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Abstract—Inferring gene regulatory networks from expression
data is a very difficult problem that has raised the interest of the
scientific community. Different algorithms have been proposed
to try to solve this issue, but it has been shown that the
different methods have some particular biases and strengths,
and none of them is the best across all types of data and
datasets. As a result, the idea of aggregating various network
inferences through a consensus mechanism naturally arises. In
this paper, a common framework to standardize already proposed
consensus methods is presented, and based on this framework
different proposals are introduced and analyzed in two different
scenarios: Homogeneous and Heterogeneous. The first scenario
reflects situations where the networks to be aggregated are
rather similar because the are obtained with inference algorithms
working on the same data, whereas the second scenario deals with
very diverse networks because various sources of data are used
to generate the individual networks. A procedure for combining
multiple network inference algorithms is analyzed in a systematic
way. The results show that there is a very significant difference
between these two scenarios, and that the best way to combine
networks in the Heterogeneous scenario is not the most commonly
used. We show in particular that aggregation in the Heterogeneous
scenario can be very beneficial if the individual networks are
combined with our new proposed method ScaleLSum.

I. INTRODUCTION

Inferring gene regulatory networks from expression data is
a very difficult problem that has seen a continuously rising
interest in the last years and presumably in the years to come
due to its applications in biomedical and biotechnological
research.

Several studies have compared performances of network-
inference algorithms [1], [2], [3], [4], [5], [6], [7], [8], reaching
the conclusion that none of the methods is the best across all
types of data and datasets. Furthermore, the different algo-
rithms have specific biases towards the recovery of different
regulation patterns, i.e., Mutual Information (MI) and corre-
lation based algorithms can recover feed-forward loops most
reliably, while regression and Bayesian Networks can more
accurately recover linear cascades than MI and correlation
based algorithms [6], [9].

These observations suggest that different network-inference
algorithms have different strengths and weaknesses [10].
Therefore, combining multiple network inference algorithms
emerges as a natural idea to infer a more accurate gene

regulatory network (GRN), leading to a consensus among
Homogeneous networks. We use the term homogeneous here
to refer to networks obtained from the same experimental data
through the use of different algorithms. But there are other
situations where different networks describing the same cells
are derived from different original data sets coming from very
different technologies such as chip data, microarray, rnaseq
and so on. We will refer to this situation as the Heterogeneous
scenario.

Behind all state of the art consensus network algorithms
one can identify a normalization step followed by an aggre-
gation step. The main contributions of this paper are 1) to
systematically analyze the combination of normalization and
aggregations strategies, creating in some cases new consensus
network algorithms and 2) to evaluate the performances of the
algorithms in both the Homogeneous and the Heterogeneous
scenarios. As will be seen, the conclusions highlight a clear
difference in terms of expected performances and algorithm
selection in both cases. In order to precisely measure the
algorithms performances and to control the degree of homo-
geneity without depending on any specific network inference
algorithm, we rely on a synthetic network generation method
presented in this paper. With this approach we can have a
full control on the homogeneity and the characteristics of the
individual networks.

II. METHODS

A. State-of-the-art

In order to create a consensus network from initial indi-
vidual network inference algorithms, several strategies have
been used. Assuming that each algorithm provides a score for
each edge of the network, the simplest strategy consists of
computing the average of the scores across the N individual
networks [11].

Other strategies do not rely on the actual edge scores but
on their rank defined in an ordered list. The method proposed
in [6] is based on rank averaging: If eij denotes an edge
connecting genes i and j and rn(eij) the rank of the edge
for network n, the final rank is computed with:

r(eij) =
∑

1≤n≤N
rn(eij) (1)

The consensus network is obtained from the list composed of
the sorted values of summed ranks r(eij). This method called978-1-4799-7560-0/15/$31 c©2015 IEEE
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RankSum is also known as Borda count.

