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Abstract—Computational materials, e.g. single-wall carbon
nanotubes and polymer nanocomposites, have been evolved to
solve complex computational problems. Such blobs of material
have been treated as a black box, e.g. some input is encoded,
some configuration signals are evolved to ”program” the mate-
rial machine, and some output is decoded. However, how the
computation is performed, i.e. which physical properties are
exploited by evolution to solve a given computational task, is
not well understood. The general idea is that some undelying
physical properties of the chosen material are exploited, e.g.
capacitance, resistance, voltage potential, signal frequency, etc. In
this paper we investigate which practical strategies are exploited
by evolution on a simple (non-abstract) task: maximize or
minimize amplitudes of output signals when square waves are
used as input. This allows identifying an evolvability range for
materials with different physical characteristics, e.g. nanotubes
concentration. Inspection of evolved solutions shows that the
strategies used by evolution to exploit physical properties are
often unanticipated. This work is done within the European
Project NASCENCE.

I. INTRODUCTION

Evolution-in-Materio (EIM) [17], [16] is a relatively new
field of research that explores new physical materials to
perform computation. Such emergent computation is exploited
by manipulating the chosen material via computer controlled
evolution (CCE) [7], [8]. CCE may program the materials with
different kinds of stimuli, e.g. voltages, currents, temperature,
and magnetic fields. The undelying principle is that materials
may intrinsically possess some physical mechanism that may
compute. In contrast to a traditional design process where a
computational substrate, e.g. silicon, is precisely engineered,
EIM uses a bottom-up approach to manipulate materials.
Different material substrates, e.g. liquid crystals, carbon nan-
otubes, field programmable gate arrays, have been succesfully
used to solve computational tasks of different complexities
(more details in the Background section). In all such cases,
materials were treated as ”black box”, i.e. interfaced to a
traditional computer; input signals were encoded and output
signals decoded. Evolutionary algorithms have been used to
search for suitable configuration signals to ”program” the
material as to be able to carry a wanted computation. How is
this computation performed? At which physical level? Which
intrinsic physical properties of the material allow computation
to take place? At the current stage of research, all those
questions are still unanswered. One motivation is that often

the nature of the investigated problem abstracts the input and
the output from the underlying physics, i.e. the fitness function
is problem dependent and detached from the real physics of
the used material substrate. As such, it is very difficult to know
which range of outputs can be evolved for given inputs and
configuration signals on a chosen material. We show later in
the Result section that often the exploited physical properties
are not intuitive.

In order to be able to pinpoint which physical properties are
exploited by artifical evolution to produce a fitness increase,
we define the problem of maximizing or minimizing the
difference of output amplitudes on two different output pins.
This may allow to evolve very similar outputs (if the material
underlying physical properties allow so) or as different as
possible, being able to identify a range of evolvability for
different material samples. The analysis of different evolved
solutions may highlight which strategies are utilized to solve
the described task, as fitness is not abstracted but it is directly
derived from the raw physical output, i.e. a purely electric
response.

The article is laid out as follows: Section II gives back-
ground information on Evolution-in-Materio. In Section III
motivation for this work is given and current issues with
carbon nanotube materials are outlined. Section IV describes
the expetimental setup and methodology. In Section V the
results are presented together with discussion and analysis.
Finally, Section VI concludes the article and gives directions
for future work.

II. BACKGROUND

Pask pioneered EIM in the 1950s without computers [3].
Using electric current he achieved self-assembly of neural
structures in ferrous sulphate solutions [22]. The structure
of the wires and the behaviour could be changed through
external influence. Later, Thompson [24] demonstrated that
evolution could be used to exploit physical properties of Field
Programmable Gate Arrays (FPGAs) to solve computational
tasks. Thompson found that it was impossible to replicate the
evolved chip behavior in a simulation because evolution ex-
ploited undelying physical properties of the material. Harding
and Miller [6] used liquid crystals displays as computational
substrate. In the EU project NASCENCE [2], novel nano-
scale materials, e.g. carbon nanotubes / polymer composites,
nanoparticles, graphene, are exploited and configured to pro-
duce computation. In particular, carbon nanotubes have been
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Fig. 1: Overview of Evolution-in-Materio: in the computer do-
main an evolutionary algorith generates configuration instruc-
tion to program the material. Those are tested against given
inputs and physical outputs are mapped back and evaluated for
fitness. Adapted from [4].

