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Abstract—We consider the problem of optimally transferring
a spacecraft from a starting to a target asteroid. We introduce
novel approximations for important quantities characterizing
the optimal transfer in case of short transfer times (asteroid
hops). We propose and study in detail approximations for the
phasing value ϕ, for the maximum initial mass m∗ and for
the arrival mass mf . The new approximations require orders
of magnitude less computational effort with respect to state-of-
the-art algorithms able to compute their ground-truth value. The
accuracy of the introduced approximations is also found to be
orders of magnitude superior with respect to other, commonly
used, approximations based, for example, on Lambert models.
Our results are obtained modelling the physics of the problem as
well as employing computational intelligence techniques including
the multi-objective evolutionary algorithm by decomposition
framework, the hypervolume indicator and state of the art
machine learning regressors.

I. INTRODUCTION

In has become increasingly clear how the preliminary
phases in the design of an interplanetary trajectory consider a
search space often dominated by a vast combinatorial part as
well as by a high dimensional continuous part. The combina-
torial part is typically related to some choice (e.g. target body
selection, selection of the propulsion system, fly-by sequence
selection, target observation selection, etc.) while the continu-
ous part stems from the problem of optimally controlling the
spacecraft as to save resources such as time and propellant
mass. The structure of the problem appears thus to be very
much suitable for the application of computational intelligence
(CI) techniques, and in particular of intelligent search methods.
While studied also in this context, these techniques are still
on their way to become established tools. A fact that is
demonstrated, for example, by the limited attention CI methods
receive during the international global trajectory competition
(GTOCs) events [1], where many participants try some CI
technique but end up not using it prominently (a notable
exception being the HUMIES gold medal winner trajectory in
2014 [2]). One of the reasons for this difficulty, can be found
in the specific structure of the interplanetary trajectory search
domain and, in particular, in the complex continuous part of the
search space which demands competences in astrodynamics
and optimal control theory and typically absorbs a lot of
computational resources. The ability to approximate the effect
of the continuous choices and thus to be able to build good
heuristics able to guide the search in the combinatorial part
of the space is of great importance. Various approximations

and closed form solutions to optimal low-thrust transfers have
been proposed in the past, starting from Edelbaum’s work [3]
to shape methods [4], but in most situations they are either still
computationally too costly or not informative enough to drive
the combinatorial part of the search for preliminary designs. A
often used and popular approximation to low-thrust transfers,
is based on impulsive manoeuvres and, frequently, on two
impulse transfers as they are computed very efficiently by
solving Lambert’s problem.

In this paper we propose three new approximators for
the problem of optimal asteroid hops, here intended as the
solution to the optimal control problems arising from a low-
thrust transfer between asteroids subject to short transfer times
(i.e. transfers not requiring multiple revolutions around the
Sun). Our work is mainly motivated to refine search methods
in multiple asteroid rendezvous problems such as the ones
described in the 7th edition of the GTOC. However, the
approximations and methods proposed are more general and
could have relevance, for example, also for Near Earth Asteroid
missions or debris removal missions.

II. THE PHASING VALUE ϕ

A recurring problem in the design of interplanetary tra-
jectories for multiple asteroid rendezvous missions is that
of selecting and ranking transfer opportunities (target body,
arrival epoch, arrival mass, etc.) presented to a spacecraft S
co-orbiting some initial asteroid. Ideally, one would want to
obtain this information without having to design an actual
optimal transfer, as there could be tens of thousands of possible
targets to consider and trying to design a transfer to each one
of them for ranking purposes would be unpractical. A straight
forward option is to preliminary rank the possible transfer
options according to the orbital parameter differences between
the source and target orbit or using some ideal approximation
of the necessary ∆V (e.g. neglecting the relative phasing: the
actual positions of the source and target asteroid along their
orbit), to then focus only on the top ranked opportunities.
This often results in pruning out good targets mis-ranked by
these criteria. A good ranking criterion has to account for the
orbital phasing, for the spacecraft propulsion system, for the
available transfer time and has to be multi-objective as to
consider fast transfers as well as low ∆V transfers as good
outcomes. Recently, a formal definition of such a ranking
criterion (the phasing value), based on the hypervolume of the
non-dominated front obtained from a chemical representation



