
Learning the optimal state-feedback using deep
networks

Carlos Sánchez-Sánchez and Dario Izzo
Advanced Concepts Team
European Space Agency

Noordwijk, The Netherlands
Email: carlos.sanchez@esa.int, dario.izzo@esa.int

Daniel Hennes
Robotics Innovation Center

German Research Center for Artificial Intelligence
Bremen, Germany

Email: daniel.hennes@dfki.de

Abstract—We investigate the use of deep artificial neural
networks to approximate the optimal state-feedback control of
continuous time, deterministic, non-linear systems. The networks
are trained in a supervised manner using trajectories generated
by solving the optimal control problem via the Hermite-Simpson
transcription method. We find that deep networks are able to
represent the optimal state-feedback with high accuracy and
precision well outside the training area. We consider non-linear
dynamical models under different cost functions that result in
both smooth and discontinuous (bang-bang) optimal control
solutions. In particular, we investigate the inverted pendulum
swing-up and stabilization, a multicopter pin-point landing and
a spacecraft free landing problem. Across all domains, we find
that deep networks significantly outperform shallow networks in
the ability to build an accurate functional representation of the
optimal control. In the case of spacecraft and multicopter landing,
deep networks are able to achieve safe landings consistently even
when starting well outside of the training area.

I. INTRODUCTION

Thanks to the ever decreasing cost of computational re-
sources and advances in research to train neural networks with
many hidden layers [1], [2], there is a renewed interest in
artificial neural networks (ANN), and in particular in deep
neural networks (DNN), in the context of optimal control.
While deep networks representation capabilities are particu-
larly appropriate for perception related tasks such as image
and speech recognition, it has been pointed out that control
problems also benefit from these models [3], [4], [5].

In these works, interesting results were obtained in cases
where incomplete state information is available and the opti-
mal control is approximated with a mixture of reinforcement
learning techniques and dynamic programming algorithms.
Instead, the use of deep artificial neural networks to approxi-
mate the state-action pairs computed from the solution to the
optimal control problem of deterministic continuous non-linear
systems, where the full state is directly observed, has been
largely neglected. Successful applications have so far been
limited to simple domains (e.g., linear systems often appearing
in case studies) or to unbounded control [6], [7], [8]. As a
consequence, their possible use in robotics and engineering is
rather restricted.

Contributions to the solution of both the Hamilton-Jacobi-
Belmann (HJB) equations and the two point boundary value
problem resulting from Pontryagin’s optimal control theory

showed possible uses of ANNs in the domain of continuous
control [9]. On the one hand, several methods were proposed
for the approximation of the value function v(t,x) by means of
ANNs architectures [8], [10], [11]. On the other hand, ANNs
have been proposed and studied to provide a trial solution
to the states, to the co-states and to the controls so that
their weights can be trained to make sure the assembled trial
Hamiltonian respects Pontryagin’s conditions [6]. Clearly, in
this last case, the networks have to be retrained for each initial
condition. Recently, recurrent networks have been used to
learn near-optimal controllers for motion tasks [12], however,
the velocities (kinematics), and not the actual control, are
predicted in this case, limiting the objective functions that can
be considered. In this paper we successfully use DNNs to
represent the solution to the Hamilton-Jacobi-Belmann policy
equation for deterministic, non-linear, continuous time sys-
tems, hence directly predicting the optimal control variables.

Although more extensive research of DNNs for optimal
control has been carried out for discrete-time optimal control
problems, there are fundamental differences between previous
approaches in this domain and our work. In particular, we
use feedforward DNN architectures trained in a supervised
manner. The majority of the previous work in the field of
discrete-time optimal control has been focused on reinforce-
ment learning techniques such as guided-policy search [3],
[4]. The supervised learning methods we adopt, however, offer
a straightforward approach that is usually preferable when it
is possible to generate enough training data. A deep neural
network trained with supervised signals, in the form of a
stacked auto-encoder, was recently shown [13] to be able to
learn an accurate temporal profile of the optimal control and
state in a point-to-point reach, non-linear limb model, but their
network architecture enforces the notable restriction of having
a fixed time problem.

