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Abstract—The bi-objective just-in-time single-machine job-
shop scheduling problem (JIT-JSP) aims at simultaneously min-
imizing earliness and tardiness. In this paper, a multi-objective
decoder-based evolutionary algorithm is proposed. The decoding
strategy divides the search into two steps. In the first step, the
search of the permutation order of the jobs is realized thanks to a
multi-objective evolutionary algorithm. For a fixed permutation,
the decoder algorithm optimizes the multi-objective timing sub-
problem in the second step. Thus each permutation order induces
a Pareto set of solutions. Two different decoding strategies to fix
the idle times are proposed, one approximate and one exact. A
comparison study with a classical multi-objective evolutionary
algorithm underlines the performance of the proposed decoding
strategy and the interest of the approximate decoder.

I. Introduction

Job-shop scheduling problems, where multiple jobs have to
be executed on one or several machines, are widely studied in
academic area [1] as they have a lot of industrial applications.
In particular, many manufacturing systems adopt the Just-in-
Time production philosophy [2]. Their objective is to develop
scheduling policies that minimize due date deviations of each
job. Indeed, finishing a job before or after its due date involves
direct and indirect costs. For example, inventory carrying
costs, such as storage and insurance costs arise when jobs are
finished before their due dates. Likewise, a job finishing late
can incur shortage costs going from back order or transportation
expediting costs to the loss of an important customer.

For this reason the Just-In-Time single-machine Job-Shop
scheduling Problem (JIT-JSP) has attracted considerable re-
search attention of the scheduling community. The problem is
mostly modeled as a single objective problem that minimizes
the weighted sum of total earliness and total tardiness of jobs.
Both exact and heuristic methods have been proposed to solve
this problem. The branch and bound method is especially
prominent among exact approaches. In [3], Shaler compares
several branch and bound procedures. Sourd et al. combine
branch and bound with Lagrangian relaxation [2]. The authors
of [4] propose a hybridization of column generation, Lagrangian
relaxation, and dynamic programming. Due to the complexity of
this problem, metaheuristic algorithms have also been applied,
in particular local searches that give excellent results [5], [6],
[7].

However, the bi-objective version of the JIT-JSP has been
little studied, even though considering objectives of minimizing
earliness and tardiness independently can be advantageous. It
could be difficult for the decision maker to design penalty

values for both earliness and tardiness in the same scale. Indeed,
the monetary cost of a deviation from a due date is not easy
to model as a simple function of job earliness or tardiness.
Especially the tardiness penalty is often evaluated according to
the risk of dissatisfaction of the customer, while the earliness
penalty models storage costs. Therefore it is more convenient
for the decision maker to evaluate the penalties of earliness
and tardiness independently. Moreover the two objectives are
clearly conflicting, which makes it interesting to study the
trade-offs among the two.

To the best of our knowledge, the study of Rahimi-Vahed et
al. [8] is the only one that considers the earliness and tardiness
as two separate objectives to be minimized simultaneously.
Authors assume that allowing machine idle time is not suitable.
However, the earliness performance measure is non-regular
and, for problems with unequal due dates, the insertion of
idle times may reduce the costs of a schedule [9]. Therefore,
decisions about completion times of jobs may be as important
as decisions about the permutation of jobs.

In this paper, the bi-objective JIT-JSP with allowed idle times
is studied. Three algorithms are designed and compared to solve
the problem. The first one is based on the reference algorithm:
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [10]
to fix the permutation order of the jobs. Genetic algorithm is
the most popular type of evolutionary algorithm and mimics
the metaphor of natural biological evolution. It operates on
solutions called individuals that are defined by a genotype. The
genotype is expressed by a phenotype that reflects the quality of
the solution for a considered problem. The two other proposed
algorithms are decoder-based hybridizations of NSGA-II with
a timing procedure. Hence we consider two timing procedures.
The proposal of a decoder-based hybridizations to solve the
bi-objective JIT-JSP is the main contribution of this paper.
A comparison analysis is performed to compare the three
algorithms. This analysis allows us to evaluate the interest of
the hybridization and the impact of the choice of the timing
procedure.