of the transfer, was given in [5]. In this work, a constraint
based on a simplistic Lambert approximation was considered
to make sure the chemical ∆V could be converted into a low-
thrust ∆V . We here improve on this definition considering,
instead, that constraint as ms < m∗, where ms is the starting
mass of the spacecraft S and m∗ is the maximum initial mass
S can have in order for the transfer to be feasible in low-thrust.
To approximate this quantity we use the Maximum Initial Mass
Approximation (MIMA) m∗D introduced in the second part of
the paper (Eq.(8)) and shown to be vastly more accurate than
the equivalent estimate based on a Lambert model.

A. Re-defining the phasing value

Consider, at t0, a spacecraft S with mass ms co-orbiting
some asteroid A1 and a target asteroid A2. Let the starting
(ts) and final (tf ) epochs for a possible transfer A1-A2 vary
freely in the window [t0, t0 + ∆TM ]. Consider the following
multi-objective optimization problem:

find: ts, tf ∈ [t0, t0 + ∆TM ]
to minimize: f1 = ∆V, f2 = tf

subject to: ms ≤ m∗D
ts < tf

(1)

where ∆V is the sum of the two impulsive manoeuvres needed
to match the velocities of the starting and arrival asteroid to that
of the Lambert solution, the m∗D is computed from the MIMA
presented in Eq.(8) and ∆T = tf−ts. A maximum thrust Tmax
and a specific impulse Isp is assumed in the computation of
m∗D. Note how ∆TM and ∆T may be different as well as t0
and ts. This constrained multi-objective problem can be solved
by accounting for the constraints with a death penalty method
[6] and solving the resulting unconstrained multi-objective
problem by decomposition using, for example, MOEA/D [7] or
PADE [8]. The resulting Pareto front is transformed into one
number indicating its quality by computing its hypervolume
[9] using as reference point p∗ = [∆TaM/ms, t0 + ∆T ].
The resulting number, called phasing value and denoted
by ϕ(A1,A2, t0,∆TM ,ms, Tmax, Isp) (or ϕ(A1,A2, t0) in
short) is measured in length units and captures the quality of
the transfer opportunity A1-A2 in the window [t0,∆TM ] using
a spacecraft S described by its starting mass ms, the maximum
thrust of its propulsion system Tmax and its specific impulse
Isp. As an example, we show in Figure 1 the non dominated
fronts in case Isp = 3000 [s], ms = 1500 [kg], Tmax = 0.3
[N], ∆TM = 365.25 [days] and t0 = 11000 [mjd2000] and
corresponding to two specific hops from one asteroid A1 to
two different targets in the main belt. The asteroid ids are
referred to the main belt asteroids used during the GTOC7
competition [10]. The resulting hypervolumes are h1 = 0.61
[AU] and h2 = 0.95 [AU] indicating the asteroid with id. 3418
being better phased and thus representing a better target for a
hop from a purely dynamical point of view.

B. Phasing indicators

The computation of the phasing value ϕ requires solving a
two-dimensional, two-objectives problem and the computation
of the final hypervolume. While a full analysis of the com-
plexity of this task is beyond the scope of this paper, it maybe
useful to report that in our reference architecture Intel(R)
Core(TM) i7-4600U CPU @ 2.10GHz the implementation of

Fig. 1. Non dominated fronts representing the phasing value for two different
target asteroids. This figure is equivalent to the corresponding plot in [5], but
uses the updated definition of phasing value.

the above procedure takes roughly 120ms of CPU time when
32 distinct points are used to approximate the Pareto front.
In a scenario were, say, thousands of asteroid hops have to
be ranked this approach is unpractical. An improvement is
obtained using the so-called phasing indicators introduced in
[5] and allowing to rank transfer opportunities in a much
shorter time while correlating well to the ground truth ranks
produced by ϕ. We here discuss briefly the two indicators
proposed in [5] (the Euclidean and the orbital) and introduce a
new indicator having a superior rank correlation to the ground
truth.