The DNNs here trained achieve real-time optimal control ca-
pabilities in complex tasks, something infeasible with current
optimal control solvers, including those used here to generate
the training data. In particular, we investigate the aerospace
domain of optimal landing. State-of-the-art solutions are of-
ten, in this domain, using a precomputed optimal guidance
profile coupled to a control system tasked to track it during
descent [14]. In contrast, our work suggests to generate the

control action directly on-board and in real time using a DNN,
thus providing the spacecraft with a reactive control system
having near-optimal capabilities.

II. BACKGROUND

We consider deterministic systems defined by the dynamics
ẋ(t) = f(x(t),u(t)), where x(t) : R→ Rnx and u(t) : R→
U ⊂ Rnu . We address the fundamental problem of finding an
admissible control policy u(t) able to steer the system from
any x0 = x(0) to some target goal in a subset S ⊂ Rnx . At
tf the system will be in its final state xf = x(tf) ∈ S having
minimized the following cost function:

J(x(·),u(·)) =
∫ tf

0

L(x(t),u(t))dt+ h(x(tf))

The value function, defined for values 0 < t < tf as:

v(x, t) = min
u
J(x(·),u(·)) (1)

represents the minimal cost to reach the goal, starting from
x. Equivalently, the value function can be introduced as the
solution to the partial differential equation:

min
u
{L(x,u) + f(x,u) · ∇xv(x, t)} = 0 (2)

subject to the boundary conditions v(xf , t) = h(x(tf)),
∀xf ∈ S. The optimal control policy is then:

u∗(x) = argminu {L(x,u) + f(x,u) · ∇xv(x, t)} (3)

Equations 2 and 3 are the Hamilton-Jacobi-Bellman (HJB)
equations for the optimal control problem here considered.
They are a set of extremely challenging partial differential
equations (PDEs) whose solution, pursued in the “viscosity”
sense, is the solution to the original optimal control problem
[15]. The HJB equations show the existence of an optimal
state-feedback u∗(x) and provide a way to compute it once
the value function is known. Numerical approaches to solving
HJB equation, thus, often rely on parametric approximations
of the value function, e.g. using the Galerkin method [16],
which have also included ANNs in the past [11].

Unlike previous work, we use deep neural networks (DNNs)
to learn directly the optimal state-feedback u∗(x) thus ob-
taining, indirectly, also a representation of the value func-
tion v(x, t) = J(x∗,u∗), while avoiding to make use of
the network gradients when converting from value function
to the optimal policy. The DNN weights are trained using
supervised learning on precomputed values of the optimal
state-feedback for a set of initial states. Eventually, the trained
DNN represents directly the optimal state-feedback and can
be thus used, for example, in a non-linear model predictive
control architecture [17] to achieve real-time optimal control
capabilities.

III. OPTIMAL CONTROL PROBLEMS

We consider three different domains of increasing complex-
ity and dimension: the inverted pendulum, the pinpoint landing
of a multicopter and the landing of a spacecraft. Additionally
we consider different cost functions, resulting in different
types of control profiles, i.e. smooth, saturated and bang-bang.
In each problem we introduce an initialization area A ⊂ Rnx :
only initial conditions in A will be considered for the purpose
of the training data generation.

A. Inverted pendulum

The first and simplest domain we consider is the inverted
pendulum swing-up problem (nx = 4, nu = 1), also known as
the cart-pole system in the reinforcement learning community.
The objective is to drive a pendulum of mass m and length
l to the upright position. The pivot point of the pendulum is
mounted on a cart of mass M freely moving on the horizontal
axis. One control action u1 acts on the system, representing
an horizontal force applied to the cart, we consider a bounded
control |u1| ≤ umax = 4 [N].

The pendulum state is x = [x, θ, vx, vθ] and the system
dynamics are described by the following set of Ordinary
Differential Equations (ODEs):

ẋ = vx
θ̇ = vθ

v̇x =
u1+ml sin(θ)v

2
θ−mg cos(θ) sin(θ)

M+m−(m cos2(θ))

v̇θ =
u1 cos(θ)−(M+m) sin(θ)+ml cos(θ) sin(θ)vθ

ml cos2(θ)−(M+m)l

(4)

The length of the pendulum is l = 1 [m], the mass of the
cart is M = 0.5 [kg], the mass of the pendulum is m = 0.2
[kg] and the uniform vertical gravitational field has strength
g = 9.81 [m/s2].

