
Optimal Orderings of k-subsets for Star
Identification

Joerg H. Mueller∗, Carlos Sánchez-Sánchez∗, Luı́s F. Simões† and Dario Izzo∗
∗Advanced Concepts Team, European Space Agency, Noordwijk, The Netherlands

Email: {joerg.mueller, carlos.sanchez, dario.izzo}@esa.int
†Computational Intelligence Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Email: luis.simoes@vu.nl

Abstract—Finding the optimal ordering of k-subsets with
respect to an objective function is known to be an extremely
challenging problem. In this paper we introduce a new objective
for this task, rooted in the problem of star identification on
spacecrafts: subsets of detected spikes are to be generated in
an ordering that minimizes time to detection of a valid star
constellation. We carry out an extensive analysis of the combi-
natorial optimization problem, and propose multiple algorithmic
solutions, offering different quality-complexity trade-offs. Three
main approaches are investigated: exhaustive search (branch
and prune), goal-driven (greedy scene elimination, minimally
intersecting subsets), and stateless algorithms which implicitly
seek to satisfy the problem’s goals (pattern shifting, base unrank).
In practical terms, these last algorithms are found to provide
satisfactory approximations to the ideal performance levels, at
small computational costs.

I. INTRODUCTION

In this paper, we introduce a novel objective for the genera-
tion of all k-subsets of n elements and we discuss the structure
of the resulting combinatorial optimization task. In general,
improving the order of elements in a sequence towards some
objective is recognized to be a complex optimization task [1]
with interesting applications in computer science such as unit
test coverage [2], [3].

Star trackers (see Figure 1) are a common sensor used by
a spacecraft to determine its attitude by looking at fixed stars.
The problem we here formalize and tackle was suggested
by the work of Mortari et al. [4] on the design of efficient
algorithms for star identification. In that paper, the authors
consider a “lost-in-space” spacecraft attitude identification
problem: find the orientation of a spacecraft in deep space
using a single star tracker image. Such a problem corresponds
to that of identifying k stars in a “scene” (i.e. a picture taken by
the star tracker) containing n spikes of which t are unknown
stars and the rest are artifacts due to various disturbances
present in harsh space environments. Part of the algorithm
proposed in that paper, called the Pyramid Algorithm and
today widely used in many star-trackers in orbit, needs to
generate all

(
n
3

)
combinations in a smart order that allows

the discovery of three true stars in the scene from a minimal
number of star catalog queries.

II. BACKGROUND

A star tracker utilizes a star catalog containing the positions
of all known stars having brightness larger than some prede-

Fig. 1. The flight model of the hydra star-tracker currently flying on the ESA
Sentinel 3A satellite mission.

fined threshold. A camera is used as sensory device to capture
the light coming from the stars which will then create spikes
in the image. The crucial software part of a star tracker is
the star identification algorithm whose task is to match spikes
extracted from the image with stars in the star catalog. With
the matched stars it is then possible to calculate the orientation
of the spacecraft. One major problem for star identification
algorithms is that not all spikes in an image are associated
to real stars. Spikes can be caused by reflections on debris,
radiation or other spurious sources. A correct and fast star
identification is critical in space: a failure of the spacecraft
to detect its own attitude promptly may lead to the complete
failure of the mission.

A. The Pyramid Algorithm

A widely used star identification algorithm [5] is the Pyra-
mid Algorithm developed by Mortari et al. [4]. The algorithm
is based on the distances between two stars in an image. A
database stores the distance between each star pair from the
catalog up to the maximum distance that is possible within
the field of view of the camera. The look-up of an arbitrary
distance within the measurement tolerance typically results in
a number of possible star pairs from the catalog. It is therefore
necessary to build higher order graphs with the spikes in the
image, such as a triangle consisting of three distances. The
resulting star pairs from the distance look-ups in the database
have to be matched to form an actual triangle given the IDs
of the stars in the star catalog.