shown promising for the solution of Travelling Salesman [4],
logic gates [10], and function optimization problems [19]. In-
put and configuration signals of different kinds have been used,
e.g. static voltages [4], square wave voltages [12], a mix of
both [14]. Square waves of different frequencies demonstrated
potential to achieve a computationally rich behaviour [21]
on single-walled carbon nanotubes / polymer nanocomposite
materials (as the one used in the work herein). As such, they
are the main subject of investigation in this paper. Figure
1 shows an overview of EIM where a physical material is
interfaced to a computer running an evolutionary algorithm.

III. MOTIVATION

At the current state of research, there are several practical
issues for configuring physical materials for computation. One
of the main problems is related to repeatability of results.
Given a set of inputs and a set of configuration parameters,
the resulting output may be unstable. This leads to devices or
solutions that may work only once due to some imprecisions
in the utilized input and measuring equipment, e.g. signals
scheduling or noise, or due to changes in the material substrate.
Such changes may be related to physical differences in the ma-
terial, e.g. liquid crystals orientation for LCD based materials,
or electrical changes for material that hold capacitance and can
store charge. Practically, the latter can be reduced by allowing

some transient period for the material to relax and reset to
its original state or by applying a set of randomized inputs
and configurations to avoid memory effects. Repeatability
and stability issues lead to evolvability problems, as typically
solutions are found by computer controlled evolution (CCE).

From an evolutionary point of view, having a working
solution at a given generation that does behave differently
in a subsequent generation means that evolutionary search
is moving in the fitness landscape from a different point
than expected, as the material physical state has changed.
If we imagine the material as a circuit of interconnected
nanocomponents, the fitness evaluation may change the val-
ues of the circuit components or the circuit topology, thus
reapplying the same input configuration may lead to different
performances. Such substrate changes may be considered as
part of the genotype-phenotype mapping. Unfortunately, there
is no guarantee that all the molecules in the material are in the
same exact configuration as before. This can be problematic
for evolvability. It was shown in [5] that it may be possible to
evolve a new working solution if evolution is initialized with a
previously working solution on the used material. In that case,
evolution would be able to rapidly converge again on another
similar (yet working) solution.

Another aspect that should be considered is the range of
evolvability of different material samples. Intuitively, phys-
ical materials may have different characteristic that restrict
or delimitate the range of evolvable solutions. Some of the
parameters that may have an impact on evolvability and
computational power are: intrinsic, e.g. internal physical prop-
erties of the molecules that compose the material (type,
composition, electrical properties as conductivity or charge),
external/environmental, e.g. external stimuli that influence
temporarily or permanently the material properties (current,
temperature, light), and construction, e.g. decided when the
material is built (concentration of molecules, electrodes mate-
rials, size, pitch). For more details on this see [21].

The nature of several computational problems requires
more than a single output, e.g. TSP in [4] requires 9 to
11 outputs, classification in [20] requires two outputs, robot
controller in [18] requires also two outputs. Let us consider
a problem solved in-materio where two output values are
required (for example the problem in [18], where a robot
controller is evolved in-materio for controlling the speed of
motor wheels to navigate a maze) and assume two different
materials are tested: the first one with similar electrodes
coverage and a second where one of the two output electrodes
is barely covered by conducting material. It is evident that
the range of evolvable values for the first material is likely
to be reasonably equal and the output mapping/encoding may
be the same for both output values. On the other hand, with
the second material, there are physical impediments for the
less covered electrode to evolve the same range of outputs as
in the better conducting electrode. As such, evolution may be
able to overcome this issue by a different evolutionary strategy
or, more likely, this may act as negative factor for evolvability.
It may be that evolution discovers a strategy where the robot
moves always to the right and the output value on the electrode
connected to the right wheel is always higher, or it may be a
physical limitation of the material (electrode coverage) and
different output decoding may do the trick.
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Fig. 2: Example of glass slide with microelectrode array
covered by carbon nanotube / polymer nanocomposite

For those reasons, it is of high importance investigating
which underlying physical properties are exploited by evolu-
tion to find solutions, as a ’black box’ approach may have the
described limitations.

