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Abstract - The pheromone trail laying and trail following be-
haviors of ants have proved to be an efficient mechanism to op-
timize path selection in natural as well as in artificial networks.
Despite this efficiency, this mechanism is under-used in collective
robotics because of the chemical nature of pheromones. In this
paper we present a new experimental setup which allows to inves-
tigate with real robots the properties of a robotics systems using
such behaviors. To validate our setup, we present the results of an
experiment in which a group of 5 robots has to select between two
identical alternatives a path linking two different areas. More-
over, a set of computer simulations provides a more complete ex-
ploration of the properties of this system. At last, experimental
and simulation results lead us to interesting prediction that will
be testable in our setup.

I. INTRODUCTION

Research in collective robotics is strongly influenced by dis-
coveries made in the last 25 years about the impressive collec-
tive abilities demonstrated by social insects [1]. In these ani-
mals, natural selection has already shaped many self-organized
strategies to efficiently solve problems that are beyond the ca-
pabilities of single individuals (e.g. nest-site selection or traffic
regulation [2, 3]).

To reach such refined collective behaviors, mutual commu-
nication between agents is often a crucial requirement. This
communication can be achieved thanks to physical media, like
light and sound, or by chemical ones. Pheromones belong to
this latter category. They are chemical signals released by an
organism and are available for both direct and indirect commu-
nication.

In several ant species, pheromones are well known to be in-
volved in foraging behavior, and more precisely in recruitment
of nestmates and navigation between nest and food sources.
This is achieved through a simple stigmergic process which
results in the formation and reinforcement of a chemical trail
linking these different areas. Several experimental and theo-
retical studies showed that this self-enhanced communication
process can lead an ant colony to interesting collective behav-
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iors such as the selection of the most rewarding food source
[4] or the selection of a single path between the nest and a food
source [5] (the shortest one if the alternatives are of unequal
length, one of the alternatives at random if they are of equal
length).

During the 1990’s, a growing number of studies suggested
that this pheromone-based process should be an efficient method
to solve “human problems”: e.g. re-routing traffic in busy
telecommunication networks or dealing with the “traveling sales-
man problem” (finding the shortest route by which to visit a
given number of cities, each exactly once) [6, 7]. These stud-
ies were the first proof that the “pheromone logic” can be ef-
fectively applied to artificial systems, and therefore to groups
of autonomous robots.

But, while a great part of the studies about stigmergic pro-
cesses in embodied robotics systems focused on object cluster-
ing and sorting [8, 9, 10], only a small part was dedicated to
the use of a pheromone-like paradigm. This is partly due to the
difficulty to deal with chemical signals in terms of data emis-
sion and reception compared to physical ones (but see [11]).
Some alternatives to this issue have been proposed: e.g. (1)
heat applicators and sensors [12], virtual pheromones stored
either by (2) an external computer [13] or by (3) each robot in
the group [14], (4) ultraviolet sensitive glowpaint [15]. Solu-
tion (1) [12] is not efficient to establish a long-lasting trail. In
solution (2) [13], perception of pheromone and control deci-
sions are all performed by an external computer, thus severely
limiting the autonomy of the robots. Solution (3) [14], even
if really promising in terms of applications, rather resembles
to path formation thanks to robot chains as already suggested
in [16] than to the stigmergic path formation used by ants. At
last, solution (4) firstly developed in an artistic context does not
offer a sufficient flexibility for laboratory usage since evapora-
tion of pheromone can not be easily controlled.

In the present work, we propose to use another method to
study in laboratory conditions the properties of a robotic sys-
tem using ant trail laying and trail-following behaviors. We
suggest to substitute pheromones with light projected on the
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ground thanks to a video projector as proposed in [17, 18].
This video projector is controlled by a tracking setup which de-
tects robot positions and computes the location and strength of
the “light trail” deposit. At last, robots detect and follow light
trails thanks to two simple photoreceptors. In order to make
the “proof-of-concept” of our setup, we successfully achieved
with a group of small autonomous robots Alice [19] the collec-
tive selection of a path between a nest zone and a food source
zone among two identical possibilities, a well known experi-
ment carried out with ants by Beckers et al. [20]

Of course, this system does not solve the autonomous trail
laying problem. However its purpose is not to become a real
life application but rather to provide a cheap and very easy
to handle laboratory tool to test pheromone algorithms with
robots that perceive their environment and adapt their behavior
in a fully autonomous way.