0 100 200 300 400 500 600 700

0

100

200

300

400

500
0

1
2

3

4
5

6

7

8

9

Fig. 2. A random scene as a star tracker would see it. Ten (n = 10) detected
spikes in the image are numbered arbitrarily from 0 to 9 and marked as circles.
Artifacts are colored in red, actual stars (t = 5) are colored in green. The
pyramid algorithm detected the four stars connected with blue lines as a valid
pyramid.

An important part of the algorithm is to select spike triplets
resulting in a sequence of queries to the database able to find
a positive match as quickly as possible. This problem equals
to that of wisely selecting the order of all possible k-subsets
of n given spikes, where, in this case, k = 3.

For example, as discussed also in the original paper by
Mortari, the lexicographic order (which tries the spikes in
the sequence 0-1-2, 0-1-3, 0-1-4, etc.) is clearly problematic,
as the first spike is repeated until all possible combinations
containing it have been also tried. In the case of such a
spike being spurious this approach results in many unnecessary
database queries. As part of the Pyramid Algorithm, Mortari et
al. proposed an algorithm to generate the subsets in a smarter
fashion, while acknowledging that the mathematically optimal
solution is of interest, but unknown. This stateless algorithm,
which we call pattern shifting algorithm, is described in the
original paper and here reported for convenience:

for dy from 1 to n-2
for dz from 1 to n-dy-1

for x from 0 to n-dy-dz-1
y = x + dy
z = y + dz
next combination is [x, y, z]

This code would produce the sequence 0-1-2, 1-2-3, 2-3-4,
etc.

III. PROBLEM DESCRIPTION

Consider a star tracker camera retrieving an image con-
taining n spikes arbitrarily numbered from 0 to n − 1 of
which an unknown subset s = {p1, p2, . . . , pt} of cardinality
t are actual stars and the remaining spikes artifacts. A fixed
n, s defines what will here be called a scene, which can be
thought of as the underlying, unknown, ground truth. A query
q = {c1, c2, . . . , ck} is a k-subset of the spikes and is said to
discover the scene if q ⊆ s.

We study the problem of generating, for a fixed n, an
ordered sequence Q = {qj , j ∈ 1..M} of M queries able to
discover the unknown scene, on average, at the smallest trial j.
To guarantee that j always exists, we only consider a sequence
Q if it contains all M = N =

(
n
k

)
possible queries (in which

case we refer to Q as complete) and we assume t ≥ k as
scenes with less than t spikes cannot be discovered. The set
S = {s1, s2, . . . } for a fixed n contains all possible scenes
that are discoverable (t ≥ k). Due to lack of prior knowledge
about S, we assume all scenes to have equal probability |S|−1,
where:

|S| =
n∑

t=k

(
n

t

)
(1)

We formalize the problem as:

find: Q
to minimize: T (Q) = 1

|S|
∑

s∈S τ (Q, s)
(2)

where T (Q) is the expected time to discovery, that is the
average across all possible scenes s ∈ S, of τ(Q, s): the index
j of the first qj ∈ Q discovering s.

A. Discovery of Scenes

Let D(Q, i) be the number of scenes discovered by the
query qi but not by any of the previous queries qj<i. Clearly,
for each of such scenes, τ(Q, s) = i. We may then rearrange
the terms in the expression for the expected time to discovery
in Eq.(2) grouping together all scenes discovered by qi and
thus summing over all qi ∈ Q:

T (Q) =
1

|S|

|Q|∑
i=1

iD(Q, i). (3)

In this form, the objective function suggests that the number
of scenes discovered at each i should be larger than those
discovered at any j > i, a simple thought that will form
the basis of some of the most successfull algorithms here
introduced.