IV. SETUP AND METHODOLOGY

In order to investigate what is the range of expected outputs
in computational materials, or what is the atteinable output
difference, a problem with evolved fitness that is related to
measurable physical quantities is identified. The goal is to
evolve the maximum or minimum raw output voltage value
given a fixed number of configuration/input signals where
square wave frequencies are applied. Square waves of different
frequencies demontrated potential to achieve a computationally
rich behavior [21], [13]. With such an approach, we may be
able to identify how evolution exploits physical properties to
give meaningful output, e.g. higher fitness in case of evolved
solutions. Fitness is often disconnected from real physics, i.e.
abstract measure suitable for the given task. Here the fitness
is related to a measurable physical quantity: voltage output
difference on different output pins.

Two different material samples are investigated: one with
low nanotubes concentration (0.53% by weight) and one
with high nanotubes concentration (5.00% by weight). Both
slides provide 16 electrode contacts within the material and
were fabricated by mixing single-walled carbon nanotubes
(SWCNT) and poly(butyl methacrylate) (PMMA) dissolved in
anisole (methoxybenzene). SWCNT are conducting or semi-
conducting while PMMA creates uneven insulating regions
within the nanotube network. Materials with higher SWCNT
concentration act more as a conductive layer while lower
SWCNT concentration creates more uneven distribution of
nanotubes and polymer molecules, thus allowing non-linear
current vs. voltage characteristics, as long as the network
percolation threshold is reached. The material samples are
interfaced to a computer running the genetic algorithm through
a custom-built HW board called Mecobo [12]. The Mecobo
board was built within the EU project NASCENCE and is used
as interface between the microelectrode array slide hosting
the material and the computer executing the evolutionary
algorithm. All the input signals and output measurements
are carried out through the Mecobo board. Mecobo offers
the possibility of mixed signals, i.e. digital and analogue,
input/output set-up. In the experiments herein the inputs, i.e.
stimuli, are constrained to the digital domain but the material
outputs, i.e.responses, are analogue. However, as in all set-ups
including digital processing, the response is sampled. Thereby
Analogue to Digital Converters (DACs) are in the signal chain.
The Mecobo board offers AC signals and a possibility to
connect (or disconnect) any input or output to any electrode.

The connection/disconnection is implemented as bidirectional
tristate ports. In the experiments presented, a differential output
voltage is the goal. No absolute zero or reference level is
thereby necessary. As such, there are no constrains set for
evolution not to exploit the dynamic range of the ADC, i.e
AC signals. In the results this possibility is clearly visible.
The evolved solutions exploit the possibility of placing the
signal in a favourable range, e.g. Figure 30, by exploiting
the tristate ports and the available analogue voltage range.
For more details on the typical setup see [12], [14], [13]. An
example of material slide is shown in Figure 2.

A fixed number of input pins is used, starting from 1 and
up to 10. The number of output pins is set to 2, as to be able
to measure any output difference. The selection of input and
output pins is under evolutionary control. Input signals consist
of digital square waves with frequencies in the range 400 Hz
- 25000 Hz, and duty cycle in the range 0% - 100%. Both
frequency and duty cycle are under evolutionary control. The
amplitude is fixed to 3.3 V, from 0 V to 3.3 V. Each input
signal is applied simultaneously for 25 ms. The output signals
are sampled at 250000 Hz for 5 ms, between the 10th and the
15th ms of computation, producing roughly 1200 data samples
for each output pin. The output values represent the resulting
voltage potentials on the output electrodes. The output fitness
is represented in Equation 1, where the sum of the absolute
values of the voltage differences is calculated.