This paper is divided into 3 sections. In section II, we de-
scribe the experimental setup and the behavioral model used in
this study. In section III on page 4, we present our first exper-
imental results in a path selection paradigm as well as a more
complete exploration of the model with simulations. At last, in
section IV on page 6, we discuss some interesting opportuni-
ties offered by our experimental setup.

II. MATERIALS AND METHODS

A. Robot Alice

1. Base robot

The micro-robots Alice were designed at the EPFL (Lausanne,
Switzerland, see the base robot on the right of Fig. 1) [19].
They are very small robots (22mm x 21mm x 20mm) with a
maximum speed of 40 mm s−1. They are equipped with two
watch motors with wheels and tires. Four infrared (IR) sensors
and transmitters are used for communication and obstacle de-
tection. Energy is provided by a NiMH rechargeable battery
allowing an autonomy of about 3.5 hours in our experimen-
tal conditions. The robots have a microcontroller PIC16LF877
with 8K Flash EPROM memory, 368 bytes RAM and no built-
in float operations. Programming is done with the IDE of the
CCS-C compiler allowing to use assembler and C commands
at the same time, and the compiled programs are downloaded
in the Alice memory with the PIC-downloader software1.

2. Trail following add-on

An add-on module has been built to allow light path detection
by the robots and robot detection by a tracking device. This
module is plugged into the top connector of the Alice robot, as
can be seen on the left of Fig. 1. This add-on is equipped with
two photodiodes pointing upwards which let the robot detect
the trail. It also carries a red LED (Light Emitting Diode) to
permit an easy and reliable tracking in conditions of changing

1http://www.ehl.cz/pic

Figure 1. Robot Alice with (left) and without (right) the addi-
tional module for light detection.

background brightness. Additionally, the LED provides a very
simple solution to indicate to the tracking device the robot’s
state: with the LED turned on, the robot does lay pheromones
and thus must be video-tracked, with the LED turned off the
robot is only exploring without trail laying and no tracking is
necessary. Technical details about this add-on can be found in
[18].

B. Experimental setup

The experimental setup has three parts: a diamond shaped maze,
a robot tracking device and a pheromone deposit device. The
whole setup is held by a 2m x 1.5m x 3m aluminium cage with
three opaque walls to avoid robots or tracking device being dis-
turbed by external light. The fourth wall is left open and points
towards a direction with no light source. All experiments are
videotaped with a Sony 3CCD DCRTRV950E video camera.

30˚

125cm

9cm
22.5cm

Source NestA1

A2

Figure 2. Blueprint of the experimental setup.

1. Maze

The maze is built with white cardboard (5mm thick) according
to the blueprint in Fig. 2 (wall height of 2.5cm). It lies on the
ground of the cage. Each extremity of the maze is an octagonal
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area which represents either the nest or the source. In each of
these areas, two infrared transmitters built into the walls con-
tinuously emit a signal (different for each area) which allows
the robots to know if they are in the nest or the source. Nest
and source are linked by a diamond shape maze with two arms
(A1 and A2) of the same length deviating from each other by a
60◦ angle.

2. Tracking device

The goal of the tracking device is to detect the red LED on the
top of each trail laying robot. The tracking device is made up
with a firewire digital video camera Unibrain Fire-i400 (res-
olution 640x480) hung about 1.5m above the maze and con-
nected to a laptop computer Dell Latitude D810 thanks to a
1394a PCMCIA card. Image acquisition is done with the open
source CMU 1394 Digital Camera Driver (Robotics Institute,
Carnegie Mellon University2) and image treatment is done with
the open source OpenCV library (Intel3).