B. Example

Consider a simple scenario with n = 5 spikes and k =
3. We assume the spikes are numbered from 0 to 4. Let us
compute the time to discovery T of the sequence Q generated
by the pattern shifting algorithm by Mortari et al.:

Q =

{0, 1, 2},
{1, 2, 3},
{2, 3, 4},
{0, 1, 3},
{1, 2, 4},
{0, 1, 4},
{0, 2, 3},
{1, 3, 4},
{0, 2, 4},
{0, 3, 4}

As a start, consider the scene se = {1, 2, 3, 4}. As

q1 = {0, 1, 2} 6⊆ se does not discover the scene, but

TABLE I
MONOTONICITY OF THE OPTIMAL ORDER

qi D(Q, i) q∗i D(Q∗, i)

{0, 1, 2} 4 {0, 1, 2} 4
{0, 3, 4} 3 {0, 3, 4} 3
{0, 1, 3} 1 {2, 3, 4} 2
{2, 3, 4} 2 {0, 1, 3} 1
{1, 2, 4} 1 {1, 2, 4} 1
{0, 1, 4} 1 {0, 1, 4} 1
{0, 2, 3} 1 {0, 2, 3} 1
{1, 3, 4} 1 {1, 3, 4} 1
{0, 2, 4} 1 {0, 2, 4} 1
{1, 2, 3} 1 {1, 2, 3} 1

T (Q) = 64 / 16 T (Q∗) = 63 / 16

q2 = {1, 2, 3} ⊆ se does, the number of queries necessary to
discover this particular scene is τ (Q, se) = 2. To compute the
total time to discovery T (Q), we must sum over all possible
scenes (of which there are 16 with t ≥ 3 : one with t = 5,
five with t = 4 and ten with t = 3). Listing all possibilities it
is not difficult to find that we have four scenes discovered by
q1, two discovered for each q2 to q4 and one for each q5 to
q10. This, according to Eq.(3) gives a final score of:

T (Q) =
1

16

(
4 · 1 +

4∑
i=2

2 · i+
10∑
i=5

1 · i

)
=

67

16

The optimum in this case could be reached, for example, by
swapping q2 and q10 leading to a score of T (Q) = 65

16 . The
lexicographic sequence, for reference, has, in this case, a score
of T (Q) = 71

16 .

IV. ANALYSIS

We discuss some properties useful to design algorithms
aimed at solving the problem stated in Eq.(2).

A. Equivalent sequences

No sequence Q has a unique score. Consider the equivalence
class [Q] containing all sequences having the same time to
discovery. The cardinality of this set is at least n!. Since this
property is also valid for the optimal sequence, we conclude
that there are at least n! solutions. This result follows immedi-
ately noting that any permutation of the n spike IDs does not
change the score. Therefore, applying the same permutation
to all elements in each qi ∈ Q will result in an equally scored
Q′.

B. Scene Discovery Monotonicity

If Q is optimal, then the values D(Q, i) monotonically de-
crease with i. This property, called the monotonicity property,
states that the number of scenes discovered by each successive
query in an optimal sequence is a monotonically decreasing
sequence.

It is illustrated in Table I. The sequence on the left cannot be
optimal as it violates the monotonicity property. By swapping
the highlighted queries we obtain a better sequence.

Proof. Consider two consecutive queries qi, qi+1 ∈ Q such
that D(Q, i) < D(Q, i+1), we show that swapping the subsets

qi, qi+1 results in a new sequence Q∗, where q∗i = qi+1 and
q∗i+1 = qi, with a lower average time to discovery implying
that, for the optimal sequence Q′, D(Q′, i) monotonically
decreases with i.

Due to the swap, D(Q, i) ≥ D(Q∗, i+1) because of scenes
that can be discovered by both qi and qi+1. According to
Eq. (3), The contribution of the queries qi, qi+1 to T (Q) is:

Ti = iD(Q, i) + (i+ 1)D(Q, i+ 1)

T ∗i can be similarly defined as the contribution of the queries
q∗i , q∗i+1 to T (Q∗). Using D(Q, i)+D(Q, i+1) = D(Q∗, i)+
D(Q∗, i + 1), as both queries together always discover the
same amount of scenes, we get

Ti − T ∗i = D(Q, i+ 1)−D(Q∗, i+ 1) > 0,

as D(Q, i+ 1) > D(Q, i) ≥ D(Q∗, i+ 1).
Swapping the two queries does not alter the contributions

of the previous and following queries. Therefore, Ti > T ∗i
results in T (Q∗) < T (Q).