TopkNet [9] is based on the observations made in [6],
which showed that integration of algorithms with high-
diversity outperform the integration of algorithms with low-
diversity [6]. First, for each individual network the predictions
are ranked, and then the final rank for each edge is the result of
applying a rank filter of order k, which returns the kth-greatest
value (RankOrderFilterk) over all the N values:

r(eij) = RankOrderFilterk {r1(eij), . . . , rN (eij)} (2)

The computation of a rank value in the RankSum and the
TopkNet algorithm can be viewed as a normalization of the
score values before their aggregation with the sum or the rank
order filter. Based on this observation, we present an analysis
of potential normalization and aggregation strategies in the
following section.

B. Systematic consensus analysis

As previously mentioned, the consensus network estima-
tion can be seen as involving two distinct steps. The first one
transforms the different network scores, sn(eij), in order to
have a common scale or distribution. This process will be
referred to as “Normalization”. For example, [6], [9] use Rank,
whereas [11] does not perform any normalization which can
be seen as the Identity normalization.

Then, the second step is the “Aggregation” of the N
different edge scores into one consensus score for every edge.
In [6] and [11] this process is done through the Sum process,
while [9] uses the rank order filter.

We now extend this idea to propose new algorithms. First,
different Normalization options are presented, and then the
distinct Aggregation proposals are discussed. Finally, their
combination will lead to different consensus network algorithm
proposals.

1) Normalization:
Five different normalization techniques will be analyzed. Let
us call tn(eij) the normalized value assigned to edge eij for
the network n.

a) Identity:
The Identity does not apply any transformation to the original
scores of the inferred network:

tn(eij) = sn(eij) (3)

b) Rank:
The Rank replaces the numerical score sn(eij) by their rank
rn(eij) such as the most confident edge receives the highest
score. The Rank method preserves the ordering of the scores
of inferred links but the differences between them are lost:

tn(eij) = rn(eij) (4)

c) Scale:
A classical normalization of a random variable involves a
transformation to remove the effect of the mean value and to
scale it accordingly to its standard deviation. The differences
between scores are preserved:

tn(eij) =
sn(eij)− μn

σn
(5)

where μn and σn are respectively the mean and standard
deviation of the empirical distribution of the inferred scores
sn(eij) for network n. This normalization does not assure a
limited range of values.

d) RankL:
The previous proposals normalize the whole network only
taking into consideration their score values. Extensions of the
last two normalizing methods are proposed now. The methods
take into consideration the local context of the scores of gene
i and j for computing the normalized score of interaction
tn(eij). In the RankL method (L stands for Local), two local
ranks are initially computed: rn,i(eij) computes the rank of the
score sn(eij) among the scores of all edges connected to gene
i, that is the rank of sn(eij) in the list {sn(eil)}l∈{1,...,G},
where G is the number of genes in the network. Similarly,
the rank of the score sn(eij) among the scores of all edges
connected to gene j is computed and denoted by rn,j(eij).
Finally, the final normalization is obtained by averaging the
two local ranks:

tn(eij) =
rn,i(eij) + rn,j(eij)

2
(6)

This normalization is inspired by [12]. Instead of choosing
a threshold to get related genes, the authors of [12] propose to
use mutual correlation ranks by taking a geometric average
of the the two ranks rn,i(eij) and rn,j(eij). They used a
“geometric average” to penalize the difference of ranks with a
logarithmic manner, but since we do not use correlation ranks,
we decided to use the classic arithmetic average.

e) ScaleL:
Finally, following the same type of reasoning, a local version
of the scale normalization, called ScaleL, can be defined as:

tn(eij) =
√
ζ2i + ζ2j , with ζi =

sn(eij)− μsi
σsi

,

and ζj =
sn(eij)− μsj

σsj
(7)

where μsi and σsi denote the mean and standard deviation of
the empirical distribution of the scores of all edges connected
to gene i. They are defined as:

μsi =
1

G

G∑
l=1

sn(eil),

σsi =

√√√√ 1

G− 1

G∑
l=1

(sn(eil)− μsi)
2 (8)

Note that this rule is related to the CLR network inference
method [1] which can be interpreted as a normalization strat-
egy as pointed out in [13]. This normalization step highlights
a few links per node that stand out among all other scores of
the gene. In this way, a “core” network with the most relevant
(and presumably true) links is obtained.
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Table I. STATE-OF-THE-ART CONSENSUS NETWORK ALGORITHMS.