Usually a picture is stored with the three channels RGB
(Red, Green, Blue). If one would just look at the red chan-
nel, he could see the robot’s LED as a bright spot, but also all
virtual pheromone trails. Additionally, the red portion of the
LED changes if the robot is in a dark or in a bright area. A
better way for detection is to calculate the HSV channels (Hue,
Saturation and Value) from the RGB channels. The resulting
H value is the angle in a color circle. If the red color does get
brighter or darker, the H value will stay the same. Once the
H-channel is extracted, white noise is removed thanks to mor-
phological opening (erosion followed by dilatation) with a 3x3
matrix. Then a maximum and minimum threshold are applied
to turn the resulting image into a binary one and a fit ellipse
function returns the centre positions of the robots.

The described tracking function has proven to be very sta-
ble. The HSV decomposition is a reliable way to track the red
spot. Even with room light turned on, or bad camera settings,
the program can still track the robots in most situations.

3. Pheromone deposit device

Once the position of a robot emitting pheromones is known,
light has to be sent to this location. An output image (800 x
600 pixels) with luminous trails is produced and displayed in
a window. This window is running in full screen mode on the
enhanced desktop of Windows XP the video projector (Sony
VPL-CX5) is connected to. To obtain a sufficiently large im-
age to cover the whole maze, the video projector is hung 3m
above it. The image is composed with uniformly blue spots
(blue is chosen to contrast with the red LED of robots), each of
them centred on the successive positions of robots, but without
overlapping between the successive spot of a given robot. The
light intensity of the blue spot is used to simulate the inten-
sity of the pheromone deposit. Positions of pheromone spots
are also corrected to take into account camera lens distortion

2http://www.cs.cmu.edu/ iwan/1394/
3http://sourceforge.net/projects/opencvlibrary/

(thanks to the Camera Calibration Toolbox for Matlab4) and
misaligning of the tracking camera and the trail laying video
projector. Each point has a 6cm diameter. This diameter was
chosen to allow two robots to cross each other and thus to re-
duce traffic jam on the trail.

At last, if no other deposit is done at a given point, light
intensity (I) decreases following an exponential decay to sim-
ulate pheromone evaporation:

I(t) = I(t−∆t) exp((log(1/2)/tc)∆t)

With t, the current time, ∆t, the period between two evapora-
tion time-steps and tc the characteristic evaporation time. To
lower the processing charge (the previous computation is ap-
plied to each pixel in the image), evaporation is triggered every
5 seconds. All treatments included, the tracking and trail lay-
ing software allows an effective speed of about 5 images per
second. This is sufficient for our needs.

C. Behavioral model

The behavioral model is a generic and simplified model of trail
laying and trail-following behaviors in ants. It aims at captur-
ing the essential features needed to achieve a path selection “as
ants do”.

In the absence of light pheromones, a robot (laying a trail
or not) moves according to a correlated random walk, with a
strong tendency to continue in the same general direction. This
behavior is called “exploratory behavior”. If the robot detects
an obstacle, it tries to avoid it by turning in the opposite di-
rection. This behavior is called “avoidance behavior”. If the
robots detects a luminous trail with its photoreceptors, it tries
to turn towards the one receiving more light. This behavior is
called “trail following behavior” (see figure 5 on page 5).

Each of these behaviors triggers the computation of a move-
ment vector. The three vectors are summed together with dif-
ferent weights to obtain the new direction at each time step
(50ms). The exploratory vector points ahead of the robot and
changes randomly between−90◦ and 90◦ after a time drawn in
a decreasing exponential distribution. The avoidance vector is
the sum of four vectors, each of them pointing in the opposite
direction of one of the four proximity IR sensors of the robot.
Their intensity grows with the intensity of the signal received
by their respective sensor. At last, the trail following vector
aims either to the right or the left of the robot. Its direction and
intensity are controlled by the difference between light inten-
sities perceived by the right and the left photoreceptor.