C. The Average T

Consider the set Q of all sequences that are complete and
do not contain repetitions. Following Eq. (2) and Eq. (3) we
may restate the fundamental problem subject of this paper as:

find: Q ∈ Q
to minimize: T (Q) = 1

|S|
∑|Q|

i=1 iD(Q, i).
(4)

The dimension of our search space, that is the cardinality of
Q, can be computed noting that the number of queries qi ∈ Q
is N =

(
n
k

)
. The total number of different sequences in Q, the

search space dimension, is then N !. It is of interest to compute
σ, the average across the whole search space of T (Q). Any
algorithm producing a sequence scoring less than σ will be
considered as making good use of the problem structure, while
the opposite can be said for algorithms that generate sequences
scoring more than σ. The value σ can be computed as follows:

σ =
1

N !

∑
Q

T (Q)

Computing σ directly from this definition is quite expensive,
thus we derive a simpler formula that has a much lower
complexity. Let us start by assuming the first i− 1 queries in
some Q have not discovered a scene st having t true stars. The
probability that the following query qi ∈ Q will discover it is
denoted with p(qi, t). This probability is the fraction between
the number of queries able to discover st and the total number
of remaining, possible queries:

p (qi, t) =

(
t
k

)
N − i+ 1

,

This probability increases with i and is well defined only when
i ≤ N + 1 −

(
t
k

)
. We may then compute the unconditional

TABLE II
VALUES OF σ FOR DIFFERENT n AND k.

n k σ
5 3 4.2

10 3 17.4
20 3 16.0
50 3 9.9
100 3 8.8

n k σ
20 1 2.0
20 2 5.1
20 5 322.5
20 10 32528.1
20 15 5748.7

probability pi(t) that st will be detected at the i-th query qi
as:

pi(t) = p (qi, t)

i−1∏
j=1

(1− p (qj , t))

Using this equation, it can be shown that σ can be derived as:

σ =
1

|S|

n∑
t=k

(
|St|

N∑
i=1

ipi(t)

)
, (5)

where |St| =
(
n
t

)
is the number of possible scenes with exactly

t true stars. The complexity of computing this is O(Nn). Some
examples are shown in Table II, showing that the expectation
for a fixed k has a maximum at some n.

V. ALGORITHMS

We propose several algorithms to generate a solution to the
problem (2) that we group in three families. First we detail
algorithms guaranteed to find an optimal solution. Since these
reveal to be computationally intractable with growing n, we
introduce a second family including algorithms making use
of different heuristics to search in Q resulting in a great
reduction of the computational cost but without the guarantee
of finding the optimal sequence. Finally, the algorithms of the
last family are stateless k-subset (queries) generators. They
have a considerably lower computational cost, making them
attractive for real-time generation in star trackers. This family
includes a generalization of the pattern shifting algorithm
described by Mortari et al. [4].

A. Finding an optimal solution

We start with the naive brute-force approach computing the
score for all Q ∈ Q and returning the minimum. The same
result, implemented as a branch and prune algorithm making
use of the properties introduced in section IV to prune large
portion of the search space not containing the optimal solution.

1) Brute-force: In the brute-force approach one simply
determine the time to discovery for all possible sequences of
queries. This way of determining the best sequence comes
at a high cost, with a time complexity of O (N !k|S|). Every
permutation of the N queries has to be checked against every
possible scene. It is easy to understand that this complexity
grows out of any reasonable bounds even for low numbers of
n and k.

2) Branch and prune: The brute-force algorithm can be
implemented as branch and prune tree search. Each level in
the tree adds another query to the sequence. This means the
root node has N neighbors and the branching factor at each
level is decreasing by one from there, resulting in a depth of
N for all the leaves in the tree.

To optimize computational performance, scenes and queries
can be stored and processed in a binary representation. The bit-
wise AND operation allows to check if a query would discover
a scene. The search for the optimum can then easily be done
using any complete tree search algorithm and evaluating the
score at each leaf of the tree to find the minimum.

