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Abstract—Threat detection is one of the basic mechanisms for
protecting a network, as prevention does not suffice. Finding an
attack is difficult because the most harmful ones are specially
prepared against a specific victim and crafted for the first
time. The contribution of a human expert is still needed for
their detection, no matter how effective automatic methods used
nowadays can appear. Moreover, in many occasions intrusions
can only be efficiently detected by analyzing its effects on more
than one element in the network. Event and alert recollection
offers a way to centralize information from a heterogeneous set
of sources. Then, it can be normalized to a common language
and analyzed as a whole by a security system. In this paper
we propose Morwilog, an ant-inspired method for standing
out the relationship between actions belonging to the same
complex attack. Morwilog is conceived as a framework for alert
correlation to be integrated in a multi-modular security system.
Reinforcement learning is incorporated to it thanks to feedback
from a human security expert.

I. INTRODUCTION

Threat detection is acquiring a special relevance in network
protection, even if prevention is still a key piece. This is
required by current fast changing, complex and diverse IT
environments, whose wide range of available services brings
an uncontrollable amount of vulnerabilities. Organizations
assume they will be attacked sooner or later and they search
mechanisms to detect intrusions as early as possible and
thereupon start the mitigation or remediation [1].

We can classify threats according to many criteria, as
severity, kind of target or attacker’s profile. But the differen-
tiation between known and unknown threats is the one better
addressing the main problem security detection faces, even
if it is vague (as it is not addressed who knows) and not
technical. We qualify a threat as known if it has been widely
detected, analysed and understood by the security industry,
so a signature characterising it has been developed for most
of the intrusion detection platforms and it could be detected
using pattern matching. For identifying the unknown ones, an
automatic process has to be developed based on how attacks
work and how they differ from normal traffic.

We can consider three different sources of information for
facing threat detection: network traffic, endpoint operations
and log files. Each source generates a particular type of data
for which a security system has to consider a different perspec-
tive. In the network perspective, threats are detected thanks
to the information extracted from traffic, whether through

direct analysis on packets (e.g. pattern matching based on
attack signatures) or flow summary examination. The endpoint
orientation refers to the analysis of processes and programs in
a server or a host, either real or simulated. The last category is
the log or event analysis, based on the collection, aggregation
and correlation of events registered by each device. We can
think of it as an indirect way of working with the other two
sources through abstract representations, as from log files we
can extract both network and endpoint information.

According to the Standard on Logging and Monitoring
published by the European Commission in 2010 [2], we
can define an event as “an identifiable action that happens
on a device and is recorded in a log entry”. A log entry,
also simply referred to as log, is an expression of an event
using a language previously defined and dependent of the
type of device that registers it [3]. Logs provide a valuable
source of information for knowing what is happening in a
network. This includes, of course, the detection of anomalous
or threatening events or chains of events. From the point of
view of security, the utility of logs resides in the fact that they
can be produced by an ample variety of elements connected
to the network, so information with different origins can be
merged for discovering threats that would be impossible to
discover with information from a single source.

In this paper we present a new approach for revealing the
causal relationship between alerts or events through reinforce-
ment learning. Events collected by the system are filtered
and generate artificial agents based on ant’s behaviour. The
framework in charge of that has been called Morwilog and it
is intended to find the traces of multi-step attacks through the
interconnection of events.

The rest of the paper is organized as follows. We first
present the problems and challenges in Section II. In Section
III, we review the related work. We explain the Morwilog
system in Section IV and we present the experimental results
in Section V. We finish the paper stating the conclusions and
future work in Section VI.

II. PROBLEMS AND CHALLENGES

Event correlation [4] consists on the combination of an
ensemble events into composite events [5], created as a
conceptual construct as the event is not directly observable.
Security systems recollecting logs and applying correlation



[6] are known as SIEM (System of Information and Event
Management) in the industry. Their goal is not only detecting
new incidents but also unifying and correlating alerts generated
by other security devices. Log analysis seems to be the best
approach for detecting attacks that cannot be characterised by
less than two events, called multi-step attacks [7].

However, the heterogeneity of this set of information, joined
to its great increment in terms of volume and variety in the
last few years, hinders the analysis. Methods for event analysis
has to be continuously reinvented and improved to be adapted
to new circumstances. Automation in threat detection is a key
objective, reducing the time security experts have to employ
looking for incidents in the records.