The Euclidean indicator de(A1,A2, t0) is defined in [5] as
de = |x2 − x1|, where:

x = [r(t0),v(t0)]

It contains information on both the asteroid relative positions
and their relative velocities. The underlying idea is that as-
teroids physically near to each other (and having a small
relative velocity) are likely to be good candidates for an orbital
transfer, thus a low de is to be expected. The euclidean distance
indicator can equivalently be written as de =

√
|∆r|2 + |∆v|2

where ∆r and ∆v are the differences between the asteroid
ephemerides. The main drawback of this indicator is that it
is unable to distinguish between a case where the relative
velocity eventually brings the asteroids closer and a case (e.g.
having an identical |x2−x1|) where the relative velocity tends
to separate the asteroids. Also, such an euclidean indicator,
weights implicitly the difference in positions and velocities
thus hiding the additional parameter γ = 1 [sec2] that appears
in its definition as de =

√
|∆r|2 + γ|∆v|2.

The orbital indicator do(A1,A2, t0,∆T ) is defined in [5]
as do = |x2 − x1|, where

x =

[
1

∆T
r(t0) + v(t0),

1

∆T
r(t0)

]
It may be also be written as: do =

√
|∆V1|2 + |∆V2|2 where:

∆V1 = 1
∆T ∆r + ∆v

∆V2 = 1
∆T ∆r

(2)



Fig. 2. The improved orbital indicator outperforms the others. Simulation
averaging 100 different starting epochs and asteroids

and derives from a simple model of an orbital transfer neglect-
ing entirely gravity. In this model A1 and A2 are assumed in
a uniform rectilinear motion as well as the spacecraft S:

r1 = r10 + v10t
r2 = r20 + v20t
rS = r10 + vS0t

Assuming to fix the transfer time to ∆T , we can match the
final position of the spacecraft to that of the target asteroid
obtaining: vS0 = r20−r10

∆T + v20. Hence we may compute the
velocity difference at t0 between the spacecraft and the starting
asteroid as 1

∆T ∆r + ∆v and the one between the spacecraft
and the target asteroid at t0 + ∆T as: 1

∆T ∆r.

The improved orbital indicator do′(A1,A2, t0,∆T ) is here
defined as: do′ = |x2 − x1|, where:

x =

[
1

∆T
r(t0) + v(t0),

1

∆T
r(t0),

1

∆T
r(t0 + ∆T )− v(t0 + ∆T ),

1

∆T
r(t0 + ∆T )

]
It is based on the same idea behind the orbital indicator do,
but it tries to correct for the oversimplified linear dynamics by
looking also at the differences in positions and velocities of the
asteroids at t0 + ∆T . It does so, considering the backward-
in-time transfer from A2 to A1 starting from t0 + ∆T and
modelled using the same linear model described above. Its
definition can also be written as:

do′ =
√
|∆V1|2 + |∆V2|2 + |∆V′1|2 + |∆V′2|2

where:
∆V1 = 1

∆T ∆r + ∆v
∆V2 = 1

∆T ∆r
∆V′1 = 1

∆T ∆r′ −∆v′

∆V′2 = 1
∆T ∆r′

(3)

having indicated with ∆r′ the difference between the asteroid
positions at t0 + ∆T and with ∆v′ the difference between the
asteroid velocities at the same epoch.