Fitness =

len(out buf)∑

i=0

|Out1i −Out2i| (1)

Two sets of experiments are executed, one where the goal is
to maximize the fitness function (maximum output difference),
and one where the goal is to minimize it (minimum output
difference). Each experiment is executed for 100 generations
and repeated 10 times. The used evolutionary algorithm is a
1 + λ−ES, with λ = 4. In such scheme, the population size
is 1+λ and the genotype with best fitness is selected as parent
for the new population. The other individuals of the population
are generated by mutating the parent. If there are no offspring
with better fitness than the parent, but at least one has the same
fitness as the parent, the offspring becomes the new parent.
Figure 3 shows the genotype mapping. Each of the offspring
undergoes a single mutation, i.e. one gene is mutated. If a gene
representing an input pin is mutated, either the pin number,
the frequency or the duty cycle is changed. If an output pin
is mutated, the output pin number is changed. Mutation of
frequency or duty cycle is performed by replacing the old value
with a new random value in the correct range. Mutation of pin
number is performed by swapping the selected pin (either input
or output) with one of the free pins. Note that free pins are
not under evolutionary control; they are represented here for
convenience as to be able to perform a swap mutation with
input/output pins more easily.

Input 
Pin1

Freq.
Duty 
cycle

Input 
Pin2

Freq.
Duty 
cycle

... # Inputs
Output 

Pin1
Output 

Pin2
Free 
Pin1

... # Free 
Pins

1 2 ... 16...

Fig. 3: The evolvable genotype representing input pins, output
pins and free pins for a total of 16 genes.
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Fig. 4: 5,00% nanotubes,
evolve maximum difference on
2 output pins, 1 single input.
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Fig. 5: 5,00% nanotubes,
evolve maximum difference
on 2 output pins, 5 input pins.
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Fig. 6: 5,00% nanotubes,
evolve maximum difference on
2 output pins, 10 input pins.
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Fig. 7: 5,00% nanotubes,
evolve minimum difference on
2 output pins, 1 single input.
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Fig. 8: 5,00% nanotubes,
evolve minimum difference on
2 output pins, 5 input pins.
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Fig. 9: 5,00% nanotubes,
evolve minimum difference on
2 output pins, 10 input pins.
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Fig. 10: 5,00% nanotubes, evolve maximum
difference on 2 output pins, summary.
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Fig. 11: 5,00% nanotubes, evolve minimum
difference on 2 output pins, summary.

V. RESULTS AND DISCUSSION

A. Evolve Maximum and Minimum Output Difference

This section presents the results for evolution of maximum
output difference with an increasing number of input pins
(Figures 4, 5, 6 give examples for 1, 5 and 10 input pins),
followed by evolution of minimum output difference (Figures
7, 8, 9) tested on the high SWCNT concentration sample
(5.00%). A summary is provided in Figure 10 (maximization)
and Figure 11 (minimization). The same tests are repeated
for the low SWCNT concentration sample (0.53%). Again
example plots for maximization are given for 1, 5 and 10
inputs in Figures 12, 13, 14 and for minimization in Figures
15, 16, 17, respectively. A summary is provided in Figure 18
(maximization) and Figure 19 (minimization). A comparison

of the ”ranges of evolvability” is given in Figure 20 and Figure
21 for both samples.

For the material with high SWCNT percentage, it is pos-
sible to notice that evolution is slow and hardly manages to
achieve significant fitness inprovements. This is visible in Fig-
ures 4, 5, 6, where output difference is maximized. The plots
show a fairly steady situation after the first generations and
increasing the number of inputs does not provide any benefit.
This is in line with our hypothesis that higher concentration
of conductive elements in the material makes it behave as a
more uniform conductive layer where output differences are
hardly evolvable. Having more than 2 input pins does not
seem to help evolving higher output difference, as depicted
in Figure 10. On the other hand, minimizing the difference
seems a more evolvable task for the considered sample, as
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Fig. 12: 0,53% nanotubes,
evolve maximum difference on
2 output pins, 1 single input.
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Fig. 13: 0,53% nanotubes,
evolve maximum difference on
2 output pins, 5 input pins.
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Fig. 14: 0,53% nanotubes,
evolve maximum difference on
2 output pins, 10 input pins.
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Fig. 15: 0,53% nanotubes,
evolve minimum difference on
2 output pins, 1 single input.
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Fig. 16: 0,53% nanotubes,
evolve minimum difference on
2 output pins, 5 input pins.
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Fig. 17: 0,53% nanotubes,
evolve minimum difference on
2 output pins, 10 input pins.
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Fig. 18: 0,53% nanotubes, evolve maximum
difference on 2 output pins, summary.
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Fig. 19: 0,53% nanotubes, evolve minimum
difference on 2 output pins, summary.