This paper is organized as follows. First the bi-objective
JIT-JSP is presented in details, then the three solving methods
in consideration are presented. The experimental protocol is
described in section IV and the results are shown and discussed
section V. Finally, a conclusion about the potential of the
proposed methods and perspectives is given.



II. The Just-In-Time Single-Machine Job-Shop Scheduling
Problem

The Just-In-Time Job-Shop Scheduling Problem has been
proposed in [2] and its objective is to schedule a set of N jobs
J = {J1, J2, ..., JN} on a single machine such that there earliness
and tardiness are minimized. We assume that the machine is
continuously available and can not process more than one job
at a time (see formula 4). Each job j should be scheduled
before its release date r j (see formula 3), takes a processing
time p j to be executed, and must be finished at its due date d j.
The earliness of a schedule is the sum of the job’s earliness
weighted by parameter α j (see formula 1) and the tardiness is
the sum of the job’s tardiness weighted by parameter β j (see
formula 2).

Formally, the JIT-JSP aims at fixing variable C j, the
completion times of jobs ( j ∈ {1...N}), such that earliness
(1) and tardiness (2) objectives are minimized and release (3)
and non-overlap (4) constraints are met.

For a given scheduling C, the value of earliness E(C) and
tardiness T (C) can be expressed as:

E(C) =

N∑
j=1

α j × max(0, d j −C j) (1)

T (C) =

N∑
j=1

β j × max(0,C j − d j) (2)

A scheduling C must respect the following constraints:

C j − p j ≥ r j ∀ j (3)

[C j − p j,C j] ∩ [Ci − pi,Ci] = ∅ ∀i, j, i , j (4)

The set of scheduling solutions is denoted Ω and is represented
in the objective space by a pair (E(C),T (C)) for a solution C
in Ω.

The JIT-JSP has been proved NP-hard even when the
objectives are aggregate [11].

The feasible solutions of the two dimensional objective
space are compared using the Pareto dominance �. In this
minimization context, a solution x ∈ Ω is said to dominate a
solution y ∈ Ω, denoted by x � y, if they satisfy relation (5).

∀i ∈ {1, 2}, fi(x) ≤ fi(y)
∧
∃i ∈ {1, 2}, fi(x) < fi(y) (5)

where f1 is E and f2 is T .
Table I summarizes parameters and variables of JIT-JSP

problem.

III. Solving methods

Three evolutionary algorithms based on the Non-dominated
Sorting Genetic Algorithm II are implemented and compared.
The purpose of this analysis is first to study the impact of
an indirect representation (permutation without idle times).
Then, in case where an indirect representation is chosen, two
decoding strategies are compared.

Notation Definition
Ji Job number i
ri Release time of job Ji
pi Processing time of job Ji
di Deadline of job Ji
αi Earliness penalty of job Ji
βi Tardiness penalty of job Ji

Ci Completion time of job Ji in schedule C
E(C) Earliness of schedule C
T (C) Tardiness of schedule C

TABLE I
Table of notations for JIT-JSP.

NSGA-II is presented in details in section III-A. Then a
basic application of NSGA-II to the bi-objective JIT-JSP is
described section III-B. In this method, a solution of the genetic
algorithm, called genotype, gives a complete representation of
a JIT-JSP solution, i.e. both jobs permutation order and idle
times are encoded in the solution. In section III-C, a decoder-
based hybridization between NSGA-II and a timing procedure,
called D-NSGA-II, is proposed. D-NSGA-II uses an indirect
representation where only jobs permutation order is described
by a genotype and idle times are fixed by a decoder based on
a timing procedure. Two timing procedures are proposed: one
heuristic and one optimal.