C. Phasing indicators as phasing value surrogates

The indicators introduced above may be used to rank
transfer opportunities without having to compute the phasing
value ϕ. In this sense, they act as surrogates to the phasing
value and they will be valuable if the ranks obtained using
them are correlated to those obtained using ϕ. In order to
assess their quality we compute such a correlation using the
Kendall-tau rank correlation coefficient. Consider two different
rankings of possible transfer opportunities: R1 = [Ai1 , ..,Ain ]
and R2 = [Aj1 , ..,Ajn ], the Kendall-tau coefficient between
two ranks is defined as:

τ = 2
nc − nd
n(n− 1)

where nc is the number of concordant pairs and nd is the
number of discordant pairs. Since the total number of pairs is
n(n − 1)/2, a value of τ = 1 corresponds to two identical
rankings, similarly a τ = −1 corresponds to two perfectly
discordant rankings and τ = 0 represent a complete absence
of correlation. As an example, consider the 16,256 asteroids
of the main belt as defined in [10]. Select a random epoch
t0 and a random starting asteroid Ai. Rank all transfer op-
portunities Ai-Aj , with i 6= j at t0 using the phasing value
ϕ, the Euclidean indicator de, the orbital indicator do and the
improved orbital indicator do′ . To compute of ϕ use ∆TM = 1
[year] (we assume to be interested in transfer opportunities
in a one year launch window) and αM = 3.751 · 10−4

[m/s2]. Compute now the Kendall-tau coefficient over the first
k asteroids and average over N = 100 distinct Ai, t0 values.
The results, shown in Fig.(2) show how the improved orbital
metric outperforms all others in terms of showing a superior
correlation to the ground truth. In particular, at low values of
k, that is when we need to select only the best few options,
the improved orbital indicator seems to be able to maintain
a good correlation with the ground truth, while the euclidean
distance and the orbital indicator fail to do so. In the same
plot, the number of asteroids that are ranked within the first
k positions according to the phasing value, but not according
to an indicator, are also reported. Such a number is relevant
when the indicators (or the phasing value) are to be used to
prune out possible targets so that, for example, one can say
that, on average, the improved orbital indicator leaves out of
the first 100 selected targets 30 good options versus the 35 and
39 lost by respectively the orbital indicator and the euclidean
indicator.

D. Use of the indicators

At any given epoch t0 the set A of all asteroids is a
metric space if any of the above indicators is introduced. This
allows to define asteroid clusters and neighbourhoods and to
compute them efficiently using well established methods. Take
for example the problem of finding the k nearest neighbours
with respect to one of the introduced indicators at t0. In
all three cases, given the low dimensionality of the k-NN
problem, a k-d tree data structure [11] is an efficient choice
to perform the computation. The complexity to build a static
k-d tree is O(N logN), while the k-NN query has complexity
O(k logN) where N would be the number of asteroids con-
sidered. One single k-NN query, including the construction
of the k-d tree, on our test case that consider 16,256 main
belt asteroids, takes 250 [ms] on average. This time can be



compared to the cost of computing the phasing value for all
the asteroids which is 3 orders of magnitude higher. Such a
remarkable difference is of particular importance, for example,
in the context of search algorithm that have to build a long
chain of possible visits where such a computation needs to be
done frequently as to select the possible next transfer to branch
towards [5].

III. MAXIMUM INITIAL MASS - m∗

It is common, while performing the preliminary design of
an interplanetary trajectory, to use a trajectory model based on
ballistic arcs patched with impulsive manoeuvres in order to
find low ∆V transfer options. This approach was also used
in the previous sections, for example, to introduce the use or
orbital indicators. Once a good opportunity is found using this
approximation (called chemical propulsion model), the hope is
that the resulting trajectory can be converted into a low-thrust
trajectory where the impulsive manoeuvres are spread over a
longer period of time. Such a conversion is often troublesome
and the relation between the two models is complex and poorly
understood. A frequent and common approach is to assume
that a chemical propulsion leg of duration ∆T (for example a
Lambert arc) and requiring some ∆VL cannot be converted to
low-thrust if:

Tmax
m

∆T ≤ ∆VL (4)

The reasoning being that if a spacecraft having mass m and
thrusting at full magnitude for a duration ∆T , is unable
(neglecting gravity) to build up the chemically required ∆VL,
there is little hope it will be able to make the transfer in the
requested time using a low-thrust propulsion system. One can
then derive, according to this simplification, an expression to
approximate the maximum initial mass m∗ that the spacecraft
can have at the beginning of a trajectory leg in order for a
given transfer to be feasible in low-thrust:

m∗L =
∆T

∆VL
Tmax (5)

Note that the maximum initial mass trajectory corresponds to
a thrust structure that does not contain any coast arc (if it
did it would be possible to increase the starting mass, which
contradicts the optimality of m∗).