The classical approach to event correlation in commercial
platforms is rule-based reasoning [8], based on identifying the
match between rules written by an expert and events in the set.
There exists many ways for evaluating the rules, the simplest
being the linear check of each rule against the incoming logs.

This method is used for example by OSSIM, whose open
code has widely disseminated the idea of security event
correlation. The event traverses several steps in the form of log
[9], like assignation of risk score to the asset or comparison
with reputation data, among others, before arriving to the
correlation engine. This engine contains the rules defining the
sequences of events representing a threat. The event is checked
against the beginning of those rules. If matching conditions
are met, an alarm is triggered and a separate process starts in
order to look for additional incoming events matching the rest
of components in the rules matched.

The main advantage of rule-based reasoning is that rules
are expressed in a language easily understood by humans
(statements “if...then”). However, characterizing attacks and
expressing them manually in the form of rules requires a lot of
effort and their quality depends on experts’ ability. Moreover,
the resultant rules are static and only suited to known attacks.

Statistical analysis can provide a solution for the detection
of unknown attacks. Using statistical techniques we cannot
be sure about the causality implications of links between
different events, but we can explore unknown possibilities and
we do not need to build a predefined model [10]. Adding the
evaluation from a human expert to the results obtained by
statistical methods can incorporate causality to the model.

III. RELATED WORKS

A. Event Correlation for Finding Multi-Step Attacks

The basis of our work is the consideration of attacks as an
ensemble of events, an strategy composed by different steps.
Many authors have considered this perspective.

Ebrahimi et al. [11] present a mechanism to dynamically
extract attack scenarios from the correlation between alerts
generated by an Intrusion Detection System (IDS). Marchetti
et al. develop in [12] a pseudo-Bayesian algorithm where the
previous alert history is used as a reference.

In [13] attack scenarios are built from a knowledge base of
low level alerts obtained from the signatures in an IDS. The
cause-effect relationship is deduced from the attacks received

by each victim node. Following the inverse approach, the
distributed system RIAC [14] deduces new attacks based on
already defined prerequisites and consequences of minor alerts.

The order of sequences representing attacks is consider as
an important feature in [15]. They cluster the alerts to study
later their causal relationship using a Bayesian model.

All the works previously mentioned are only focused in
alerts generated by an IDS and consider the construction of
attack scenarios through the linking of these alerts.

Event correlation can also be tackled focusing in the ab-
normal character of attacks, as it is done by Friedberg et al.
[16]. Their security system detects anomalies after learning
from a test set clean of attacks. They have developed a whole
mathematical framework for defining hypotheses, rules and
anomalies. Each event class is defined by the combination of
a mask ~Cm, indicating if a field in the event is relevant or not,
and a value ~Cv , showing if a field is enforced or prohibited.

In other works, like [17], the focus is in fast retrieval of
multi-step patterns. A tuple, the AC-Index, is updated after
the retrieval of each sequence of alerts. Those sequences are
extracted as non-contiguous sub-sequences in sets of events.

Finally, effort has been made for expressing the features of
multi-step attacks. EDL is a signature language for represent-
ing them, first proposed by Meier [18] and later improved by
Jaeger [7]. Basic EDL is built on the intuitive idea of construct-
ing a sequence of nodes for representing the concatenation
of different events using a colored Petri net. The idea seems
simple but its formal specification includes very innovative
mechanisms for defining the rules, as the use of tokens going
through the network of nodes as search agents for indicating
which events the system should look for.

B. Ant Colony Optimization

The algorithm presented here is based on the natural be-
haviour of foraging ants. In the foraging process we can
observe a phenomenon of emergence as a complex behaviour
arise from the individual actions of simple agents. Each ant
modifies the environment deposing pheromones when they
find a food source. Pheromones acts as agents of indirect com-
munication between ants in a process called stigmergy [19].
The cumulated pheromones create trails ants can follow for
finding the food sources. Higher concentration of pheromones
leads to shorter paths. Pheromones evaporation avoids trail
stagnation to a sub-optimal path. The results got by the colony
exceed so much the capabilities of an individual ant that it is
difficult not to think there is a conductor managing it [20].