A. NSGA-II: Non-dominated Sorting Genetic Algorithm II

NSGA-II was proposed by Deb et al. [10]. This evolution-
ary approach builds a population of competing individuals
(genotype), ranks and sorts each individual according to its
non-domination level, applies evolutionary operators to create a
new offspring pool, and then combines the parents and offspring
before partitioning the new combined pool into fronts. For each
ranking level, a crowding distance is estimated by calculating
the sum of distances between the two neighboring solutions
for both objectives. Once the non-domination rank and the
crowding distance is calculated, the surviving individuals are
determined using the crowded-comparison operator (≺n). The
crowded-comparison operator guides the selection process at
the various stages of the algorithm toward an uniformly spread-
out Pareto optimal front. Assuming that every individual in the
population has two attributes: 1) non-domination rank (irank)
and 2) crowding distance (idistance), the partial order ≺n is
defined as:

i ≺n j : if (irank < jrank)or
((irank = jrank) and (idistance ≥ jdistance)) (6)

That is, between two solutions with differing non-domination
ranks, we prefer the solution with the lower (better) rank.
Otherwise, if both solutions belong to the same front, then the
solution that is located in a less crowded region is preferred.
Algorithm 1 presents the outline of the NSGA-II, which (in
the last decade) has been the most popular Multi-Objective
Evolutionary Algorithm (MOEA), and is frequently adopted
to compare the performance of newly introduced MOEAs.



Algorithm 1: General Framework of NSGA-II
Input:
N: the population size;
stopping condition: A stopping criterion;
Output:
Pt: the final approximation of the Pareto front;

1 begin
2 t = 0;
3 Generate a random population Pt of size N;
4 Evaluate the population Pt;
5 while stopping condition is not satisfied do
6 Generate the offspring population Qt;
7 Evaluate the offspring population Qt;
8 Rt = Pt ∪ Qt;
9 Rank Rt by using non-dominated sorting to define F ; //

F = (F1,F2, . . .), all non-dominated fronts of Rt

10 Pt+1 = ∅ and i = 1;
11 while (|Pt+1| + |Fi| ≤ N) do
12 Assign crowding distance to each front Fi;
13 Pt+1 = Pt+1 ∪ Fi;
14 i = i + 1;

15 Sort Fi by using the crowded-comparison operator;
16 Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)];
17 t = t + 1;

18 return Pt;

B. NSGA-II applied to the JIT-JSP
This section details the application of NSGA-II to the bi-

objective JIT-JSP. The choices of genotypic representation,
initialization process and evolutionary operators are justified.

1) Representation: A solution is as a sequence of blocks
separated by idle times. A block Bi is an ordered sequence of
jobs that are executed consecutively without any idle time
as illustrated in Figure 1. Only feasible solutions can be
represented. In the following, the jth jobs of the ith block,
Bi, is denoted Ji

j and the idle time above Bi is denoted Idi. |Bi|

denotes the number of jobs in block Bi.

Fig. 1. Genotypic representation of a solution for the basic NSGA-II.

2) Initialization: The process of building an individual of
the initial population is the following. First, π, the permutation
order of jobs, is randomly generated. Then the idle times are
fixed by solving the aggregate timing sub-problem T Pα(π) for
α randomly selected in [0, 1]:

T Pα(π)


min

C
(αE(C) + (1 − α)T (C))

s.t :
Cπi−1 ≤ Cπi + pπi ∀i ∈ {2...N}

C j ≥ r j + p j ∀ j ∈ J

T Pα(π) is solved optimally in O(N ln(N)) by using Algorithm
2. It corresponds to the algorithm of Bauman et al. [12] but
several modifications have been done. The first one modifies
a portion of the original algorithm [12] and is underlined in
dark gray in Algorithm 2. It aims at forcing release constraints
to be met. The criteria for applying the left shift procedure
has also been changed (line 22 in light gray box in Algorithm
2). Thanks to that, the left shift procedure is only applied if it
strictly improves the quality of the solution instead of being
applied if it does not decrease its quality. This guarantee that
solutions obtained for T P0(π) are Pareto optimal.

3) Mutation operators: Mutation operators are based on
the neighborhood definitions proposed by Sourd for a mono-
objective JIT-JSP [5]. We choose this study as a reference
because it is, to the best of our knowledge, the only work
that includes idle times in the representation. Three mutation
operators are used, the two first ones modify the permutation
order of jobs inside one block and the last one modifies the idle
times with the possibility to create a new block or to merge
two existing blocks.
• Block swap mutation: It consists in randomly selecting

a bloc, Bi, and swapping two jobs randomly chosen inside
this block.