Normalization Aggregation Name Reference

Identity Sum IdSum [11]

Rank Sum RankSum [6]
Rank Top3 RankTop3 [9]
Rank Median RankMed [9]

2) Aggregation:
Three different aggregation techniques will be studied. Assume
a(eij) denotes the aggregated value of the normalized scores.

a) Sum:
The Sum is a simple summation process that is equivalent to
the average of the N values of each link:

a(eij) =
N∑
n=1

tn(eij). (9)

b) Top3:
The Top3 is a particularization of the (RankOrderFilterk) with
k = 3. We decided to use this particular value based on
the observations of [9] which shows that the best integrated
networks are obtained with k ∈ {5 − 7} when high number
of individual networks are available and there exist several
low-performance algorithms. But, when a small number of
individual networks are available and none of them has a
very small performance compared to the others, then the best
integrated networks are obtained with k ∈ {1− 3}. Since our
synthetic study includes a small number of individual networks
and all of them present similar performances (see section III),
we are in the second case and therefore, we decided to choose
k = 3. The Top3 is the 3rd rank order filter of the N values,
which is defined as taking the 3rd greatest value of the N
values of each link:

a(eij) = RankOrderFilter3 {t1(eij), . . . , tN (eij)} (10)

c) Median:
Finally, the Median method assigns the median of the N
values:

a(eij) = Median {t1(eij), . . . , tN (eij)} (11)

This method could be seen as a particularization of the
(RankOrderFilterk) with a fixed value of k = N/2.

3) Consensus network algorithms:
The combination of 5 possible normalization strategies with 3
possible aggregation rules gives rise to 15 different consensus
network algorithms. In terms of nomenclature, the algorithms
will be referred to by the two names of the two steps, such
that each word or abbreviation of the two steps begins with a
capital letter.

Note that some of the combinations give a consensus
method that has already been published. These methods are
listed in Table I.

III. HOMOGENEOUS VERSUS HETEROGENEOUS

NETWORK SCENARIO

The Homogeneous scenario reflects the case where the in-
dividual networks have been inferred with different algorithms
but with the same type of data like gene expression as in [6].
In order to get an estimation of the degree of homogeneity
that might be expected in this type of scenario, we have
downloaded the networks from the supplemental information
of [6]. To measure the homogeneity between networks, we
have converted them to vectors and computed the correlation
between the networks obtaining a mean correlation of 0.6.

On the other hand, the Heterogeneous scenario reflects
the case where the individual networks have been inferred
from very different kind of data as in [11]. The N individual
networks are very different, hardly having any edge in com-
mon. To get an estimation of the expected correlation in this
scenario, we have downloaded the networks from supplemental
material of [11] and converted them to vectors. As before we
have computed the correlation between the networks obtaining
a mean correlation of 0.06.

A. Synthetic network generation

In this scenario, the different consensus methods are meant
to be used for the integration networks obtained through the
use of real inference algorithms. However, in the present
paper we want to precisely and faithfully evaluate the different
consensus network alternatives while controlling the degree of
homogeneity between networks without depending on any
specific network inference algorithm. Therefore, instead of
relying on real network inference algorithms, we rely on a
subsampling strategy applied on a real network (TrueNet).

1) Homogeneous scenario:
The N individual networks are very similar and have many
edges in common. To create the dataset corresponding to this
scenario, a unique network is first created by a subsampling
of TrueNet. Then, this network is altered N different times by
introducing hard errors (false positives and negatives) and by
adding a Gaussian noise to the scores associated to all edges.
The alteration parameters are chosen so that the homogeneity
of the resulting networks is similar to the one obtained when
various inference algorithms are applied on the same data.

2) Heteregeneous scenario:
In this case, the N individual networks are very different and
hardly have any edge in common. To reflect this situation, N
different networks are generated through various independent
subsampling of TrueNet. As previously, these networks are then
altered N different times with the introduction of hard errors
(false positives and false negatives), and then with soft errors
through the addition of Gaussian noise.