In the next section we introduce a new algebraic expression
approximating the maximum initial mass m∗ improving, in our
test cases, by one order of magnitude the average error with
respect to the commonly used approximation above.

A. The MIMA: maximum initial mass approximation

Consider a rendezvous trajectory from one starting asteroid
A1 to a target asteroid A2. The starting and arrival epochs
are denoted with ts and tt. The Lambert transfer between
the two asteroids is easily computed from r1(ts), r2(tt)
and from the transfer time ∆T = tt − ts. Denote with
rL(t),vL(t) the position and velocity vectors along such a
Lambert transfer and consider a non-rotating reference frame
F attached to it. Consider now a spacecraft equipped with low-
thrust propulsion and having to transfer between the same two
asteroids (rendezvous conditions) and study its motion in the
free falling F frame, neglecting all tidal effects of gravity. For
comparison, these would result in an extra acceleration of the

Fig. 3. The maximal initial mass m∗ as computed from the Lambert model,
from the new MIMA and compared to the ground truth. The RMSE of the
Lambert’s approximation is 477 [Kg] while the one relative to the proposed
MIMA is 26.4 [Kg] (both computed considering only m∗ ∈ [500, 2000])

order of 3·10−5 [m / s2] at a distance 2.6 [AU] on a spacecraft
offset by 0.1 [AU] from the origin. The equations of motion for
the spacecraft are thus considered in their most simple form:
ma = u, ṁ = − u

Ispg0
. Assume now that, along the transfer,

the spacecraft engines provide a constant acceleration a1 = u1

m
for a time τ∆T , where τ ∈ [0, 1], and a constant acceleration
a2 = u2

m for the remaining time (1 − τ)∆T . We may then
write: {

v∞1−v∞2

∆T + a1τ + a2(1− τ) = 0
2v∞1

∆T + a1τ(2− τ) + a2(1− τ)2 = 0
(6)

which represent, in F , the rendezvous conditions between
the spacecraft and the target asteroid and where we have
introduced the symbols v∞1 = v1(ts) − vL(ts) and v∞2 =
v1(tt) − vL(tt) to denote the relative velocities between the
spacecraft and the Lambert solution at departure and arrival.
Under the further assumption |a1| = |a2| it is possible to solve
the above equations for τ,a1 and a2, obtaining (see Appendix):

∆Tτa1 = (v∞2 − v∞1)τ − (v∞2 + v∞1)
∆T (τ − 1)a2 = 2v∞2 − (v∞2 − v∞1)τ

τ =
α+1−sgn(α)

√
1+α2

2

(7)

where α = (v∞2+v∞1)·(v∞2+v∞1)
(v∞2+v∞1)·(v∞2−v∞1) . These equations allow to

find the accelerations a1 and a2, their magnitude aD and the
switch time τ from, essentially, the corresponding Lambert
solution. The corresponding transfer is idealized and unpracti-
cal but it represents, in many cases, a good approximation to
the zero-coast optimal solution: the solution to the fixed time
optimal control problem where rather than minimizing the total
mass of propellant used from a given initial spacecraft mass
and thrust, we set to maximize the initial spacecraft mass,
thus obtaining a trajectory that will not have any coast arc.
Such a maximum initial mass m∗ can thus be approximated
considering aD as the average acceleration along the trajectory,
so that:

m∗D+mf

2 = Tmax

aD

mf = m∗D exp
(
−∆VD

Ispg0

)



Fig. 4. Visualization of all training data (each point represents a mass optimal low-thrust trajectory)