Ant Colony Optimization (ACO) [21] is a metaheuristic
oriented to solve discrete optimization problems through indi-
rect cooperation within a colony of artificial ants. The first
ACO algorithm, Ant System, was introduced in 1991 [22]
using the travelling salesman problem (TSP) as an example
application, in the context of Dorigo’s Ph.D. thesis [23].
Since then it has been successfully applied to many NP-hard
optimization problems like optimizing traffic control signals
[24] or scheduling a galvanizing line [25].



The bibliography about ant algorithms is plenty of papers
trying to give answer to the problem of network intrusion
detection. Several of them directly translate the ant metaphor
to software agents moving through the network [26] [27].

However, if we consider the analysis of events in a central
location, as we do in this paper, the most widespread technique
is the anomaly detection through clustering of network data
[28] [29] [30], in some cases combined with supervised
methods such as SVM [31]. There are also some approaches
introducing fuzzy systems [32] or relying in the importance
of distributed clustering [33]. Other examples can be found
in [34]. The limitations of all these centralized approaches is
that they consider an attack as characterized by only one event,
which is not always the case in real networks.

C. Manhill

An interesting version of ACO is the Hommilière (Manhill)
system developed by Valigiani [35] in his Ph.D. thesis. It was
created to be applied in an e-learning platform for recommend-
ing the best learning path to each user, according to the results
obtained by other students. As the number of users is big
enough (more than 150,000 in the tested environment), each
of them can be associated to an ant. The ant goes through the
different lessons, arranged as a graph, deposing pheromones
according to the student’s success in each step [36].

Independently of its results or its real applicability to e-
learning, the most relevant contribution of this work to ACO
metaheuristic is the idea of using an element of the real world
associated to each ant, instead of generating a base population
of artificial ants. This leads to a different point of view in ACO
and brings the possibility of incorporating the complexity of
natural processes to the generation of ants. Other works have
proposed that each ant simulates a real entity, as Mahanti et
al. [37] do for simulating attackers in a honeypot environment,
but the Manhill algorithm is the first one, as far as we know,
directly associating the ants to real-world entities.

IV. MORWILOG

Taking inspiration from ACO and Manhill, a system called
Morwilog has been developed for linking sequences of attacks
in a set of heterogeneous events. The prefix ‘morwi-’ is the
translation to latin characters of the prefix meaning ‘ant’ in
Proto-Indo-European [38], a theoretical reconstruction of the
common ancestor of the Indo-European languages [39]. From
now on, we give the name morwi to the artificial ants created
during the execution of the proposed algorithm.

This system is oriented towards multi-step threat detection
through event analysis. This orientation has been chosen
as events can be collected from a broad range of devices,
irrespective of whether they generate visible IP traffic or
not. Furthermore, if the volume of events is too high for
implementing an heuristic engine in real time, such mechanism
can be used out of line for inferring general correlation rules
that can later be imported into a regular correlation engine.

The main inspiration for Morwilog is the Manhill algo-
rithm and how it links artificial ants to real entities. Our

first hypothese was to directly translate to our case the way
the algorithm is applied in e-learning, assigning a morwi to
each user. Following this approach, users’ behaviour would
be profiled by the morwis so the system would learn from
the actions of suspicious users. However, in the e-learning
platform we have a limited number of students, while here
the number of users can be very high if the network is
connected to the Internet, as most are. Moreover, the frequency
of connection can be very different from user to user, and most
of them connect only once to the system. Finally, it is too
simplistic to think an attacker is not going to hide his actions
among regular traffic, making user profiling more difficult.

The real entity generating the artificial agent does not
have to be necessarily a living entity, but it can be anything
generated by one, and therefore unpredictable, as for example
the events. Choosing the events as the origin of the morwis
has the advantage that we can easily combine Morwilog with
any event-oriented classification algorithm or apply event pre-
processing for discarding irrelevant events.

Each relevant event retrieved by the system in the form
of log could generate an artificial morwi, in the same way
as processes are created in a classical correlation system.
This morwi follows a path in a decision tree built with a
representation of events as nodes. Each path counts with a
level of pheromones, deposited by the morwis according to
their success in detecting the attacks. This is evaluated by a
security expert, who is in charge of reviewing alerts as it is
done in a SOC (Security Operations Center).