shown in Figures 7, 8, 9. As expected, increasing the number
of input pins makes the task harder and the resulting minimum
difference increases (within the given number of generations),
as shown in Figure 11 . Note that for all the evolutionary runs,
the standard deviation is plotted with error bars.

For the material with lower SWCNT percentage, things
are different. Intuitively, it is easier to evolve greater output
difference, as shown in the numerical results in Figures 12,
13, 14, but surprisingly adding more input frequencies does not
improve evolvability, as visible in Figure 18 where there is no
significant difference between 2 and 8 inputs. It was expected
that evolving minimum difference would be more difficult on
such sample. This is confirmed by results in Figures 15, 16, 17.
Also in this case, adding more input signals makes it harder
to minimize output difference. This is shown in Figure 19.

Overall, the ranges of evolvable differences on the different
samples are depicted in Figure 20 and Figure 21. It is evident
that the choice of the material sample has a very high impact
on the evolved output signals. The evolvability range for the
lower concentration sample is on average more than double
than for the high concentration sample. For example, with two
input pins, the sample with 5% concentration produced results
in the range 42-577 and the sample with 0.53% concentration
in the range 176-1201.

In order for any kind of computation to take place in
a material, one of the key requirements is Ashby’s law of
requisite variety [1], which states that ”in order to deal with
the diversity of problems, a (control) system needs to have a
repertoire of responses which is at least as many as those of
the problem”. Ashby’s law underlines the importance of the
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Fig. 20: 5,00% nanotubes, comparison sum-
mary, evolvability range.
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Fig. 21: 0,53% nanotubes, comparison sum-
mary, evolvability range.
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Fig. 22: Material B09S12, 0.53% nanotubes,
example with 4 input pins.
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Fig. 23: Material B09S12, 0.53% nanotubes,
example with 5 input pins.

total number of states in which a system can be. In case of in-
materio computation, the available computational power may
be bouded by the number of states that can be read as output
from the material. As such, the evolvability range of different
material samples plays an important role in the ability to evolve
solutions to any kind of computational problem.

B. System Dynamics

This subsection presents an observation using the sample
with lower SWCNT concentration. Figure 22 shows an exam-
ple of solution in the randomly generated initial population for
the output maximization problem. Here 4 input frequencies are
used and the output signals on Pin 11 and Pin 14 are shown
in blue and green, respectively. The red line represents the
output difference (top image). The bottom part of the Figure
shows the XY plot where the two outputs are plotted against
each other. Two dense periodic orbits are visible. As such,
the resulting output difference may be considered as a non-
periodic oscillating pattern. The same result can be observed
in Figure 23, where 5 input square waves are used. The results
in this section may be considered as an indication that chaotic

or semi-chaotic behavior may be achieved within the material,
and that such rich behaviors are more likely to emerge in
the vicinity of the nanotubes network percolation threshold.
Carbon nanotubes randomly dispersed in polymer solutions
may be considered as complex networks where a huge number
of tiny elements (nano-molecules) interact at a local level and
exhibit different emergent dynamics [23]. The idea of complex
systems is connected with the notion of ”edge of chaos”
[11], which may indicate high complexity and computational
power. Computation at the molecular level, i.e. computation-
in-materio, may be able to produce complex dynamics, as the
very essence of the material physics is exploited for computa-
tion. New materials that possess such rich properties may be
potential candidate substrates for physical implementations of
reservoir computing [9], [15].