The target goal is the unstable equilibrium position at
vx = 0, θ = 0 and vθ = 0. The initialization area A for the
pendulum is defined as: vx = 0, vθ = 0 and θ ∈ [π/2, 3π/2]
[rad]. The values chosen are such that multiple “pump-ups”
are necessary to reach the target.

The objective of the problem is to reach the target goal
while minimizing the quadratic control cost function:

Jp =

∫ tf

0

u21dt. (5)

B. Pinpoint landing (multicopter)

As a second domain we consider that of a multicopter
pinpoint landing (nx = 5, nu = 2). The state is x =
[x, z, vx, vz, θ] and the dynamical model is described by the
following set of ODEs [18]:

ẋ = vx
ż = vz

v̇x = u1 sin(θ)
v̇z = u1 cos(θ)− g
θ̇ = u2

(6)

Two control actions are available: the thrust u1 ∈ [0, 20] [N],
and the pitch rate u2 ∈ [−2, 2] [rad/s]. We consider Earth’s
gravity (g = 1.62 [m/s2]) and a quadrotor mass m = 1 [kg].

The goal state xf = 0, zf = 0.1, vxf = 0, vzf = −0.1,
θf = 0 corresponds to reaching a point close to the ground
with low vertical velocity. The initialization area A is x0 ∈
[−5, 5] [m], z0 ∈ [5, 20] [m], vx0 ∈ [−1, 1] [m/s], vz0 ∈
[−1, 1] [m/s], θ0 ∈

[
− π

10 ,
π
10

]
[rad].

In this case, two different cost functions are studied. The
first one corresponds to quadratic control:

Jp =

∫ tf

0

(α1u
2
1 + α2u

2
2)dt (7)

with α1 = 1, α2 = 1. The second one seeks to minimize
time:

Jp = tf . (8)

C. Landing (spacecraft)

The last domain is that of a spacecraft landing under a
uniform gravity field (nx = 6, nu = 2). This corresponds to a
mass-varying system where the state is x = [x, z, vx, vz, θ,m]
and the dynamics are described by the following set of
ordinary differential equations [17]:

ẋ = vx
ż = vz
ṁ = −u1/(Isp · g)

v̇x = u1 sin(θ)/m
v̇z = u1 cos(θ)/m− g
θ̇ = u2

(9)

The spacecraft is controlled by the thrust, u1 ∈ [0, 45760]
[N], and a momentum exchange wheel controlling the pitch
rate u2 ∈ [−0.0698, 0.0698] [rad/s]. We consider the Moon
gravity g = 1.62 [m/s2] and a main engine with specific
impulse Isp = 311 [s].

The target is: zf = 10 [m], vxf = 0 [m/s], vzf = −0.1
[m/s]. No target is defined for x as we consider a free landing
scenario, hence the control action does not depend on x.
The initialization area A is: z0 ∈ [500, 2000] [m], m0 ∈
[8000, 12000] [kg], vx0 ∈ [−100, 100] [m/s], vz0 ∈ [−30, 10]
[m/s] and θ0 ∈

[
− π

20 ,
π
20

]
[rad].

We study the minimum mass problem, the cost function
being:

Jm =

∫ tf

t0

u1/(Isp · g) = mf −m0, (10)

Considering that the optimal action u2 is not well defined
when u1 = 0 (multiple equivalent actions exist), we add the
term αu22 thus minimizing the cost function :

J ′m = Jm +

∫ tf

t0

α(u22)dt, (11)

with α = 10.
Our approach generalizes to quadratic and time-optimal

control, however, as results are similar to the corresponding
cases in the multicopter domain they are not addressed further.

The optimal control solutions of these three domains repre-
sent different classes of control profiles. The quadratic control

problems result in continuous functions saturated at their
bounds. The time-optimal and mass-optimal cost functions, in-
stead, result in discontinuous bang-off-bang control structures
for the thrust. In the case of mass-optimal landing, complexity
is increased by the change in behaviour of the pitch control
during the thrust on and off phases. Pitch is constant until the
switching point and smooth and continuous afterwards.