A. General Definitions

The most important abstract construction we are work-
ing with is the event e, defined as an entity in the set
of all possible events E. We can consider an event e =
{idb/vb, idc/vc, . . . , ida/va, . . .} as a finite set of components
idn/vn, each of them representing an identifier/value pair stor-
ing information about specific aspects of the event. The system
receives this information in the shape of a log. The identifier
idn defines an unique meaning for each value e (idn) = vn in
the event e. It establishes a correspondence with other events,
which could also contain components with the same identifier
and, therefore, the same meaning. Moreover, it univocally
defines the type of value vn of its pair, which could be a real
number, an element from a finite set or an IP address, among
others. We can find identifiers as “source”, “timestamp” or
“action”, for instance.

We define a finite set of events ordered in time as E =
(e1, e2, . . . , eNE ), with NE the number of events. The set of
events used as the input of our system is called Ein.

The sequence s = (s0, s1, . . . , sLs) = (el, en, . . . , eq, . . .),
with el, en, eq ∈ E and q > n > l, defines a relationship of
correspondence between Ls+1 events from a set E. The set of
all possible sequences in the set of events E is denoted by SE .
These sequences can eventually represent a multi-step threat.
The set of all sequences representing a threat is denoted by
AE , with AE ⊆ SE . The task of a morwi is to find a sequence
s ∈ AEin starting the analysis from an event ei.



Apart from the events themselves, we can define an abstract
representation e∗, which corresponds to a subset of events
through an ensemble of constraints. We call E∗ to the set
of all the possible e∗. We denote the set of all the possible
abstract representations of event ei as E∗i . This set can be finite
or infinite depending on the characteristics of the components
represented in ei. The operator � is used for denoting the
matching function between events and abstract representations,
so ei � e∗ = 1 if e∗ ∈ E∗i , while ei � e∗ = 0 if e∗ /∈ E∗i .

We can see e∗ as composed by rules e∗ (idn) to apply
to the different components of the event for a finite set of
identifiers idn. Although most of the rules are considered
as equalities (e.g. there is a match if component “protocol”
is equal to “HTTP”), other relationships could be defined,
such as numerical intervals (e.g. “connection number” higher
than 650), discrete ranges (e.g. “destination” in the IP address
range 175.68.22.0/24), sets of values (e.g. “port” is 80 or 443)
or complementary definitions (e.g. “user” is not “admin”).
ei � e∗ = 1 only if ei (idn) agrees with the rule defined in
e∗ (idn) ∀ idn represented in e∗.

B. The Stigmergic Scenario: the Tree

The event tree is the scenario where the pheromones are
deposited and therefore where the stigmergic process takes
place. Each node represents the profile of an event in the
system and each tree is univocally defined by its root node.
The morwi starts his search in the root node of the tree
corresponding to the event that leads to its generation.

Each tree δj is represented by an ensemble of nodes κn, so
δj = {κ0, κ1, . . . , κNjκ}, with N j

κ the total number of nodes
in tree δj in a given moment and κ0 the root node. The set of
all possible nodes is denoted K.

A tree has its nodes distributed in different levels. The
node where the morwi starts its search when it is generated,
κ0, is followed by other levels of nodes representing events
appearing later in time. The search of following events in the
sequence will take place during a maximum time Tmax, as
the system will not have an unlimited amount of resources.
The arcs connecting the nodes contain a particular level of
pheromones, giving information to the morwis about which
path they should choose with higher probability.

More precisely the nodes κn = (e∗n, Fn, κ
(α)
n ) contained in

a tree are composed by three elements:
• An abstract representation of an event e∗n ∈ E∗.
• A set Fn of Nf children κm ∈ δj , each with an associated

level of pheromones τn,m ∈ R. This means there is a level
of pheromones associated to every link between nodes in
the tree. If κm is a child of κn and it has further children,
the level of pheromones τn,m associated to the path to
κm will be the sum of the elements τm,l ∀ κl ∈ Fm,
so pheromones in Fn always depend on values in the
deepest nodes.

• A pointer to his ancestor κ
(α)
n ∈ δj , so pheromone

propagation from deepest nodes to κ0 can be made.
The element e∗n allows the characterisation of a certain type

of events the morwi is going to search in the set of events

thanks to the operator � defined previously. Actually, we can
extend the operator � for working between nodes and events,
so e� κn = e� e∗n∀κn ∈ K, e ∈ E.

Events should be normalised to a common language before
applying the operator, so the represented components mean
the same in terms of security independently of event’s origin.