C. Physical Properties Exploited by Evolution
This subsection describes in details some examples of

evolved solutions for the maximization and minimization of
output difference problem. Figure 24 shows an example solu-
tion with 2 input frequencies on the high CNT concentration
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Fig. 24: 5,00% nanotubes, example with 2 inputs,
evolve max difference. Input pin 13: 23945 Hz,
duty cycle 27%; Input pin 2: 24576 Hz, Duty cycle
96%, Output pins: 1, 4.
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Fig. 25: 5,00% nanotubes, example with 10 inputs,
evolve max difference. Input pins (pin#, frequency
Hz, duty cycle %): (4, 3205, 49), (10, 23950, 3),
(6, 5847, 85), (14, 24761, 46), (15, 8258, 54),
(1, 6098, 83), (12, 15177, 40), (2, 19886, 3), (11,
16632, 9), (8, 22859, 99). Output pins: 3, 13.
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Fig. 26: 5,00% nanotubes, example with 2 inputs,
evolve min difference. Input pin 4: 3208 Hz, duty
cycle 94%; Input pin 13: 400 Hz, Duty cycle 79%,
Output pins: 15, 10.
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Fig. 27: 5,00% nanotubes, example with 10 inputs,
evolve min difference. Input pins (pin#, frequency
Hz, duty cycle %): (13, 1976, 78), (9, 3996, 11),
(10, 1984, 10), (7, 657, 71), (11, 866, 13), (15, 663,
93), (12, 2060, 41), (6, 24500, 100), (14, 1462, 94),
(8, 12910, 100). Output pins: 1, 2.
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Fig. 28: 0,53% nanotubes, example with 2 inputs,
evolve max difference. Input pin 10: 9595 Hz, duty
cycle 79%; Input pin 8: 20299 Hz, Duty cycle
91%, Output pins: 9, 4.
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Fig. 29: 0,53% nanotubes, example with 10 inputs,
evolve max difference. Input pins (pin#, frequency
Hz, duty cycle %): (12, 14190, 13), (8, 22055, 30),
(7, 15255, 57), (0, 13302, 100), (11, 15089, 69),
(5, 6322, 21), (10, 9437, 72), (14, 7471, 55), (13,
15197, 17), (15, 9928, 29). Output pins: 1, 9.
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Fig. 30: 0,53% nanotubes, example with 2 inputs,
evolve min difference, low frequencies. Input pin 9:
1391 Hz, duty cycle 86%; Input pin 10: 1135 Hz,
Duty cycle 17%, Output pins: 5, 14.
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Fig. 31: 0,53% nanotubes, example with 2 inputs,
evolve min difference, high frequencies. Input pin
9: 1391 Hz, duty cycle 86%; Input pin 10: 8266 Hz,
Duty cycle 17%, Output pins: 5, 2.
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Fig. 32: 0,53% nanotubes, example with 10 inputs,
evolve min difference. Input pins (pin#, frequency
Hz, duty cycle %): (14, 21177, 100), (15, 23742,
44), (8, 16808, 39), (9, 480, 74), (11, 5246, 88),
(10, 17164, 89), (13, 13088, 6), (0, 13358, 89), (4,
10403, 17), (12, 17164, 55). Output pins: 6, 5.

sample for the maximization problem. The green and blue lines
represent the two output signals and the red dots represent the
difference pattern. It is possible to notice that evolution relies