D. Training data generation

For each of the problems described above we generate a
dataset containing pairs (x∗,u∗), where x∗ is a state and u∗

is the corresponding optimal action. The dataset is generated
solving the non-linear programming problem (NLP) resulting
from using the Hermite-Simpson transcription method [19], a
direct method to tackle optimal control problems. The solution
is provided by a sequential quadratic programming NLP
solver, namely SNOPT [20]. Although it is possible to use
this approach to generate the training dataset, the convergence
is not guaranteed and it is computationally expensive, hence
not being suitable for real-time implementations.

For each of the considered problems we generate 150, 000
different trajectories starting from a point randomly sampled
from the initialization area A. Of each trajectory we store
60 (multicopter) or 100 (spacecraft and pendulum) state-
control pairs uniformly taken along the trajectory, resulting
in 9, 000, 000-15, 000, 000 training samples. We use 90% of
the trajectories to train the model while the rest is used for
validation.

In the landing cases, due to known problems caused by the
use of the direct method in connection with saturated controls
(i.e. bang-bang), we observe small chattering effects that have
a negative impact on the learning process. We address this
problem by adding a regularization term to the objective
function when computing the NLP solution. The added term
corresponds to βJp, where Jp is the quadratic power goal
function. If β is chosen sufficiently small, the effect of this
term on the final value of J(x(·)) is negligible, but helps the
sequential quadratic programming solver to converge towards
a solution without chattering. We use α1 = α2 = 1, β = 0.001
for the multicopter time-optimal problem and α1 = 1, α2 = 0,
β = 10−10 for the spacecraft mass-optimal problem.

IV. STATE-FEEDBACK APPROXIMATION

The data, generated as described above, is used to train
feed-forward neural networks in a supervised manner. For the
multicopter and spacecraft models, we train separate networks
for each control variable (i.e. thrust and pitch).

DNN architecture

We consider both models with only one (shallow) and sev-
eral hidden layers (deep). The selection of the non-linearities
used in the hidden units has been identified as one of the most
important factors of DNN architectures [21]. We compare the
classical sigmoid units to rectified linear units (ReLUs), which
correspond to the activation function max(0, x). It has been
pointed out that ReLu units have two main benefits when

TABLE I
MEAN ABSOLUTE ERROR OF NETWORKS WITH DIFFERENT

NON-LINEARITIES (HIDDEN - OUTPUT) FOR THE PROBLEM OF MASS
OPTIMAL LANDING (SPACECRAFT).

Architecture Train Val.
u
1

tanh - tanh 955.53 963.61
ReLu - tanh 918.90 936.21

ReLu - linear 973.20 978.35

u
2

tanh - tanh 0.00283 0.00284
ReLu - tanh 0.00250 0.00252

ReLu - linear 0.00257 0.00259

compared to sigmoid functions: they do not saturate, which
avoids the units to stop learning after reaching a point (the
vanishing gradient problem), and the output of the units is
frequently zero, which forces a sparse representation that is
often addressed as a way of regularization that improves the
generalization capabilities of the model [22]. The sigmoid
function used for the comparison is the hyperbolic tangent,
selected based on their convergence behaviour compared to the
standard logistic function [23]. We consistently obtain higher
performance with ReLus (see table I) and thus they are used in
the hidden units of our DNNs. The output units are tanh units,
which always provided a better result when we compare them
to linear units. All the inputs and outputs are normalized by
subtracting the mean and dividing by the standard deviation.
The normalized outputs are then further scaled to the range
[-1,1] to make sure they can all be represented by the tanh
functions.