The way the tree is defined depends on how the system
is implemented, taking into account possible limitations such
as system performance or structural simpleness. We have
arranged the trees in a finite set ∆ = {δ1, δ2, . . . , δNδ} called
forest. When a morwi is created, one of the Nδ trees present in
the system at that moment is selected according to the match
between the event generating the process and e∗0 in node κ0
of that tree. An alternative option is to consider the tree as a
sub-tree of a large hypergraph containing all the possible trees,
so every morwi walks through the same structure. However,
we have preferred the first approach because having the trees
separated could ease the parallelization of the system.

C. Pheromone Evolution

According to the results returned by a morwi after traversing
the tree, pheromones (τ ) can be incremented for reinforcing
a path leading to a real attack or decremented for penalizing
the election of a node resulting in a false positive. Attacks
are identified by a security expert from its knowledge of
consequences and network’s normal functioning. The change
of pheromones is made by a certain amount called ∆τ+ for
the increment and ∆τ− for the decrement, with ∆τ+ > 0 and
∆τ− < 0. If we express as τ [n] the level of pheromones after
update n, where n ∈ N:

τ [n+ 1] = τ [n] + ∆τ+,− (1)

Furthermore, a mechanism of pheromone evaporation is
needed for avoiding stagnation. The evaporation is made by
decreasing the level of pheromones already present in the
link between nodes by an evaporation rate ρ, being ρ ∈ R
and 0 < ρ < 1. The equation for calculating the level of
pheromones after evaporation is:

τ [n+ 1] = (1− ρ) · τ [n] (2)

The evaporation is not applied to every link in the tree when
there is an update, as there are nodes that the morwi cannot
choose because during the detection process there is not any
event matching those nodes. This does not mean they could
have a high possibility to be leading to an attack, so we are
avoiding the evaporation of pheromones associated to them for
not penalizing rare events. Our system apply the evaporation
only to the nodes in the same branch than the chosen path.

More generally, the modification of pheromones is applied
directly only to those nodes with the same ancestor as the last
node in the path returned by the morwi. Modifications are then
propagated up in the tree to the root node κ0, added up for
preserving the definition of pheromones in every Fn.

We introduce here an important variation with regard to
classic ACO literature, where both increment and decrement



are a fixed amount independent of the level of pheromones.
The combination with the evaporation leads to a variation of
pheromones whose absolute value is higher at the beginning
of the execution and decays as the system evolves and levels
of pheromones are farther away from the initial value. The
convergence to an upper limit of pheromones has been proved
in [21]. However, we still want a higher decay in pheromone
evolution for strongly penalizing bad chosen paths. Therefore,
we introduce a dependency with τ [n] in ∆τ+ and ∆τ−,
making ∆τ+ with the shape of a Gaussian function and
∆τ+ = −∆τ−.

∆τ+(τ [n]) = ∆τ+0 e
− (τ[n]−τ[0])2

2w2 (3)

The value τ [0] is the initial level of pheromones, fixed as
a parameter. When a new tree is created, the pheromones of
all his node-to-children links are initialized to this value. We
have centered the gaussian function to τ [0], as we want a
high change right after a new node joins the tree. ∆τ+0 is
the increment of pheromones when τ [n] = τ [0], and w is a
parameter determining how spread the increment function is.

We can experimentally prove that for certain values of the
parameters the accumulation of pheromones has a natural
upper limit in a path that always leads to an attack, which
prevents the system to unlimitedly favor it. Following the
same logic for ∆τ−, we arrive also to a lower limit, but
negative this time. As we want the level of pheromones to be
always positive, it is necessary to artificially set a minimum
value τmin so we force the quantity of pheromones to never
go below it. We also define τatkmin as the minimum level of
pheromones for considering a path and attack.

D. The Algorithm

Before applying Morwilog to a set of events Ein, data
should be classified according to the maximum search time
Tmax defined for the platform. We can define Eclas =
(eb, ec, . . . , ea, . . .) as a subset of Ein with its elements or-
dered in time (a > c > b) and with the time difference between
two consecutive events in the list less than Tmax. Including
other criteria of classification for creating Eclas allows to
increment Tmax preserving the performance of the system.
Methods of data mining can be combined with deterministic
filtering in the creation of Eclas. A good classification leads
to a better detection of links between events.

Once the classification mechanism is defined, events can
be classified as they are recollected, and each subset Eclas
can be fed to the system when certain conditions, as number
of events received, are met. It can be easily adapted for
working in real time if we add a module for keeping track
of the different subsets where the events are classified and
we optimize system’s idle time by allowing several morwis to
work at the same time.