3) Subsampling strategy:
The networks of the two scenarios are generated with the
Algorithm 1, which is illustrated with a toy example in
Figure 1. A toy TrueNet is shown in Figure 1a. It has 15 genes
(illustrated with circles) and 20 edges (illustrated with lines).
The subsampling step of Algorithm 1 selects randomly τ%
edges of the TrueNet to get νi. In Figure 1b a particular case
of νi is shown, in this case τ = 50 so νi has 10 edges. Then,
m% of errors (both false positives and false negatives) are
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(a) TrueNet (b) Subsampled net-
work νn

(c) νn with errors

Figure 1. Toy example illustration of the first steps of Algorithm 1.

introduced. Following the example and with m = 30, this will
introduce 3 false negatives and 3 false positives to obtain ηi.
The resulting network is presented in Figure 1c, where the
dashed lines represent the false positives. The following steps
of Algorithm 1 are meant to generate realistic networks, first a
Gaussian noise with 0 mean and δ standard deviation is added
to the network, after this process a constant value is added to
shift the scores values in order to ensure non-negative scores
in the networks. This step introduces more false positives with
a low confidence (if δ is small) and also introduces variability
of the scores in the true “recovered” edges.

Input: TrueNet, Heterogeneous, N

Output: N individual synthetic networks
(
{ηn}Nn=1

)

n ← 1;
while n ≤ N do

if Heterogeneous then
νn ← Subsample edges from the TrueNet;

else
if n==1 then

ν1 ← Subsample edges from the TrueNet;
else

νn ← νn;
end

end
ηn ← Introduce errors in the network νn;
Add noise to ηn;
n ← n+ 1

end
Algorithm 1: Generate N individual synthetic networks.

IV. EVALUATION PROCESS

A network inference problem can be seen as a binary
decision problem. After the thresholding of the network scores,
the final decision is a classification: for each possible pair of
genes, an edge is defined or not. Therefore, the performance
evaluation can be assessed with the usual metrics of machine
learning like Receiver Operating Characteristic (ROC) or Pre-
cision Recall (PR) curves. In the present paper, we use the Area
Under Precision Recall (AUPR) but we do not evaluate the
whole network and only take into account the most confident
edges, as other papers have already proposed [8], [11], [14].
In order to have statistically significant measures, we choose
to evaluate the 20% highest confidence edges as is done in
[8], obtaining the AUPR20 measure. We use five different
TrueNet networks to evaluate the consensus algorithms, that

Table II. NETWORKS USED IN THIS STUDY AND THEIR

CHARACTERISTICS.

Network Name Topology Genes Edges

Rogers1000 R1 Power-law tail topology 1000 1350
SynTReN300 S1 E. coli 300 468
SynTReN1000 S2 E. coli 1000 4695

GNW1565 G1 E. coli 1565 7264
GNW2000 G2 Yeast 2000 10392

Table III. ALGORITHM 1 PARAMETERS TO GENERATE THE

EXPERIMENTAL SETUP.

Parameter Value

Number of individual networks (N ) 10
Subsampling (t) % 15

Introduced errors (m) % 20
Gaussian standard deviation (δ) 0.3

are generated with three different GRN simulators: GNW
simulator [15], SynTReN simulator [16] and Rogers [17].
Four of these networks are real in vivo networks. The main
characteristics of these networks are collected in Table II.

V. RESULTS

As mentioned before, the performances of the various algo-
rithms are benchmarked with the networks of Table II under the
two scenarios described in the previous section: Homogeneous
and Heterogeneous network scenarios. In order to generate
the individual networks we use the Algorithm 1 with the
parameters specified in Table III. Using these values, the mean
correlation between the networks in the Homogeneous case is
0.66 and the mean correlation of the Heterogeneous case is
0.003, which are similar values to the ones obtained in real
situations (see section III).

With this experimental setup we generate the individual
networks for each one of the networks of Table II, and this
procedure is repeated 10 times in order to have different runs
of Algorithm 1 and therefore different pools of individual
networks.

Since the networks of Table II have different sizes and
topological properties, we normalize the AUPR20 of the con-
sensus algorithms for each of the 10 runs with the mean
AUPR20 of the individual networks (μAUPR20;ind

).