The first optimization to the brute-force algorithm is to
compute the score during the exploration of the nodes in the
tree, while doing a depth first search. If a node in the tree has a
higher score than the minimum so far, the whole branch can be
pruned. Further pruning is possible by using the monotonicity
property (section IV-B). If the number of scenes discovered by
a query is higher than in the previous step, the whole branch
can also be pruned. The property also allows to determine a
lower bound on the score of a branch, which allows pruning
earlier when compared to the current minimum score.

Another optimization considers the possibility to permute
the elements making up the queries as described in sec-
tion IV-A. When the search tree is pruned by only allowing one
of these permutations, the number of sequences to be checked
is a factor n! lower.

Additionally, at some point, all the remaining queries re-
move exactly one scene each. All possible permutations of
these queries will lead to the same score. When looking
for only one optimum the search can just take any random
permutation of the remaining queries at this point or directly
compute all permutations without recalculating the score for
each of them.

Although the required time to find the optimal sequence
drastically decreases, these optimizations do not influence
the overall computational complexity, making it infeasible to
compute the optimal sequence for n > 6, k > 3 on computers
that were available to us at the time of writing.

B. Goal-driven Algorithms

In this section we propose two algorithms that allow us
to compute sub-optimal solutions for higher values of (n,
k). Both algorithms use heuristics to assign a score δ(qi)
to a candidate query qi that indirectly estimates how well
it contributes to minimize the sequence’s overall time to
discovery. Then, the query with the highest δ(qi) is executed.

1) Greedy Scene Elimination (GSE): In this greedy algo-
rithm, a sequence is built by simply selecting the queries
qi that discovers the highest number of scenes δGSE(qi) =
D(Q, i) at each step. This approach implicitly produces
sequences having the monotonicity property described in
section IV-B. Ties can be resolved in different ways. Our
current implementation chooses the query that comes first
in lexicographic order. We found that the choice influences
the final score, which is evidence for the non-optimality

of the algorithm. Initially, all the scenes are generated and
stored. Then, with each query, the discovered scenes are
eliminated from the list of scenes, hence the name of the
algorithm. This equals following just one path to a single leaf
in the tree search algorithm. The computational complexity
of this algorithm is therefore lowered to O (Nk|S|), while the
memory consumption is O (n|S|) to store the scenes that need
to be checked.

While the branch and prune algorithm only allowed us to
compute the optimal solution for n < 7, the greedy scene
elimination algorithm allowed us to compute solutions for n <
32 within a few days on a single Intel Xeon E5-2687W core
with 3.10 GHz.

2) Minimally Intersecting Subsets (MIS): Given the com-
putational requirements of GSE, a simpler scoring function is
defined by considering the overlap between the candidate qi
and each one of queries previously executed. For each qi, we
select the one with the highest:

δMIS(qi) = −
i−1∑
j=1

2|qi∩qj | − 1

The term 2|qi∩qj | corresponds to the number of subsets in
the intersection qi∩qj . We exclude the empty subset from the
count to avoid undesirable results: two queries with |qi∩qj | =
0 would be equivalent to one with |qi ∩ qj | = 1. The same
procedure as in GSE is used to break ties.

The score δMIS(qi) can be seen as an approximation to
δGSE(qi). Let d(qi) be the set of scenes ⊆ S that could be
discovered by qi, we can express δGSE(qi) as:

δGSE(qi) = D(Q, i) = |d(qi)|

−
i−1∑
j=1

|d(qi) ∩ d(qj)|

+

i−1∑
j=1

j−1∑
k=1

|d(qi) ∩ d(qj) ∩ d(qk)|

−
i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

|d(qi) ∩ d(qj) ∩ d(qk) ∩ d(ql)|

+ . . . (6)

where the first term is equal for all q and thus removing it
results in an equivalent score function. Here we consider an
approximation to δGSE by only considering the second term:

δMIS∗(qi) = −
i−1∑
j=1

|d(qi) ∩ d(qj)|

It can be shown that the size of the intersection between the
scenes removed by qi, qj can be expressed more easily as:

δMIS∗(qi) = −
i−1∑
j=1

2n−2k+|qi∩qj |

This corresponds to δMIS(qi), except for a factor 2n−2k and the
exclusion of the empty subset in the count as explained above.
Increasingly better approximations to GSE could be obtained
by considering more and more terms of (6), an option we have
not studied in this paper.