Training

All networks are trained until convergence with stochastic
gradient descent (SGD) and a batch size of 8. After every
epoch the loss error is computed for the evaluation set and the
learning process is stopped if there are more than 3 epochs
with no increments affecting, at least, the third significant
digit. We use Xavier’s initialization method [24] to randomly
set the initial weights. Although it was designed to improve
the learning process for logistic units, it has been shown that
this idea can also be beneficial for networks with ReLu units
[25]. In our case, each weight wi is drawn from a uniform
distribution U [−a, a], with a =

√
12

fanin+fanout
, being fanin, fanout

the number of units of the previous and following layers.
The training process seeks to minimize the squared loss

function C =
∑8
i=0

1
8 (N (xi)−y(xi))

2 for the neural network
output N (xi) and the optimal action y(xi). The weights wi
are updated with a learning rate η = 0.001 and momentum
with µ = 0.9 [26]:

vi → v′i = µvi − η
∂C

∂wi

wi → w′i = wi + v′i

DNN driven trajectories

Once trained, the DNNs can be used to predict the control
given any state x. This allows us to also compute the full

trajectory by numerical integration of the system dynamics
ẋ = f(x,u∗) = f(x,N (x)):

x(t) =

∫ t

0

f(x,N (x))ds

The integration is stopped when the goal state is reached
within some tolerance or a failure is detected (i.e., too much
time has elapsed or a crash is detected, i.e. z < 0, in case of
the multicopter or the spacecraft domain). In the case of the
pendulum the tolerance is 0.005 in each of the variables θ,
vx, vz . For the multicopter the tolerance to the goal position
is set to 0.1 [m] and for the Ffinal velocity to 0.1 [m/s]. For
the spacecraft landing case, a velocity tolerance of 1 [m/s] has
to be achieved after passing the 10 [m] goal without crashing.

V. RESULTS

The mean absolute error (MAE) is used to evaluate the
difference between the optimal actions and the network pre-
dictions along the states of the optimal trajectories. Although
this measure is useful for comparison purposes, it is not a way
to evaluate how well the required task is accomplished. Small
errors are propagated through the whole trajectory and may
result in sub-optimal trajectories as well as in catastrophic
failures. We are interested both in determining whether the
DNNs are able to reach the goal position and in computing
the cost function along the DNN trajectory. The full DNN-
driven trajectories are thus compared to the optimal ones.
Figure 1 shows a comparison between a deep network and a
shallow one in terms of predicted controls and (D)NN driven
trajectories.

Figure 2 shows the optimal control and the predictions of
the DNN for the states of the optimal trajectory for the simple
problem of pendulum stabilization starting from different ini-
tial states. The network accurately predicts the optimal control
action for trajectories with different number of swings as well
as control with saturated regions. Additionally, the same figure
includes all the state variables for one simulation where the
trajectory is driven by the DNN, where it is possible to see how
the DNN accurately reproduces the optimal trajectory. Overall
the DNN driven trajectories are consistently able stabilize the
pendulum in the upright position and the corresponding cost
function (power) is on average 0.7% higher.

To study the more complex multicopter and spacecraft
domains, 100 random initial positions are generated in A and
the DNN driven trajectories are simulated. Table II summarizes
the results. For each problem, we include the rate of successful
landings as well as the average relative error of the value
function obtained by the DNN with respect to the optimal
one. All the models achieve a 100% success rate with high
precision when they are initialized within A. In the same
table, for comparison purposes, we include the error for DNNs
trained on a different objective, showing that the errors are, as
expected, significantly higher.

Examples of the optimal control profile compared to the
control along a DNN-driven trajectory are shown in Figure 3.
The differences between the optimal and DNN controls are

Fig. 1. Example of the u2 control during a challenging mass optimal
spacecraft landing. The optimal control, the (D)NN predictions for each state
along the optimal trajectory and the full trajectory driven by the (D)NN are
included. Top: deep network (4 hidden layers, 64 units, 12992 parameters).
Bottom: shallow network (1 hidden layer, 2048 units, 16384 parameters). In
this case the deep network achieves safe landing conditions, while the shallow
network results in a catastrophic failure.

minor in all cases and do not prevent the models from reaching
the target state.

A. Generalization

High success rates from outside of the training data are
obtained without a major impact on performances as shown
in table II. In the case of the multicopter trained with a
quadratic cost function, if the trajectories are initialized from
an extension of A of 5 [m] both in x and z, the DNN
still achieves 100% of safe landings with minor deviations
from the optimal cost (0.74%). The success rate remains
high (84%) in the case of an extension of 10 [m]. For time
optimal trajectories, the success rate outside of A is lower
(70%), mainly due to the terminal velocity vz violating the
set tolerance.