The trail laying behavior of the robot is controlled as fol-
lows. The robot begins to lay pheromone (i.e. to switch on
its red LED) only when it leaves the source area (i.e. when it
loses the IR source signal, see section 1 on the preceding page
of section B on the previous page). It then stops trail laying
(i.e. switches off the red LED) when it enters either the nest

4http://www.vision.caltech.edu/bouguetj/calib_doc/
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Figure 3. Pictures of the simulations in Webots. Top: three
simulated robots Alice. Bottom: overview of the simulated
setup.

or the source area (i.e. when it detects the IR nest or source
signals).

D. Simulations

Before any experiment, a set of 8100 simulations was done
with the Webots software (version 5.1.9) with physics engine
switched on [21] on a Power Mac G5 2x2.3 GHz with Mac OS
X 10.4.8. In the simulations, pheromone deposits were gray
spots laid on the ground by the simulated robots. The gray level
(0=white, 1=black) was chosen to represent the intensity of the
pheromone deposit. Simulated robots followed the pheromone
trail thanks to light sensors installed under their body.

Simulations were used to assess the influence of three pa-
rameters of the model: the number of robots (1, 2, 3, 5 and 10),
the intensity of the pheromone deposit (six different intensities
were tested between 0.03 and 0.5) and the characteristic evap-
oration time tc (see above, 9 different times were tested, varied
between 60 and 3600 seconds). For each combination of pa-
rameters, 30 simulation runs were done. They were intended to
estimate the parameters to use in experiments with real robots
so as to obtain stable decisions.
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Figure 4. Mean duration of a choice event (gray levels, in min-
utes) as a function of the intensity of the pheromone deposit,
the characteristic evaporation time tc and the number of robots.

III. RESULTS

This section is divided in three parts. After a brief descrip-
tion of the calculation of the probability to choose each arm of
the maze, we present the exploration with simulations of our
robotics model followed by our first experimental results ob-
tained with robots Alice. We show results of ten experiments
with one robot alone and ten experiments with five robots.
Simulations and experiments cover a real time period of 60
minutes.

A. Data analysis

For each minute of each simulation and experimental run, we
observed the number of robots coming from the source and en-
tering in the arms A1 (nA1) and A2 (nA2). We then computed
the proportion Pi of robots entering arm A1 over a sliding time
window of ten minutes. That is, for each minute i ∈ [0 : 50],
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we computed:

Pi =
∑

i→i+10(nA1)∑
i→i+10(nA1 + nA2)

We thus obtain the temporal dynamics of the probability
for the robots to choose each arm of the maze (for an exam-
ple of this dynamics, see Fig. 6-A). At the beginning of the
experiment (i = 0), P0 was set to 0.5.

B. Simulation results

In order to evaluate the efficiency of each combination of pa-
rameters we must defined a criterion representative of a stable
choice. We first defined a choice event each time the probabil-
ity Pi becomes superior to 0.75 (A1 chosen) or inferior to 0.25
(A2 chosen). For each simulation, we counted the number and
the duration of these choice events. For each set of parameters,
we computed the mean duration of choice events. This mean
duration is a good indicator of a stable choice: if its value is
low, it means that either no choice was made (the probabil-
ity stays between 0.25 and 0.75) or the choice was not stable
(many choice events of short duration). A high value indicates
a strong and stable choice. The results for our simulations are
shown in Fig. 4.

This figure clearly illustrates the three following points:

• Whatever the number of robots, the highest mean dura-
tion values occur only with long characteristic evapora-
tion times (1200 to 3600 seconds). If evaporation is too
fast, no stable choice can take place.

• When the number of robots grows, the pheromone de-
posit intensity needed to obtain a stable choice decreases.
In other words, the individual cost of pheromone produc-
tion decreases with the size of the group.

• At last, the highest mean duration (i.e. the maximum in
each plot) grows with the number of robots, reach a max-
imum with 5 robots and then drop for 10 robots. This is
mainly due to the saturation in pheromone of both arms
of the maze that occurs more frequently (but not every
time) when the number of robots grows.