TABLE I. VALUES USED TO CREATE THE REFERENCE DATABASE OF
LOW-THRUST ARCS

variable lower bound upper bound units
Neighbour 1 10

t1 9000 12000 MJD2000
T 100 420 days
mi 0.3m∗ m∗ Kg

where ∆VD = aD∆T . Solving for m∗D we have:

m∗D = 2
Tmax
aD

(
1 + exp

(
−aD∆T

Ispg0

))−1

(8)

which represents a remarkably simple algebraic expression
relating the ∆V computed using a chemical model of an
asteroid to asteroid transfer and the maximum initial mass that
a spacecraft can have in order to be able to actually perform
such a hop using its own low-thrust propulsion engines. Note
that the computational complexity of the expression above is
comparable to that of the Lambert approximation in Eq.(5)
and it is that of solving one single zero-revolutions Lambert
problem. We call this approximation the Maximum Initial
Mass Approximation (MIMA).

1) Comparing m∗, m∗L and m∗D: In order to assess the
error introduced by the approximate expressions in Eq.(5)
and Eq.(8), we first compute the ground truth m∗ by solving
the full optimal control problem of a fixed time, asteroid to
asteroid transfer, maximizing the initial starting mass. We do
so for 10,000 randomly selected epochs ts, asteroids A1-A2

and transfer times, taking care that A2 is within the best
k = 100 candidates for a transfer from A1 at ts according
to the improved orbital metric with ∆T = 180 [days]. We
consider a spacecraft having a propulsion system capable
of delivering Tmax = 0.3 [N] continuously and a specific
impulse of Isp = 3000 [sec]. For each transfer we compute
also the Lambert approximation m∗L from Eq.(5) and the
newly proposed expression m∗D from Eq.(8). The results are
visualized in Figure 3. Computing the mean absolute error
(MAE) we get 430 [Kg] for the Lambert approximation and
20 [Kg] for the MIMA.

IV. LEARNING THE MAXIMUM FINAL MASS

Let us consider again a fixed time transfer between two
asteroids A1 and A2. The corresponding trajectory, if mi =

m∗, will not have any coast arc and is well approximated
by the MIMA. In general, though, one may want to predict
what happens in cases where mi < m∗, which will result
in the presence of a coast arc. In particular one would want
to predict mf , i.e. the optimal final mass of the spacecraft,
without having to solve the corresponding maximum mass
optimal control problem. A first, crude, approximation often
made in preliminary stages of trajectory design is based on the
assumption that the overall ∆V required is that of a Lambert
transfer, hence:

mfL = mi

(
1− exp

−∆VL
Ispg0

)
(9)

Here we propose to use machine learning techniques to find
a better estimate. Our approach improves greatly on the naive
formula above, at the cost of creating a database of reference
solutions to learn from (the supervised signal).

A. The database of low-thrust trajectories

Consider the same reference spacecraft used above. Choose
an asteroid A1 at random from the reference main belt pop-
ulation defined in [10] and a second asteroid A2 chosen at
random from A1 closest k = 10 neighbours as defined by the
improved orbital indicator. Consider a random starting epoch
t1 ∈ [9000, 12000] [MJD2000] and a random transfer time
T ∈ [100, 420] [days]. Solve the optimal control problem of
maximum initial mass to find m∗. Consider then a random
initial mass mi ∈ [0.3, 1]m∗ [Kg] and solve the maximum
final mass optimal control problem transferring the spacecraft
(rendezvous conditions) from A1 to A2. Repeating this proce-
dure 100,000 times, recording the obtained optimal final mass
mf , results in a large database of optimal low-thrust legs.