on output signals with similar range of voltage amplitudes, but
three interesting phenomena are observed. First, it is possible
to notice that one signal is slightly delayed. A plausible
explanation for this phenomenon is that the pathways in which
the signals travel create a delay line exploited by evolution at
the very specific frequencies evolved for this solution. In other
words, there are some specific frequencies that enable distinct
paths in the material that create delays in the transmitted
signals. Note that replacing the material with a straight wire
would give the same reading on both output pins, as the set
of evolved input signals is fixed and the output values are
sampled at the same frequency. A second interesting effect
that is clearly visible is a phase inversion. Around sample 80,
the green signal has a low peak to 0 V and the blue signal has
a high peak to 3.3 V. Finally, a third effect is recognized in the
central section of the plot, where there is a signal canceling, i.e.
the two signals create a sort of destructive interference. Signal
delays, inversions, and canceling are exploited by evolution
as other physical characteristics of the materal, i.e. different
ranges of electric potential difference, are not available for
the chosen sample, as the regularity of the dispersed SWCNT
provides more homogenous conductance. The described ef-
fects may provide a source of non-linearity in the material.
Analyzing Figure 25, it is possible to see that with 10 input
frequencies it is much harder for evolution to exploit shifting
and inversion. This is reflected in Figure 20, where an increase
in the number of input signals makes it harder for evolution
to maximize output differences. Looking at the minimization
problem on the same sample, both with 2 input signals (Figure
26) and with 10 input signals (Figure 27), the output readings
look very similar, e.g. same frequency and same amplitude.
Note that the evolved input freqencies are lower than for the
maximization problem, in order to avoid possible delays and
phase inversions. This is in line with the idea that materials
with high SWCNT concentrations have more homogeneous
conductive properties.

Different results are obtained with the low concentration
CNT sample. In Figure 28, maximum difference was evolved
with 2 input signals. The first aspect that is clearly visible
is the difference in voltage between -0.6 V and 1.3 V on
output pin 9 (blue line) and between -1 V and -0.6 V on
output pin 4 (green line). Even if the two output signals are
slightly shifted, the major fitness contribution is given by the
voltage difference due to the irregular distribution of SWCNT
over the electrodes. This means that no matter the used input
signals, the voltage output on pin 4 will be always lower
than the one on pin 9, due to the physical differences of the
material. Without this kind of analysis, one may think that
such behavior is a clear strategy discovered by evolution. The
same behavior is present when 10 inputs are used, as in Figure
29. In such case, the range of evolvable outputs is broader
as evolution can exploit more physical characteristics, e.g.
singal amplitudes, delays, and inversions. Not all such physical
features are available in the high SWCNT sample. Note that, as
shown in Figure 21, adding more input signals does not make
the task more evolvable. The input/output relation may be lost
if too many input signals are used. Adding more input signals
not only increases the search space but also makes the fitness
landscape much more complex as more possible pathways
are triggered in the material. For the minimization problem,
Figure 30 and Figure 31 show two discovered solution using
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2 input square waves, the first one with low frequencies and
the second one with high frequencies. The solution with high
frequencies has higher fitness, as represented by the difference
pattern (red dots). Evolution discovered two output pins with
similar electrical properties and managed to match the output
signals by using high frequencies. This seems unintuitive if
compared with the results in Figure 26. The explanation is
evident in Figure 30 where lower frequencies were used and
the capacitance effect of the material becomes visible. As
described in [21], [13], the material holds capacitance. As
such, it is possible to notice charge and discharge periods
when square wave voltages are used as inputs. Finally, Figure
32 shows the minimization with 10 input samples, where the
solution exploits pins with similar properties and fairly high
frequencies, if compared with Figure 27.

VI. CONCLUSION AND FUTURE WORK

Evolution of physical materials for computation has been
used by far as a black box. In this paper we investigated
which physical properties are exploited by evolution in order to
maximize and minimize differences of output signals. This al-
lowed identifying physical limitations that restrict the range of
evolvability in the used materials. As such, we have described
the importance of understanding which physical characteristics
are available to evolution in order to find out whether solutions
are the results of a clear evolutionary strategy or intrinsic
constrains due to the material underlying physics. Inspection of
evolved solutions showed that the strategies used by evolution
to exploit physical properties of material are ofter unantici-
pated and not intuitive. We observed that materials with lower
SWCNT concentrations (yet above the nanotubes network
percolation threshold) provide more uneven distribution of
nanotubes and polymer molecules, thus allowing a greater
range of evolvable output values. This allowed observing rich
material dynamics, e.g. towards chaos. Moreover, we identified
that evolution in nanotubes materials struggles when too many
signals are used, as there is no uniform network within the
material and the fitness landscape becomes more complex. As
future work we want to use knowledge of exploited physical
properties to evolve more stable and repeatable solutions.
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