The sequence of actions performed by each morwi is
summarized in pseudocode form in Algorithm 1. We are going
to explain all the process carried out by the morwi, which
begins when a relevant event ei arrives to the system.

Algorithm 1 Morwi algorithm
Require: Eclas ⊆ Ein; ei ∈ Eclas
Ensure: s ∈ SEclas , δj ∈ ∆; isresult ∈ {true, false}

1: isresult← false
2: δj ← δ ∈ ∆ | ei � κ0 = 1
3: if δj = ∅ then
4: if random(0,1) < Ptree then
5: s← random sequence ∈ SEclas | s0 = ei
6: δj ← create tree(s)
7: τl ← τ [0]
8: end if
9: else

10: Add ei to s
11: κn ← κ0 in δj
12: while Fn in κn 6= ∅ do
13: C, s′ ← find nodes(Eclas, i, Fn)
14: if C 6= ∅ then
15: (κm, ei, τl)← c ∈ C, random τ -driven choice
16: if ei = s′0 then
17: Add branch to κn from s′ with τ ← τatkmin

18: Append s′ to s
19: isresult← true
20: return isresult
21: else
22: κn ← κm
23: Add ei to s
24: end if
25: else
26: return isresult
27: end if
28: end while
29: end if
30: if τl ≥ τatkmin then
31: isresult← true
32: end if
33: return isresult
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Fig. 1. Diagram of Morwihill integrated in a complete Security System under
the supervision of a human expert. Ê = normalized events.

First of all, the morwi checks if there is already in ∆ a tree
δj with an upper node κ0 such that ei�κ0 = 1. This is made
by the function find tree, which returns the tree we are looking
for or an empty one (∅) if it does not exist. If there is not
any tree matching the event, with certain probability Ptree the



morwi forms a sequence from random events in Eclas. This
sequence has ei as its first element.

Algorithm 2 find nodes algorithm
Require: Eclas ⊆ Ein; i, index of ei; Fn, set of pairs K/R
Ensure: C = {(κm, ea, τx,m) ∈ (K, Eclas,R)}; s′ ∈ SEclas

1: for each κm ∈ Fn do
2: During time < Tmax, find eq | q > i, eq � κm = 1
3: Add (κm, eq, τn,m) to C if eq found
4: end for
5: if random(0,1) < Pjump then
6: s′ ← random ∈ SEclas | n > i ∀sn ∈ s′
7: Add ({e∗p,∅,∅}, s′0, τatkmin) to C | s′0 � e∗p = 1
8: else
9: s′ ← ∅

10: end if

The length of the sequence can be statically defined in the
system or be a random variable, which could depend on the
average number of actions for reaching a critical piece of
the network. The sequence s = (s0, s1, . . . , sLs) ∈ SEclas is
considered as a result by the morwi, which invokes the function
create tree for creating a tree with a number of nodes equal to
the number of events in the sequence, every of them traversed
by the same path. The number of pheromones assigned to
the links between nodes is τ [0]. In equation 4 we can find the
formal definition of the tree generated by create tree, knowing
that sp � e∗p = 1, sp � κp = 1 ∀sp ∈ s.

δj = {κp} =


(e∗0, (κ1, τ [0]),∅) p = 0

(e∗p, (κp+1, τ [0]), κp−1) 0 < p < Ls

(e∗Ls ,∅, κLs−1) p = Ls

(4)

If a tree δj is found, the morwi starts going through the tree
starting in node κ0. This process is repeated node after node
until a node without children (Fn = ∅) is found or a random
sequence is chosen. The reader can find the method find nodes
described in Algorithm 2. It looks for events matching any
of the children of κn among those events coming after ei
in Eclas, storing them in C together with the node κm ∈ Fn
representing it and τn,m associated to it. Apart from that, with
certain probability Pjump it chooses a random sequence s′ and
adds its first event to C with τatkmin as the level of pheromones.

Once the morwi has C, it chooses the next event to jump
from this list. Following a weighted random selection, the
event with higher level of pheromones has more probabilities
to be chosen. If the event starting the random sequence s′ is
chosen, then the sequence should be added as a new branch
to tree δj with pheromones τatkmin in each node-to-node link.
In this case, this is the solution proposed by the morwi.