C. Stateless Sequence Generation Algorithms

The algorithms described in this section do not explicitly
consider the objective in equation (2) to generate k-subsets.
Thus they do not require to store the previously executed
queries or the remaining stars, not having a representation of
the current state of the problem. This leads to implementations
with lower computational and memory complexity.

These algorithms can be seen as analogous to those used
to solve the minimal change ordering problem such as the
revolving door algorithm [6], the Eades-McKay algorithm [7],
and Chase’s sequence [8]. Trying to minimize the distance
between consecutive k-subsets, they perform badly in our case,
as close, similar subsets discover fewer scenes.

1) Generalized Pattern Shifting Algorithm: All the previous
methods require the evaluation of a score function for every
query, which requires a high computational cost even for
simple functions as n and k increase. Those algorithms cannot
run in real-time on a star tracker. In [4], Mortari et al. propose
an algorithm for producing k = 3 subset sequences. The
algorithm is notable for the low computational complexity with
which it generates sequences, while maintaining some degree
of diversity among its sequentially produced subsets. We
present here a generalization of the pattern shifting algorithm
to arbitrary k, and arbitrary reference sequences.

Let E = {e0, . . . , en−1} represent the n elements being
grouped into k-element subsets. A reference sequence gener-
ator is made to iteratively produce its sequence of (k − 1)-
element subsets from E \ {e0}. Each subset q′ produced
this way is extended with e0, so as to compose a valid k-
element subset: qi = {e0}∪q′. Multiple variants of this subset
are then produced, by incrementing/shifting subset elements:
qi+1 = {em+1|em ∈ qi}. This will lead to a sub-sequence
{qi, . . . , qj} of Q, ending at the subset qj for which en−1 ∈ qj .
Should this condition hold already for qi, the sub-sequence
will then include a single subset.

In the following sections we take lexicographic as the
reference sequence generator, which, for k = 3, then perfectly
replicates the sequences produced by the algorithm given in
[4]. However, the formulation presented above allows for other
reference generators to be considered. It can even use itself
recursively stopping at k = 0 which simply results in a
single empty subset. Naturally, the quality of the sequences
generated by this algorithm are closely tied to the quality of the
sequences produced by the reference generator. Exchanging
lexicographic for revolving door [6], for instance, will improve
the overall quality.

2) Unranking Algorithms: We here consider a class of se-
quence generators that rely on unranking functions to produce
their sequences. These are functions that, for a given rank r,
will generate the (r+1)-th subset in some reference sequence.

In [6], unranking functions are provided for the lexicographic,
co-lexicographic and revolving door sequence generators.

By relying on an unranking function, the problem of
generating a sequence is recast as the problem of how to
best generate a sequence of N ranks in {0, . . . , N − 1}.
A pseudorandom number generator (PRNG) can be used to
produce these ranks. If the uniqueness of ranks is enforced, for
instance via a full cycle PRNGs such as linear feedback shift
registers, we then obtain a pseudorandom sequence without
repetitions, effectively a pseudorandom permutation of the N
subsets. In terms of scalability, unranking functions enable
such sequences to be generated without the need to obtain
ahead the full sequence Q and then perform a shuffling
operation in memory over it.

This approach can however be improved through analysis of
the reference sequences for which the unranking functions are
designed. Lexicographic, co-lexicographic and revolving door
are all sequences where similar subsets can be found clustered
with similar ranks. A logical approach is then to seek a process
that generates ranks that are locally as dissimilar as possible,
and preserves this property throughout the full sequence.
Techniques to achieve that can be found in the domain of
low-discrepancy, or quasi-random sequence generators. We
introduce here an approach, under the name “base unrank”,
that is based on the van der Corput sequence [9].