The same analysis was done for robots coming from the nest.
Because no differences with robots coming from the source
were found, these results are not shown.

C. Experimental results

A picture of an experiment with robots Alice following a trail is
shown in Fig. 5. To obtain the best experimental results accord-
ing to the simulation data, we chose to work with a group of 5
robots, a deposit intensity of 0.12 and a characteristic evapora-
tion time of 1800 seconds. However, a first set of experiments
showed that these parameters in our experimental setup led the

Figure 5. Three robots Alice pursuing a luminous trail.

system to a pheromone saturation of the whole maze. The rea-
son for this problem is the following. The intensity of phero-
mone deposit (in simulations and experiments) varies between
0 and 1 according to a scale with 256 steps (256 gray levels in
simulations, 256 blue levels in experiments). But the dynamic
range, i.e. the number of undertones of a given color, our video
projector is able to display is below this number. Therefore,
the luminous trail intensity grows faster in experiments than
in simulations. To counterbalance this effect, we lowered in
experiments the characteristic evaporation time to 600 and the
intensity of the pheromone deposit to 0.06. We used the same
parameters in experiments with one robot.

For each experiment (one and five robots), we computed in
each direction (from the nest, forward; from the source, back-
ward) Pi as described above. We represented Pi as a function
of the time for these four conditions in Fig. 6-B.

This figure clearly shows that for one robot and whatever
the moving direction, the probability Pi stays around 0.5 and
rarely goes up 0.75 or down 0.25. Therefore we can conclude
that no choice happens in these experiments and we can con-
sider them as a kind of “no choice” control.

For five robots, the situation is very different. In most of
the experiments, Pi quickly overcomes either the high (0.75)
or the low (0.25) choice threshold, and then remains beyond
these limits. 9/10 of the experiments in the forward direction
and 7/10 in the backward direction ended with a clear choice
for one of the two arms. The difference between forward and
backward runs is not significative (χ2=1.25, p=0.2636).
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Figure 6. Temporal dynamics of the probability Pi to choose
the arm A1. Box A: Simulations. Box B: Experiments. In each
box: Left, 10 repeats with one robot; Right, 10 repeats with
five robots; Top, robots are moving from the nest to the source
(forward); Bottom, robots are moving from the source to the
nest (backward).

IV. DISCUSSION

In this paper, we presented a cheap and easy to handle exper-
imental setup to test in laboratory conditions the applicability
of the trail laying and trail following behaviors of ants to con-
trol a group of small autonomous robots. The proof of concept
was done thanks to a very simple experiment in which a group
of robots has to choose between two identical paths that link
their nest to a food source. Our results show that a group of 5
robots is able to efficiently solve this task, simply following a

very simple and generic model of trail laying and trail follow-
ing behaviors inspired by research about ant foraging.

This paper also presents results of computer simulations
that provide a more detailed description of the properties of this
robotics system. It appears that in such a system, a collective
choice occurs only if the speed of pheromone evaporation is
not too fast. Results also suggest that an optimal number of
robots is required to get a quick and stable collective choice.
At last, it seems that while the number of robots in the system
grows, the quantity of pheromone needed to obtain a choice
decreases: the individual cost of laying pheromone decreases
with the size of the group.

Such an exploration of system’s parameters (whatever the
method used, simulations, artificial evolution, etc) is useful to
estimate the combination of factors that would give the best re-
sults in real experiments and avoid losing too much time find-
ing them experimentally. It is also useful to gain some insight
about the way the system behaves. However, at least in the
context of biological based robotics, we think that experimen-
tal validation is the best proof that a given control algorithm
works as it was hypothetized [22, 23] and that simulation only
remains a representation of the reality with all its lacks and
simplifications.