We have called Morwihill the module that generates the
morwis and manages the results returned by them. We can
find the pseudocode describing the functioning of this module
in Algorithm 3. This module creates the morwi and gets the
returned result s ∈ SEclas once the execution is finished.
Then, it can obtain the sequence of nodes that the morwi has

traversed in the construction of s. If it is a valid result, it
evaporates the pheromones leading to the nodes with the same
ancestor of last node in the sequence, according to Equation 2.
Then, human feedback determines the nature of s introducing
the component making reinforcement learning possible [40].
This is modelled by the function Π(s), that returns 1 if s
is an attack and 0 otherwise. Level of pheromones leading
to last node is incremented if Π(s) = 1 and decremented if
Π(s) = 0, following equations 1 and 3 so attack sequences are
reinforced and innocuous one are penalized. Finally, changes
in pheromones are propagated to the rest of the tree and the
process is closed.

The integration of Morwilog in a complete security system
can be observed in Figure 1. Once the classification of events
and the detection of simple alerts are made, the Morwilog
system, composed by the central Morwihill and the morwis
generated by it, points out relevant relationships among events
and alerts. New alerts are generated and represented in a
console so the human expert can progressively evaluate them
and mark them as attacks or not. This information is used to
update the pheromones in the attack trees. Apart from that,
Morwilog can send it back to the previous classification and
detection subsystem, so it can improve its results.Morwilog is
then the module introducing reinforcement learning into the
whole security system.

Algorithm 3 Morwihill algorithm
Require: Eclas ⊆ Ein

1: for each ei in Eclas do
2: s, δj , isresult← Morwi(Eclas, ei)
3: if isresult = true then
4: (κ0, . . . , κl) path from δj matching s
5: Evap. τ in paths, ∀κn ∈ δj with κ(α)n = κ

(α)
l

6: if Π(s) = 1 then . It is an attack
7: Increment τ in link leading to κl
8: else . It is not an attack
9: Decrement τ in link leading to κl

10: end if
11: Propagate change in τ from κl to κ0
12: end if
13: end for

V. EXPERIMENTS

We have executed a set of experiments for evaluating the
performance of our system. Our final aim is to apply Morwilog
to a labelled dataset of heterogeneous logs where attacks
are represented as composed by several events. It has to
be 1) labelled for simulating the knowledge of the security
expert, which we consider during the experiments as infallible.
Moreover, 2) the events should come from a broad range of
devices, as that is the type of data analyzed by SIEM nowadays
and there are many attacks that have to be detected by their
traces in different locations of the network. Finally, 3) the
attacks have to be represented as a multi-step strategy, as
single-step attacks can be detected by specific security systems



TABLE I
PARAMETERS OF MORWILOG

Name Description Simulation

Tmax Maximum search time 62 s
τ [0] Initial number of pheromones 1000
ρ Evaporation rate 0.02
w Spreading of ∆τ+,− function 1000

∆τ+0 Change of pheromones when τ [n] = τ [0] 500
τmin Minimum level of pheromones 100
τatkmin Minimum level of ph. for attack 200
Ptree Prob. of creating a new tree if no match 0.5
Pjump Prob. of adding a random sequence 0.1

without the need of processing at the same time events from
different sources.

Given the impossibility of finding an up-to-date dataset
meeting simultaneously this three requirements, we have used
an artificial dataset for this initial implementation of the sys-
tem. The dataset has been created by Splunk Event Generator
[41] is composed by a total of 1038 different types of logs.
These types of logs are randomly taken by the generator in
different proportions according to the type of event, and a
random IP source is included. Timestamps are generated by
a count, whose intervals of increment are also random. The
standard audit trail format presented by Bishop [42] is used
for representing the events in the database.

After logs are generated, sequences of events with certain IP
source address are injected, representing 40% of events in the
dataset. Half of them are labelled as attacks, while the others
are innocuous. In each dataset there are at least 10 types of
attacks and 40 types of innocuous sequences. The length of
the sequences can be defined for each simulation.

The simulations have been carried out on an Intel Core
i5 machine running at 1.4 GHz with 8GB RAM. We have
repeated each simulation 50 times and we have taken the
average results. The execution time grows linearly with the
number of events to analyze. We have an average time of
1836 ms for a complete analysis of 40,000 events.

As the metrics for evaluating the system we have used the
probability of detection (PD) and the probability of false alarm
(PFA) as it is described by Marchette [43]. PD is the number
of detections made correctly over the total number of attacks
presented in the dataset. PFA is the quantity of false alerts
over the total number of alerts generated by the system.