In the spacecraft landing case, safe landing are achieved
consistently from initial positions up to 1 [km] higher than
those considered in A and more than 50% of safe landings are
achieved considering an extension of 2 [km]. If the networks

TABLE II
SIMULATION OF 100 TRAJECTORIES WITH THE DNNS. AVERAGE

RELATIVE ERROR WITH RESPECT TO THE OPTIMAL TRAJECTORY AND
SUCCESS RATE (IN PARENTHESIS).

Multicopter - Power

Training area Outside (5m) Outside (10m) Time

0.47% (100%) 0.73% (100%) 2.28% (64%) 9.75%

Multicopter - Time

Training area Outside (5m) Outside (10m) Power

0.41% (100%) 2.12% (70%) - 14.92%

Spacecraft - Mass

Training area Outside (1km) Outside (2km) Time

1.50% (100%) 1.07% (100%) 1.83% (53%) 4.46%

have learned an approximation to the solution of the HJB
equations, we would expect them to work in conditions that
are not considered in the training data. Several other strong
indications suggest that this is indeed the case.

In Figure 3 we see that, if the simulation is not stopped when
the spacecraft or multicopter reaches the goal position, the
spacecraft starts hovering close to the goal with no horizontal
or vertical velocity using its thrust to compensate the gravita-
tional force. For the case of the multicopter it is remarkable
that the thrust predicted by the network is approximately 9.81
[N] also in the case of time optimal control, where the control
is always saturated and thus that value is not present in the
training data. In the spacecraft landing case the spacecraft,
after having reached its goal, does not hover with precision,
but it still shows a similar behaviour and it is possible to
observe that the thrust (u2) constantly decreases, which can be
interpreted as an attempt to compensate for the mass reduction
due to fuel consumption.

In addition to Table II, Figure 4 shows how both the
multicopter and the spacecraft reach the goal position from
initial states well outside of the bounds of the training area.
This generalization happens not only for meaningful initial
positions but also for points lower than the landing position,
which requires to move upwards, a behaviour not presented
during training.

B. Importance of depth

Table III shows how shallow networks with just two layers
(one hidden layer and the output layer) are not able to
approximate the state-feedback control as accurately as deep
networks. Deep networks always outperform shallow networks
with the same number of parameters. We include an example
of this for each of the multicopter and spacecraft domains and
we offer a more detailed study of u2 for the spacecraft model,
given that it has the most complex and representative control
profile.

It is possible to see how, after some point, doubling the
number of units in a shallow network does not produce signifi-

TABLE III
TRAIN AND VALIDATION MEAN ABSOLUTE ERROR (MAE) FOR THE

MULTICOPTER AND SPACECRAFT MODELS. AN EXAMPLE,
CORRESPONDING TO FIGURE 1, IS HIGHLIGHTED.

Multicopter - Power

layers units / layer #weights train error val. error

u
1

2 1,104 8,832 0.0897 0.0902
4 64 8,832 0.0668 0.0672
5 64 17,216 0.0632 0.0637

u
2

2 1,104 8,832 0.0645 0.065
4 64 8,832 0.0429 0.0431
5 64 17,216 0.0416 0.0418

Multicopter - Time

layers units / layer #weights train error val. error

u
1

2 1,104 8,832 0.232 0.234
4 64 8,832 0.152 0.153
5 64 17,216 0.145 0.146

u
2

2 1,104 8,832 0.105 0.104
4 64 8,832 0.0852 0.0853
5 64 17,216 0.0786 0.0789

Spacecraft - Mass

layers units / layer #weights train error val. error

u
1 2 1,104 8,832 1243.78 1246.91-

4 64 8,832 936.98 946.76
5 64 17,216 930.71 938.16

u
2

2 256 2,048 0,00462 0,00460
2 1,104 8,834 0,00379 0,00379
2 2,048 16,384 0,00370 0,00371

3 64 4,672 0,00307 0,00307
3 128 17,536 0,00270 0,00272
3 256 67,840 0,00263 0,00264

4 64 8,832 0,00250 0,00252
4 128 34,048 0,00241 0,00242

5 64 12,992 0,00236 0,00237

cant improvements. In this case the performance is lower than
deeper networks with a much lower number of parameters,
which indicates that, given the data and the training methods
used, it is not possible to learn a precise representation of the
function with shallow networks.