Let L = dlogbNe represent the number of digits required
in order to count from 0 to N − 1 in base b. The sequence
of ranks is produced by counting from 0 to bL − 1, in base
b, while prioritizing increments to the most significant digit.
This is equivalent to a sequence that increments ranks as per
the normal rules of addition, but at each step then reverses
the L digits. Ranks r ≥ N produced by this process are
simply skipped in the sequence. This sequence generation
equals using the van der Corput sequence from 0 to bL − 1
multiplied by bL as index for the unranking function.

Consider the example of base unranking for n = 5,
k = 3 (N = 10). Taking b = 2 will result in a
counting over L = 4 digits. In binary, the sequence
would be {0000, 1000, 0100, . . . , 1111}, which would decode
in base 10 to {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}.
Skipping the ranks r ≥ N would then lead to the sequence
{0, 8, 4, 2, 6, 1, 9, 5, 3, 7}. These ranks, produced sequentially,
and mapped through the unranking function for some reference
sequence such as the revolving door (the default used in the
remainder of this paper), will generate a valid k-elements
subset sequence with no repetitions, and little overhead (com-
putationally, the costlier operation will be the unranking itself).

3) Random Queries: For completeness, we also consider
the expected score of purely random queries, selecting k-
subsets at uniform probability from the set of all possible
k-subsets. This means, that Q would contain repetitions and
has infinite length. In practice it would be necessary to abort
the discovery at some point to avoid running an endless loop,
when a scene cannot be discovered. With a derivation similar

(a) Optimal (b) GSE

1 2 3 4 5 6 7 8

GSE

Optimum

(c) Scenes Discovered

Fig. 3. For n = 6 and k = 3 an optimal solution (a) cannot be found by the
greedy scene elimination (b) algorithm. This is because the second query of
the optimal solution discovers less scenes than GSE at this step, but is then
able to discover more scenes with the subsequent two queries.

to that of Eq.(5), we obtain:

E [T (Q)] =
1

|S|

n∑
t=k

(
|St| ·

N(
t
k

)) (7)

VI. RESULTS

We test all the proposed algorithms in scenarios with differ-
ent values of (n, k), reporting the average time to discovery
T (Q) of each case. We pay particular attention to the k = 3
cases, due to their relevance to star trackers. Additionally, we
analyse the sequences produced in some of these cases to study
how the different algorithms behave.

The branch and prune algorithm can find an optimum se-
quence for scenarios up to n = 6. In the case of n = 6, k = 3,
it is interesting to note that there is an overlap between the
first two queries, [0, 1, 2] followed by [0, 3, 4] as illustrated in
Figure 3. It is interesting to note that such sequence is not
generated by GSE and MIS algorithms, given that they try to
select the query discovering the maximum amount of scenes
at each step, thus minimizing the overlap with respect to the
previous sequence.

As a reference, we include the sequences generated by the
algorithms for n = 10, k = 3 in Figure 5. Note that for GSE, in
this case, after 48 queries, all the sequences remove one scene,
thus resulting in a lexicographic ordering of the remaining
queries.

Figure 4 shows the results of the algorithms in scenarios
with different (n, k). Excluding the random queries case,
the remaining algorithms can be ordered according to their
performance from best to worst as follows:

GSE ≺ MIS ≺ base unrank ≺ pattern-shifting ≺ lex

It is interesting to note that the pattern-shifting and lexico-
graphic (lex) algorithms exhibit a performance worse than

5 10 15 20 25

Number of Spikes - n

100

101

102

103
S

co
re

2 3 4 5 6 7 8 9 10

Subset Length - k

100

101

102

S
co

re

0 200 400 600 800 1000

Subsets Queried - i

100

102

104

106

U
n

d
is

co
ve

re
d

S
ce

n
es

Lexicographic Pattern Shifting Base Unrank Random Queries σ MIS GSE

Fig. 4. Comparison of the performance of the algorithms presented. The left and center panel show the score T (Q) of the sequences Q generated by the
algorithms depending on the number of spikes n (with k = 3, left panel) and the subset length k (with n = 10, center panel). The right panel shows the
number of scenes left to discover for the sequences Q after every query qi for i from 0 to N − 1 for the scenario with n = 20 and k = 3.