Now that the feasibility of the project is established, we
can consider a more systematic study of the collective prop-
erties of our system and of their control. The experimental
paradigm and the behavioral model used in this work, although
well adapted to illustrate our intentions, are very simple. They
do not bring new results to the study of collective decisions or
swarm intelligent systems. Of course that was not the purpose
of this article which is rather a description and a validation of
our experimental setup. But now we can ask more interest-
ing questions and test them with our setup. In particular, what
would happen in more complex situations? How would the
system deal with more elaborate networks?

It is now known that artificial agents [7] as well as real
ants [20, 24] are able to face networks with more than two al-
ternatives and/or with alternatives of dissimilar qualities. One
of our current challenge is now to test pheromone based con-
troller in two additional setups: the first one, with two arms
of different lengths, to test whether the robots are able to col-
lectively choose the shortest one as ants do; the second one,
with several choice points (similar as the one used with ants by
Vittori et al. [24]), to test whether the robots are able to deal
with complex networks, how they manage their traffic between
several possible routes and how they redistribute their traffic
if jamming appears. Potential applications of such controllers
can be found in adaptative car traffic management or network
exploration and exploitation by groups of robots (sewer, pip-
ing, landmine, etc).

Another promising challenge would be to provide some
control algorithms such that the group of robots is able to adapt
its behavior to changing environmental conditions in a fully au-
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tonomous way. One of the simulation results is that it exists an
optimal number of robots that allows a quick and stable col-
lective choice. This result is consistent with other works about
self-organized collective behaviors in robotics [25, 26]. We
believe that this optimal number strongly depends on the con-
figuration of the experimental setup: length of path between
nest and source, width of arms of the maze, etc. And in an un-
known environment, it would be hard to estimate this optimal
number. Thus, the group of robots should dynamically adapt
its size to remain efficient.

To increase group size, robots coming back from the source
should recruit other robots. This could be easily done by letting
these robots emit a signal (I.R. signal for instance) stimulating
robots in the nest to start moving. Here again, recruitment pro-
cesses used by ants could be used as a source of inspiration.
For instance, it was showed in [25] that an ant-inspired tandem
recruitment increase the foraging efficiency of groups of 3 to
12 robots.

Recruitment processes should also be counterbalanced by
mechanisms able to reduce group size. This is necessary to
avoid the system to overshoot the optimal group size, and thus
to become less efficient. These mechanisms could act on dif-
ferent parts of robot behavior: robots could stop laying phero-
mone or reduce the quantity of deposited pheromone; they
could stop recruiting; or they could stop foraging. But they
should all rely on a less intuitive mechanism able to evaluate
the number of robots currently involved in the task. The most
promising way to evaluate such a number could again come
from the ants. Indeed, ants are able to evaluate the density of
their nestmates thanks to the rate of antennae contacts between
them and to use this information to regulate their traffic organ-
isation [27, 28, 3]. Such contacts between robots could then be
used to estimate the local density of agents. And then, if this
density goes above a threshold value, trigger one or several of
the group size limiting behaviors mentioned above.

If control algorithm can be easily tested with our setup, it
is conspicuous that it remains a tool for laboratory studies and
not for real life applications. Nevertheless we are confident that
an appliable solution to the problem of pheromone laying and
sensing will be soon available. Several leads are promising
concerning robot navigation in human constructions. For in-
stance the use of UV sensitive glowpaint [15] (this paint emits
green brightness after being stimulated by a UV emitter carried
by a robot), if not practical for laboratory studies, becomes an
interesting alternative for usage in urban networks as sewer or
waterway. One can also consider the use of RFID dispersed
in everiday environment [29] that could act store pheromone
deposit as discretisized spots. However robots are not really
autonomous with these alternatives. Indeed, in unknown envi-
ronments the problem is more challenging and requires robots
able to lay and to sense pheromone by themselves. And at our
knowledge no satisfactory alternative has been suggested by
now other than the use of chemical markers and sensors [11].

To conclude this paper, we would like to emphasize the fact
that the “pheromone logic” provides very interesting opportu-
nities in terms of control algorithms for groups of autonomous
robots. And most of these opportunities can now be tested with
real robots thanks to our “light pheromone” trail laying setup.
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