C. Speed comparison

The DNN, compared to the original NLP solver, will only
provide an advantage if its processing time is lower, thus being
a viable candidate for real-time implementations.

We compute the time it takes to compute the control given
the state with neural networks of different sizes (2 layers and
1,140 units and 5 layers and 64, 128 and 256 units) and the
NLP solver with different number of nodes (5, 20, 50) for
the quadrotor and spacecraft problems. In each case, the time
is measured for 100 different trajectories and the average is
computed. The results are included in Table IV.

For the spacecraft mass optimal control problem, computing
the optimal control with a DNN with 4 hidden layers with 64

TABLE IV
TIME TO COMPUTE THE THE CONTROL GIVEN THE STATE USING AN

INTEL(R) XEON(R) E5-2687W @ 3.10GHZ CPU.

Non linear programming (NLP) solver

5 nodes 20 nodes 50 nodes
Multicopter (time) 38.86 ms 168.71 ms 594.87 ms

Multicopter (power) 32.60 ms 222.58 ms 1245.98 ms
Spacecraft (mass) 82.82 ms 280.70 ms 1830.57 ms

DNN (network for each variable)

1 - 1140 4 - 64 4 - 128 4 - 256
0.048 ms 0.056 ms 0.068 ms 0.11 ms

units is more than 30,000 times faster than the NLP solver
used to generate the training data (NLP with 50 nodes). Even
if a low number of nodes is used in the NLP solver, resulting in
sub-optimal controllers, the DNNs are up to 1,500 times faster.
Using the DNN with 4 layers and 128 units per hidden layer
it is possible to compute the control with a frequency higher
than 9kHz, which is suitable for the real-time applications here
considered.

VI. CONCLUSIONS

We have shown that deep neural networks (DNN) can be
trained to learn the optimal state-feedback of continuous time,
deterministic, non-linear systems. The trained networks are
not limited to predict the optimal state-feedback from points
within the subset of the state space used during training,
but are able to generalize to points well outside the training
data, suggesting that the solution to Hamilton-Jacobi-Bellman
(HJB) equations is the underlying model being learned. The
depth of the networks has a great influence on the obtained
results and we find that shallow networks, while trying to
approximate the optimal state-feedback, are unable to learn
its complex structure satisfactorily.

Alternative methods to compute the optimal trajectories,
such as the direct methods used to generate our training data,
require expensive computations, discarding them as candidates
for real time applications. Our work opens to the possibility
to design real-time optimal control architectures for complex
non-linear systems using a DNN to drive directly the state-
action selection. With this respect we show that, in the landing
cases, the error introduced by the use of the trained DNN,
not only does not have a significant impact on the final cost
function achieved, but it is also safe in terms of avoiding
catastrophic failures.

0 2 4
t

8

4

0

4

8
u (N)
v (m/s)
θ (rad)
v (rad/s)

1

x

θ

0
t (multiple initializations)

4

2

0

2

4

u
(N

)

Optimal control

DNN

Fig. 2. The inverted pendulum problem. Left image shows the predictions of a DNN compared to the optimal control for multiple initial trajectories. Right
image includes the variables vx, θ, vθ and the control u1 applied to the cart. The values for the optimal trajectory are also displayed in gray, but are mostly
perfectly overlapped and thus not visible.

0 1 2 3

0

10

20

u 1
(N

)

0 1 2 3
t (s)

2

0

2

u 2
(r

ad
/s

)

0 20 40 60 80

0

20000

40000

u 1
(N

)

0 20 40 60 80
t (s)

0.00

0.05

u 2
(r

ad
/s

)

0 1 2 3

0

10

20

u 1
(N

)

0 1 2 3
t (s)

2

0

2

u 2
(r

ad
/s

)

Optimal trajectory

DNN control

Fig. 3. Control profile along trajectories driven by a DNN for the multicopter power (left) and time (center) optimal problems and for the spacecraft mass
problem (right). After reaching the goal (gray line) the trajectory computed by the network starts a hovering phase. For the multicopter cases this requires a
constant thrust of 9.8 [N], for the spacecraft model the thrust decreases over time as the total mass decreases.