AUPR20;norm =
AUPR20

μAUPR20;ind

(12)

With this approach we can compare the different networks.
Moreover, it is possible to know if the consensus method is
improving on the average network (if AUPR20;norm is greater
than 1).

The results reported in Figures 2 and 3 are presented in
the form of boxplot of the normalized AUPR20 of different
consensus algorithms across all networks. Each box represents
the statistics of a method, the white dot represents the median
of the distribution, the box goes from the first to third quartile,
while whiskers are lines drawn from the ends of the box to the
maximum and minimum of the data excluding outliers which
are represented with a mark outside the whiskers. More infor-
mation on the boxplot can be found in [18]. Figure 2 presents
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Table IV. PERFORMANCES (AUPR20) IN THE HOMOGENEOUS SCENARIO.

R1 S1 S2 G1 G2

μ σ(×103) μ σ(×103) μ σ(×103) μ σ(×103) μ σ(×103)

Individual 0.073 2.919 0.106 4.027 0.192 3.627 0.171 2.096 0.165 2.375

IdSum 0.14 2.74 0.15 6.93 0.274 3.176 0.268 2.198 0.267 3.353
IdTop3 0.128 5.947 0.145 7.397 0.265 5.924 0.257 3.607 0.251 5.446
IdMed 0.135 3.592 0.149 8.423 0.272 3.715 0.262 7.205 0.261 6.036

RankSum 0.118 2.361 0.122 5.72 0.23 3.598 0.226 1.895 0.226 1.925
RankTop3 0.131 3.402 0.148 6.403 0.269 3.762 0.26 2.35 0.258 3.059
RankMed 0.141 3.189 0.151 6.833 0.276 2.871 0.27 2.331 0.268 3.273
ScaleSum 0.14 2.662 0.15 7.097 0.275 3.029 0.269 2.348 0.268 3.213
ScaleTop3 0.131 3.424 0.148 6.307 0.269 3.747 0.26 2.352 0.258 3.057
ScaleMed 0.14 3.226 0.151 6.728 0.276 2.908 0.269 2.333 0.268 3.219

RankLSum 0.12 2.759 0.12 6.077 0.19 5.793 0.171 4.235 0.174 2.44
RankLTop3 0.105 3.556 0.083 8.465 0.104 5.024 0.086 5.45 0.066 1.028
RankLMed 0.138 2.76 0.122 9.425 0.163 4.744 0.14 5.955 0.128 2.06
ScaleLSum 0.142 2.771 0.149 7.045 0.26 3.686 0.25 2.718 0.253 2.823
ScaleLTop3 0.131 3.643 0.143 6.588 0.242 4.09 0.226 2.944 0.229 2.752
ScaleLMed 0.14 3.004 0.147 6.64 0.259 3.701 0.246 2.719 0.249 2.809

Table V. PERFORMANCES (AUPR20) IN THE HETEROGENEOUS SCENARIO.

R1 S1 S2 G1 G2

μ σ(×103) μ σ(×103) μ σ(×103) μ σ(×103) μ σ(×103)

Individual 0.04 1.549 0.062 3.13 0.113 1.611 0.099 1.509 0.094 1.269

IdSum 0.135 6.9 0.203 15.305 0.334 10.795 0.295 8.135 0.282 12.85
IdTop3 0.07 17.018 0.104 16.648 0.185 41.759 0.152 28.039 0.137 35.926
IdMed 0.013 3.6 0.03 7.619 0.047 3.172 0.039 2.38 0.035 9.359

RankSum 0.005 0.811 0.017 3.355 0.021 2.693 0.014 1.328 0.013 1.119
RankTop3 0.131 8.387 0.169 16.796 0.293 6.376 0.27 5.311 0.265 4.463
RankMed 0.01 2.21 0.026 5.883 0.04 3.287 0.033 3.897 0.03 1.619
ScaleSum 0.15 7.287 0.224 15.17 0.362 4.103 0.323 5.796 0.312 5.488
ScaleTop3 0.131 8.389 0.169 16.854 0.293 6.37 0.27 5.319 0.265 4.463
ScaleMed 0.014 2.086 0.031 8.164 0.048 3.855 0.041 4.388 0.038 2.143

