera-
tion 2000. However, varying performance differences for larger
numbers of speakers and vectors have left open the choice of
encoding method.

To see if the different encoding methods have the same diffi-

culties in classifying certain speakers, we compared the decision
distribution between speakers under different encoding meth-
ods. Fig. 7 shows the decision distribution among 10 speak-
ers. Each axis is for each speaker, with the number of times the
system made a decision for the speaker. In the ideal case (100%
correct), system decisions would be equally distributed as 1000
times for each speaker. The hyperrectangular encoding method,
plotted by the solid line, has made less than 550 decisions for
Speaker4 which let us assume that the classifiers for Speaker4
are not strong enough. However, for hyperspheres, plotted by
the dashed line, decisions for Speaker4 are closer to ideal. Also,
we can see that for Speaker1 and Speaker2, both of the en-
codings have strong classifiers. This shows that some speak-
ers are easy to recognize regardless of the encoding methods,
while some speakers are sensitive to encoding methods. This
result leads us to some interesting ideas for our future research.
For example, dynamically choosing the encoding method in the
learning phase can be considered.

D. Open-set Test

For open-set classification, a set of 10 male speaker voice vec-
tors are chosen as in-set speakers, randomly from the TIMIT
data. The system is then trained with the ten in-set speakers
and tested with 20 speakers which includes the 10 in-set speak-
ers and 10 additional speakers as an out-set. As discussed in
Section V-B, how many vectors would be enough for the train-
ing is still in question. In fact, this is a general concern of
most machine learning systems. Computational learning theory
[30] mathematically studies the relationships between the size of
training set and the quality of solution. So far, we have trained
the system with 20 vectors per speaker for open-set testing.

TABLE I

FALSE REJECT AND FALSE ACCEPTANCE FOR 200 OPEN-SET CASES.

False Reject False Acceptance
Set1 29 (14.5%) 48 (24.0%)
Set2 25 (14.5%) 65 (32.5%)
Set3 25 (12.5%) 59 (29.5%)
Set4 29 (14.5%) 53 (26.5%)

We have conducted experiments using four different sets of
data. Table I shows the results. FA (False Acceptance) repre-
sents the number of out-set vectors that are incorrectly classi-
fied as in-set. FR (False Reject) is the number of in-set vectors
that are mistakenly classified as out-set speakers. As shown, the
False Reject (FR) rate is roughly half the False Acceptance (FA)
rate. This is desirable in many applications since rejecting legit-
imate clients can cause frustration for valuable customers. All
open-set experiments use hyperspheroidal encoding. The crit-
ical factor of this open-set classification is to present enough
vectors that have sufficient information about the speaker in the
training phase. So far, we only tried 20 vectors per speaker for
more timely training. However, experiments with hundreds of
vectors per speaker are now in progress.
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E. Voting Method

The voting method, discussed in section V-E, significantly
improves the system performance. We trained the system with
10 male speakers, 20 vectors each. In the testing phase, we ini-
tially introduced 10 vectors to the system and let it request more
vectors up to 20 if needed. Using the voting method, the system
was able to correctly identify 9 of 10 speakers using 20 vec-
tors in 6 cases, and 10 vectors in 4 cases. Without the voting
method, it only showed 73.6% correct with the same set of 10
male speakers. The number of vectors for adequate voting per-
formance is still difficult to know. Notice that 20 vectors out of
250 feature vectors of 4 second voice sample are still relatively
small number of vectors; we believe that considering more vec-
tors to voting can improve the performance.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new text-independent open-set speaker
identification system using LCS. In doing so, we have investi-
gated effective ways for applying XCS to the complex problem
space of SID and observed its behavior in various situations.
Experiments are conducted for the closed-set and the open-set
speaker identification problems. The results are comparable to
recent statistical clustering methods [3]. The results show that
LCS is learning effectively in a complex problem space when
provided with new mechanism. We also confirmed that for the
speaker identification problem, the performance of each encod-
ing method, such as hyperrectangles, hyperspheroids and hyper-
ellipsoids, varies over different speaker sets.
There are several future research directions for improving sys-
tem performance. For one, encoding methods can be improved
by investigating the relation between feature vectors and each
encoding method. Deciding how many vectors are enough to
train the system is one of the important questions to answer. For
another, combining LCS with a case-injected system [31] can
be considered. The system can build case-based memory for
more efficient discriminative classification. We can also build a
hybridized system with SID-LCS and numerical clustering, for
both codebook specification and testing methods. Since SID-
LCS provides a complete map that contains not only ‘what to
do’ but also ‘what not to do’, it can help numerical methods to
make more accurate decisions.
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