Fig. 4. Trajectories computed by DNNs from initial points outside of the training area both for the power optimal multicopter pin-point landing (left and
center) and the mass optimal spacecraft landing (right). The black box indicates the initialization area and the gray lines trajectories randomly sampled from
the training data.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015, insight. [Online]. Available:
http://dx.doi.org/10.1038/nature14539

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[3] S. Levine, “Exploring deep and recurrent architectures for optimal
control,” arXiv preprint arXiv:1311.1761, 2013.

[4] V. Levine, Sergey; Koltun, “Guided policy search,” International Con-
ference on Machine Learning, 2013.

[5] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy search,”
arXiv preprint arXiv:1509.06791, 2015.

[6] S. Effati and M. Pakdaman, “Optimal control problem via neural
networks,” Neural Computing and Applications, vol. 23, no. 7-8, pp.
2093–2100, 2013.

[7] Y. Xiong, L. Derong, W. Ding, and M. Hongwen, “Constrained online
optimal control for continuous-time nonlinear systems using neuro-
dynamic programming,” in Control Conference (CCC), 2014 33rd Chi-
nese. IEEE, 2014, pp. 8717–8722.

[8] P. Medagam and F. Pourboghrat, “Optimal control of nonlinear systems
using rbf neural network and adaptive extended kalman filter,” in
American Control Conference, 2009. ACC ’09., June 2009, pp. 355–
360.

[9] E. Todorov, “Optimality principles in sensorimotor control,” Nature
neuroscience, vol. 7, no. 9, pp. 907–915, 2004.

[10] F. L. Lewis and M. Abu-Khalaf, “A hamilton-jacobi setup for constrained
neural network control,” in Intelligent Control. 2003 IEEE International
Symposium on. IEEE, 2003, pp. 1–15.

[11] Y. Tassa and T. Erez, “Least squares solutions of the hjb equation with
neural network value-function approximators,” Neural Networks, IEEE
Transactions on, vol. 18, no. 4, pp. 1031–1041, July 2007.

[12] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. V. Todorov,
“Interactive control of diverse complex characters with neural networks,”
in Advances in Neural Information Processing Systems, 2015, pp. 3114–
3122.

[13] M. Berniker and K. P. Kording, “Deep networks for motor control
functions,” Frontiers in computational neuroscience, vol. 9, 2015.

[14] B. Acikmese and S. R. Ploen, “Convex programming approach to
powered descent guidance for mars landing,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 5, pp. 1353–1366, 2007.

[15] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity so-
lutions of Hamilton-Jacobi-Bellman equations. Springer Science &
Business Media, 2008.

[16] R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations of
the generalized hamilton-jacobi-bellman equation,” Automatica, vol. 33,
no. 12, pp. 2159–2177, 1997.

[17] D. Izzo and G. de Croon, “Nonlinear model predictive control applied to
vision-based spacecraft landing,” in Proceedings of the EuroGNC 2013,
2nd CEAS Specialist Conference on Guidance, Navigation & Control,
Delft University of Technology, 2013, pp. 91–107.

[18] M. Hehn, R. Ritz, and R. DAndrea, “Performance benchmarking of
quadrotor systems using time-optimal control,” Autonomous Robots,
vol. 33, no. 1-2, pp. 69–88, 2012.

[19] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. Siam, 2010, vol. 19.

[20] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[21] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” in Computer Vision,
2009 IEEE 12th International Conference on. IEEE, 2009, pp. 2146–
2153.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on Artificial Intelligence and
Statistics, 2011, pp. 315–323.

[23] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Neural Networks:
Tricks of the Trade: Second Edition. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, ch. Efficient BackProp, pp. 9–48. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35289-8 3

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International conference on artificial
intelligence and statistics, 2010, pp. 249–256.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026–1034.

[26] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proceedings of the
30th international conference on machine learning (ICML-13), 2013,
pp. 1139–1147.