In Figure 4 we visualize all trajectories in the database. On
the abscissa we report the quantity mi/m

∗ which, necessarily,
is such that 0.3 < mi/m

∗ < 1, while on the ordinate we
show three different quantities. First (on the left plot) we
report the ratio ∆V/∆V ∗ between the ∆V accumulated along
the optimal trajectory and along the maximum initial mass
trajectory. Such a ratio appears to always be smaller than one,
a conjecture that has an immediate implication on the coast
arc duration ∆Tc:

∆Tc ≥ ∆T
(

1− mi

m∗

)
,



Fig. 5. Absolute error distribution on the test set using the Lambert model
(green) or the gradient boosting regressor (blue)

deriving from the relations ∆V = ve log(mi/mf ) and ∆V ∗ =
ve log(m∗/m∗f ), since m∗f = m∗ − c∆T and mf = mi −
c[∆T − ∆Tc]. Most notably, this ratio appears to be mainly
clustered in a narrow area of the plot (the darker region)
highlighting the correlation between the length of the resulting
coast arc and the ratio mi/m

∗. In the second plot (center)
we report the ratio ∆V/∆VL between the ∆V accumulated
along the optimal trajectory and that computed from a pure
Lambert transfer. We observe, again correlated data points.
Most points are such that ∆V > ∆VL, corresponding to
the fact the majority of the Lambert transfers are, in this
case, actually using the optimal number of impulses (two) and
they are thus an optimal strategy. Some data point, though,
have a ∆V < ∆VL which correspond to those cases where
the Lambert two impulse transfer could be improved by
adding more impulses along the way, a strategy that is better
approximated by the low-thrust profile. We also report, in the
third plot, the ratio between the ∆V difference between the
optimal and the Lambert solution and ∆V ∗, which shows a
clear correlation.

B. The attributes

In order to learn the optimal final mass mf of a low-
thrust transfer (of the spacecraft S) defined by the transfer time
T , the initial mass mi, the starting state r1, v1 and the end
state r2, v2, we consider the following attributes that can be
computed at the cost of one Lambert’s problem solution and
some added trigonometry: ∆T , mi, m∗D, m∗L, ∆VD, ∆VL,
cos θ, n1, n2, ∆r, ∆v. Table II describes each attribute in
more details. The attributes were “manually” selected using
the domain knowledge we possess on the problem. Some trial
and error attempts were made to remove or add attributes and
it was noted how, while all important to some extent, it is m∗D
to carry, by large, the most information on the predicted mf

value. Thus, to confirm and study its relevance, the ground
truth value m∗ was used instead in some separate trials noting
how it allowed some regressors to reach a MAE smaller than
3 [Kg] and confirming the importance of the maximum initial
mass to predict mf .

TABLE II. ATTRIBUTES CONSIDERED TO LEARN mf

attribute explanation
∆T Transfer time
mi Initial spacecraft mass
m∗D MIMA
m∗L Maximum initial mass computed using the Lambert transfer

∆VD ∆V approximated using the MIMA
∆VL ∆V of the Lambert transfer
cos θ Cosine of the inclination between starting and arrival orbit
n1, n2 Mean motion of the starting and arrival orbit

∆r Difference between the starting and arrival position vectors
∆v Difference between the starting and arrival velocity vectors

TABLE III. ATTRIBUTES CONSIDERED TO LEARN mf

Regressor MAE [Kg] RSME [Kg] CPU time [s] (training)
Lambert’s predictor 31.44 42.77

Random Forest 8.64 13.88 4.16
Bagging 8.64 13.81 4.21

AdaBoost 24.6 30.4 6.18
Extra Forest 8.56 13.77 1.34

Gradient Boosting 7.86 12.48 24.81
Decision Tree 12.33 19.21 0.73

Extra Tree 13.47 20.99 0.12

C. Results from different regressors

We divide our database in a data set containing 70,000
trajectories and a test set containing the remaining 30,000. As a
reference, we first evaluate the mean average error (MAE) and
the root square mean error (RSME) using the Lambert model
as a predictor for the fianl mass, i.e. Eq.(9). We then train a
number of different state-of-the art regressors and record for
each of them the MAE and the RSME. The implementation we
used of all the regressors is taken from scikit-learn, a popular
scientific toolbox for Machine Learning. The parameter chosen
for each algorithm are the default choices, except for gradient
boosting where a maximum depth of 7 was used instead of
the default value as it was noted how the performances are
extremely sensitive to this parameter. For the same reason, for
AdaBoost, the loss was set to be of the squared type and 100
estimators and a learning rate of 1.5 were used. For ensemble
type of regressors, decision trees are used as the base estimator.