σ. Although the pattern-shifting algorithm has a remarkably
simple implementation and has low complexity both in terms
of computations and memory, a random ordering is likely
to perform better. Moreover, base-unrank offers even better
results with comparable costs.

Another interesting point is that, for n >> k, as repetitions
are less likely, the performance of the random queries converge
to σ, as can be seen in Figure 4 in the left panel. In this case, it
becomes better than the pattern shifting algorithm for n ≥ 17.

The magnified areas in Figure 4 show that the margin
between the algorithms is relatively small, especially between
GSE and MIS. A similar difference is expected between GSE
and the optimal solution.

To investigate the behavior of the algorithms, Figure 4 (right
panel) shows how many scenes are undiscovered in the same
scenario (n = 20, k = 3), while iterating over the queries in
the sequence. The lexicographic algorithm shows a repeated
pattern where less and less scenes are removed up to some
point, where suddenly more scenes are removed again. The
pattern shifting algorithm shows a similar behaviour, though
less pronounced. Interestingly, the lines of σ and the base
unrank algorithm are intersecting. The better score of the base
unrank algorithm seems to be caused by it removing more
scenes in the beginning.

Of all algorithms without repetitions of queries, we saw
that the lexicographic sequence performs worst. We find
that the lexicographic sequence seems to be the worst case
sequence for the described optimization problem. For n < 6,
the lexicographic sequence is always among the sequences
that maximizes the score as we found during the brute-force
searches. Reversing the choice of GSE to choose the query
that removes the least amount of scenes also yields a sequence
with exactly the same score of the lexicographic sequence and
showing the exact same behavior in the plot shown in Figure 4.

The best solutions generated for each one of the scenarios
considered in this paper have been made available online1.

1http://www.esa.int/gsp/ACT/ai/projects/star trackers.html

VII. CONCLUSION

We consider a star identification problem and we map it to
a k-subsets (queries) optimal ordering problem. We provide
an in depth analysis of its structure proving interesting math-
ematical properties that are used in the design and assessment
of solution algorithms. A number of algorithms with different
complexity and performance, covering a wide spectrum of the
parameters n and k, is proposed and proved to advance the
state-of-the-art in star identification research. For small n < 7
we are able to provide the optimal solutions, while for higher
n (< 32) our algorithms are only able to compute and score
suboptimal solutions. We released our best solutions online1.
The problem complexity is such that for even higher n it is
extremely challenging to even compute the considered scoring
function. Nevertheless, we presented a class of algorithms with
polynomial complexity in the output size N , producing better
sequences than the average random sequence at least for the
parameter range that could be tested.

REFERENCES

[1] M. Dewar et al., Ordering Block Designs: Gray Codes, Universal Cycles
and Configuration Orderings. Springer Science & Business Media, 2012.

[2] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for pair-
wise coverage with seeding and constraints,” Information and Software
Technology, vol. 48, no. 10, pp. 960–970, 2006.

[3] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[4] D. Mortari, M. A. Samaan, C. Bruccoleri, and J. L. Junkins, “The pyramid
star identification technique,” Navigation, vol. 51, no. 3, pp. 171–183,
2004.

[5] B. B. Spratling and D. Mortari, “A survey on star identification algo-
rithms,” Algorithms, vol. 2, no. 1, pp. 93–107, 2009.

[6] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms: Generation,
Enumeration and Search. CRC Press, 1998.

[7] J. Arndt, Matters Computational: ideas, algorithms, source code.
Springer Science & Business Media, 2010.

[8] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3:
Generating All Combinations and Partitions. Addison-Wesley Profes-
sional, 2005.

[9] J. G. van der Corput, “Verteilungsfunktionen I,” Akademie van Weten-
schappen, vol. 38, pp. 813–821, 1935.

Lexicographic Revolving Door Pattern Shifting Greedy Scene
Elimination

Minimally
Intersecting

Subsets

Base Unrank

Fig. 5. Visualisation of the sequences generated by the algorithms implemented in this paper, for n = 10 and k = 3. Each row represents a k-subset, and
indicates the database will at that point be queried for the presence of a constellation of stars that matches the elements (image spikes) highlighted in white.