RankLSum 0.014 2.741 0.036 5.102 0.12 3.815 0.093 3.851 0.09 3.758
RankLTop3 0.124 6.755 0.156 15.731 0.379 5.437 0.347 5.051 0.368 3.816
RankLMed 0.013 2.558 0.029 5.924 0.128 6.345 0.111 3.82 0.111 3.638
ScaleLSum 0.357 10.392 0.402 17.951 0.641 7.53 0.613 5.855 0.621 4.49
ScaleLTop3 0.124 6.861 0.16 17.092 0.415 4.586 0.391 5.834 0.391 4.31
ScaleLMed 0.019 2.702 0.03 6.62 0.132 5.805 0.119 4.906 0.12 2.971

0.5 1 1.5 2

ScaleLMed
ScaleLTop3

ScaleLSum
RankLMed
RankLTop3

RankLSum
ScaleMed
ScaleTop3

ScaleSum
RankMed
RankTop3

RankSum
IdMed
IdTop3

IdSum

Normalized AUPR20

Figure 2. Boxplots Homogeneous scenario.

the results of the Homogeneous scenario while Figure 3 gives
the results of the Heterogeneous scenario.

In the homogeneous case, it can be concluded that con-
sensus network algorithms allow to improve the inference

0 1 2 3 4 5 6 7 8 9

ScaleLMed
ScaleLTop3

ScaleLSum
RankLMed
RankLTop3

RankLSum
ScaleMed
ScaleTop3

ScaleSum
RankMed
RankTop3

RankSum
IdMed
IdTop3

IdSum

Normalized AUPR20

Figure 3. Boxplots Heterogeneous scenario.

compared to the average individual networks (as the AUPR20

is above 1). This conclusion is in line with previous publi-
cations such as [6], [9]. However, there are few differences
between the various algorithms. The results show that in this
scenario the RankL normalization seems to be a bad option for
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making a consensus network. Since, this case almost shows
no significant differences between methods, we think that
the best option is to use the RankSum [6] or IdSum [11]
since they are already part of the state-of-the-art and have
a simpler normalization and aggregation methods. However,
in the Heterogeneous scenario, we observe large differences
between different consensus proposals, where some of them
reach worst results compared to the average individual network
(Normalized AUPR20 smaller than 1). Observing the figure
we can confirm that the IdSum method that was used in
[11] in a Heterogeneous scenario is a good choice for this
case. But, using the ScaleL as normalization step and Sum
as aggregation step provides even better results. It improves
the results by 6.5 (in median) outperforming the improvement
of the Homogeneous case, that have a median improvement
around of 1.5.

For completeness, the original AUPR20 values are shown in
table IV and V, presenting the mean and standard deviation for
the Homogeneous and Heteregeneous scenarios, respectively.
Both tables present the Area Under Precision Recall curve ob-
tained in an undirected evaluation on the top 20% (AUPR20%)
of the total possible connections for each datasource. The
tables also give the mean and variance across the 10 different
runs. As can be observed using the parameters of Table III,
the individual networks achieve realistic AUPR20 values for
these networks [8]. Observing these tables we corroborate the
conclusions drawn on Figures 2 and 3.

VI. CONCLUSIONS

In the present paper, we have proposed a framework for
combining and integrating different inferred networks. It has
been defined as a two step process, consisting in a normaliza-
tion strategy followed by an aggregation technique. We studied
two different scenario of practical interest: Homogeneous (sit-
uation where various network inference algorithms are used
on the same data) and Heterogeneous (situation where various
sources of data are used to generate the individual networks),
with a controlled synthetic experimental setup. The results
show how in a Homogeneous scenario combining individual
networks generally outperforms the mean individual network,
and that the different analyzed algorithms do not present
significant differences. However, in a Heterogeneous scenario
the differences are very significant. Many algorithms actually
provide results that are worse than individual networks. How-
ever, the choice of the proper normalization and aggregation
steps allows very large improvements to be obtained. The
results show that in this scenario the ScaleLSum is the best
option.
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