The results are summarized in Table III. We do not here
present a thorough analysis on the performance (and chosen
parameters) for of all these machine learning techniques as it
here suffices to note how they all improve considerably over
the Lambert’s predictor and that they provide a rich portfolio
of choices both for CPU time and performances. Clearly,
tuning the parameters and the details of each single method,
or including more state of the art approaches would be likely
to improve the results even further. The detailed study on the
use of modern machine learning techniques for this case study
will be the subject of a future publication.

In Figure 5 we visualize the distribution, across the test
set, of the absolute error in the case of the use of a Lambert’s
model and of the best learned model, the one from the gradient
boosting regressor. We note how most data points are within
a very small error. The maximum absolute error is also con-
tained by the use of the learned model, while the distribution
relative to the Lambert’s model has longer tails with some
notable trajectories being completely misrepresented being the
maximum error ε = 643 [kg] against ε = 143 [Kg] of the best
regressor.



V. CONCLUSIONS

In this paper we propose and test a number of fast approx-
imators of important quantities characterising mass optimal
low-thrust transfers between main-belt asteroids. In particular
we approximate the phasing value ϕ (describing the neighbour-
hood of an asteroid intended as the set of reachable asteroids),
the maximum initial mass m∗ (defining the upper bound on the
spacecraft mass in order for a target asteroid to be reachable)
and the maximum final mass mf (defining the optimal value
of the spacecraft mass at any target asteroid). We find that the
proposed approximations all represent a distinct improvement
in terms of computational time over the state of the art methods
able to compute the ground truth. The approximators are
found to be a distinct improvement in terms of precision over
the Lambert’s model approximation, while using comparable
computational time. In the case of the final mass approximator,
we introduce the idea of learning from a large database of
optimal solutions. Our result open the possibility to build more
efficient and reliable searches on the combinatorial part of
preliminary interplanetary trajectories design for the asteroid
belt exploration.

APPENDIX
PROOF OF EQ. 7

Introduce the variables A = ∆Ta1τ , B = ∆Ta2(1 − τ),
V = v∞2 − v∞1 and U = v∞2 + v∞1. We can write Eq.(6)
in terms of the new quantities as:{

−V + A + B = 0
U−V + A(2− τ) + B(1− τ) = 0

and, solving for A and B we get:{
A = Vτ −U
B = V(1− τ) + U

(10)

Squaring the formulas above, we have also:{
∆T 2a2

1 = V 2 + U2

τ2 − 2U·V
τ

∆T 2a2
2 = V 2 + U2

(1−τ)2 + 2U·V
1−τ

Introducing the condition a1 = a2 the above equations can
equated and solved for τ :

2τ2 − 2τ(α+ 1) + α = 0

where α = U2

U·V . Solving the quadratic expression above and
accounting for the fact that τ ∈ [0, 1] we get:

τ =
α+ 1− sgn(α)

√
1 + α2

2
(11)

Substituting again in Eq.(10) and Eq.(11) the definitions of A,
B, U and V we obtain Eq.(7).
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complex interplanetary trajectories for the global trajectory optimization
competitions,” in Space Engineering: Modeling and Optimization with
Case Studies, ser. Springer Optimization and Its Applications, G. Fasano
and J. D. Pintér, Eds. Springer, 2016.

[6] Z. Michalewicz, “A survey of constraint handling techniques in evolu-
tionary computation methods.” Evolutionary Programming, vol. 4, pp.
135–155, 1995.

[7] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary al-
gorithm based on decomposition,” Evolutionary Computation, IEEE
Transactions on, vol. 11, no. 6, pp. 712–731, 2007.

[8] A. Mambrini and D. Izzo, “PaDe: a parallel decomposition algorithm
based on the MOEA/D framework and the island model,” in Parallel
Problem Solving from Nature–PPSN XIII. Springer, 2014, pp. 711–720.
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