We have nine parameters to determine before the execution
of Morwilog. They are shown in Table I, with the values we
have found more suitable to the dataset we were working with.
The results of simulations are represented in Figure 2 in the
shape of a ROC curve. PFA and PD are represented in hor-
izontal and vertical axis, respectively. Each point correspond
to the average result from 50 simulations with different sizes
of dataset. Each one is tagged with the number of events
used, from 100 to 40,000 (40k). We have represented the
results for different lengths (L) of sequences. We have also
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Fig. 2. ROC curve (PFA vs. PD) representing the results from simulations of
Morwilog. Each point is the average of the result of 50 simulations with the
same parameters (Table I) and random datasets (with different size of Ein,
indicated next to the points). L is the length of injected sequences. “No τ”
means simulations were made without pheromone update.

represented the results for a simulation with L=3 where the
level of pheromones does not change but the parameters are
kept the same (“No τ”).

The results are clearly better as a higher number of events is
analyzed, the curve getting closer to the upper left corner of the
ROC plot. We also observe the positive effect of pheromones
update, as when this is not done the PFA gets too high. Lastly,
we observe that as the length of the sequences gets higher,
the results are worse, as sequences are more intercalated with
normal traffic.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented Morwilog, an ACO-based
system for linking sequences of events that can be leading to
an attack. The agents generated by the system walk through a
set of trees following the pheromones left by other agents and
accumulated in the links between nodes. The trees represent
sequences of actions, where the paths representing an attack
are finally outlined from the rest. Feedback is incorporated to
the system after the evaluation of a human security expert,
who validates if alerts represent actual attacks.

Preliminary simulations on an artificial set of logs generated
by Splunk Event Generator [41] have been made for study-
ing the parameters of the system and better developing the
theoretical description of the algorithm. However, even if the
first results seem positive, the lack of an heterogeneous set
of events with labelled multi-step attacks did not allow to
test it on a real environment. A sound definition of random
attack trees and a good classification of events before applying
Morwilog are fundamental for obtaining good results.

The next step is to test the system on a real dataset with the
mentioned characteristics, after manual analysis for identifying
and labelling multi-step attacks. This will lead to continue
the development of the system shown in Figure 1 and will



allow to test different algorithms for anomaly detection and
threat analysis. Within Morwilog itself, required improvements
are the possibility of cloning ants when there are several
suspicious paths or giving some meaning to the number of
accumulated pheromones in a path so when it is too high the
execution is stopped and an alert is returned. Finally, it is key
to study the taxonomy of classic attacks for arriving to a more
sophisticated way of building the trees.
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net,” Ph.D. Thesis, Université du Littoral Côte d’Opale, 2006.

[36] G. Valigiani, E. Lutton, C. Fonlupt, and P. Collet, “Optimisation par
”hommilière” de chemins pédagogiques pour un logiciel d’e-learning,”
Technique et Science Informatiques, vol. 26, no. 10, pp. 1245–1267,
2007.

[37] P. Mahanti, M. Al-Fayoumi, and S. Banerjee, “Simulating targeted at-
tacks using research honeypots based on ant colony metaphor,” European
Journal of Scientific Research, vol. 17, no. 4, pp. 509–522, 2005.

[38] J. Pokorny, Proto-Indo-European Etymological Dictionary. Indo-
European Language Revival Association, 2007. [Online]. Avail-
able: https://marciorenato.files.wordpress.com/2012/01/pokorny-julius-
proto-indo-european-etymological-dictionary.pdf

[39] J. Clackson, Indo-European Linguistics: An Introduction. Cambridge
University Press, 2007.

[40] D. K. Bhattacharyya and J. K. Kalita, Network Anomaly Detection: A
Machine Learning Perspective. CRC Press, 2013.

[41] D. Hazekamp and C. Sharp. (2016, October) Splunk eventgen. Splunk.
[Online]. Available: https://github.com/splunk/eventgen

[42] M. Bishop, “A standard audit trail format,” in Proceedings of the 18th
National Information Systems Security Conference. DTIC Document,
1995, Conference Proceedings, pp. 136–145.

[43] D. J. Marchette, Computer intrusion detection and network monitoring:
a statistical viewpoint. Springer Science & Business Media, 2001.