• Block extract and reinsert mutation: It extracts one job
randomly selected in a block Bi and reinserts it in an other
place in the same block.

• Subblock move mutation: It aims at modifying or
inserting idle times. A job j is randomly selected. Suppose
that j is the kth jobs of block i (i.e. j = Ji

k). So one of the
following actions is randomly chosen:

– Shift left process: Randomly shift left the subblock
including jobs from Ji

0 to Ji
k. The maximum shift is Idi

such that the starting times of the other blocks remain
unchanged. This process is illustrated by Figure 2.

– Shift right process: Randomly shift right the subblock
including jobs from Ji

k to Ji
|Bi |

. The maximum shift
is Idi+1 such that the starting times of the other
blocks remain unchanged. In case where Bi is the
last block (i.e. Bi = Bnb ), the maximum shift is fixed
to (maxi(di) −CJnb

0
).

Fig. 2. Subblock move mutation : Job Ji
1, shift left process and t ∈ [0, Idi]

are randomly selected. Then jobs Ji
0 and Ji

1 are shift left of t.

4) Crossover operator: The crossover operator is an adap-
tation of the 2-points crossover. Indeed, the analysis study



Algorithm 2: Solving method for the aggregate timing
problem.

Input:
π: jobs permutation order;
Output:
C: completion times of jobs;

1 begin
2 C0 := 0; l := 0; H0 := 0; γ0 := 0; P0 := 0;
3 for k := 1 to N do

4

x := max(rk,Ck−1) + pk − dk;

Pk =

{
rk + pk if rk > Pk−1
Pk−1 + pk else. ;

compMax := min(0, rk −Ck−1);
if Hl < compMax then

di f f := Hl − compMax;
for l := k to 0 do

Hl := max(Hl − di f f , 0);

if x ≤ 0 then
5 if x < 0 then
6 l := l + 1;
7 Hl := Hl−1 + x;
8 γl := 0;

9 γl := gammal + αk ;
10 Ck := dk;

11 else
12 Hnew := Hl + x;
13 if Hnew < 0 then
14 Insert Hnew in H ;
15 if there is H j such that Hnew = H j then
16 Do not create a point but γ j := γ j + γnew ;

17 else
18 γnew = αk + βk;
19 l := l + 1;

20 γl := γl − βk;
21 i := l;
22 while γi < 0 and i > 0 do
23 γi−1 := γi−1 + γi;
24 Ck := Pk − Hi−1;
25 i := i − 1;
26 l := l − 1;

27 avail := CN ;
28 for k := N to 0 do
29 if Ck ≥ avail then
30 Ck := avail;

31 else
32 avail = Ck;

33 avail := avail − pk−1;

34 return C;

presented in [13] demonstrates its efficiency in comparison
to other classical operators CX (Cycle Crossover) and PMX
(Partially Mapped Crossover). However, this 2-points crossover
has been designed for Jobs-Shop Scheduling problems in which
idle times are not allowed. To handle them, it is considered
that each idle time is attached with the job that it precedes
and then transmitted with it. In details, the 2-points crossover

randomly selects two points. All the jobs among these two
points in the first parent are inherited by the offspring as well
as the corresponding idle times. Then the missing jobs are
completed in their order of apparition in the second parent.
Figure 3 illustrates this operator.

Fig. 3. 2-points crossover: The two points selected in the first parent are
C and F. Then all points between C and F are inherited by offspring 1 from
parent 1 with their idle times (in black). Then the missing jobs are completed
in their order of apparition in the second parent. The second offspring is
obtained by reversing the roles of the two parents.

C. Multi-objective decoder-based hybridization to the JIT-JSP

To solve the aggregate version of the JIT-JSP, most of
metaheuristics from literature use a partial representation giving
only the permutation order of the jobs while the idle times are
fixed by a decoder [14], [15], [16]. This strategy gives very
good results as it considerably reduces the search space of
the metaheuristic. In this section, a similar strategy for the bi-
objective JIT-JSP is studied. First we introduce the bi-objective
Timing Problem, T P(π), and its properties. Then a strategy
to solve the bi-objective JIT-JSP with a decoder-based hybrid
metaheuristic is detailed.

1) Timing problem: For a given permutation π, the timing
problem T P(π) is to fix the idle times in order to simultane-
ously minimize the earliness and tardiness objective functions.
Formally, T P(π) is formulated as follows:

T P(π)


min

C
(E(C),T (C))

s.t :
Cπi−1 ≤ Cπi + pπi ∀i ∈ {2...N}

C j ≥ r j + p j ∀ j ∈ J

As T P(π) is a continuous optimization problem whose
feasible solution set is convex as well as objective functions, it
can be proved that its Pareto front is connected and convex [17].
This implies that all Pareto optimal solutions are supported and
can be reached by the weighted sum method (i.e. C∗ is a Pareto
optimal solution if and only if it exists α∗ ∈ [0, 1] such that C∗

is a solution of T Pα∗(π)). Thus, as for all α ∈ [0, 1], T Pα(π)
can be solved in O(N ln(N)), a possible method to approximate
T P(π)’s Pareto front is to solve T Pα(π) with Algorithm 2 for
all α ∈ {0, 1

nα−1 ,
2

nα−1 , ..., 1}. With this method, nα, the number
of points in the approximation, is a parameter to determine
beforehand.

Moreover, as the objective functions are piecewise linear, it
can be shown that T P(π)’s Pareto front is the union of finitely
many semi-closed polyhedra [18]. So, the Pareto front of T P(π)
is represented in the objective space by a piecewise linear curve



as represented in Figure 4. We call extreme point of a problem
T P(π) an angle of the Pareto front.

Fig. 4. Shape of the timing problem Pareto front in the objective space.

If T Pα(π) has many solutions, Algorithm 2 always gives
the optimal solution with the smallest earliness. Then, only
extreme points of the Pareto set can be found by the weighted
sum method. Moreover, it is possible that, for a chosen nα,
some extreme points are not reached with any value α ∈
{0, 1

nα
, 2

nα
, ..., 1} or that several values of α give the same extreme

point.
A method that insures to obtain the set of all the efficient

extreme points is the Aneja-Nair method [19]. This method
first computes C0(π) and C1(π), respectively the solutions of
T P0(π) and T P1(π). Let recursively (αi)i be the ordering list
of weights αi that were already used by the algorithm to find
efficient extreme points. At each iteration, a new weight, β j, is
constructed as the average of two weights α j and α j+1 of (αi)i.
Then, if a new extreme point is provide Cβ(π), β is added to
(αi)i. The algorithm stops when there is no more j such that
solving T Pβ(π) with β =

α j+α j+1

2 gives a new efficient extreme
point.

2) Representation and decoding: A solution is partially
represented by a permutation order π while the idle times are
fixed by a decoder that solves T P(π). However, as T P(π) is
continuous and bi-objective, it has an infinite number of Pareto
optimal solutions. So, there is no unambiguous way to create a
single complete solution from a partial one. Figure 5 illustrates
this situation.

Fig. 5. Decoder-based hybridization for the bi-objective JIT-JSP.

A similar situation was previously studied for a multi-
objective unit commitment problem [20]. In their work Jacquin
et al. propose and compare three decoding strategies in case
where the decoder is based on a multi-objective sub-problem.
The two first strategies assign to each partial (genotypic)

solution a single complete (phenotypic) solution. This is done
by aggregating the objectives of the decoding problem. The
third strategy assigns to each genotypic solution a set of
solutions that approximates the Pareto front of the sub-problem.
The statistical study performed in [20] indicates that the last
strategy is significantly more efficient than the two others
approaches. Consequently it is the one we choose to apply
to JIT-JSP with a decoder-based hybridization. Then each
permutation order (genotypic solution) is decoded by a set of
phenotypic solutions.

Fig. 6. Representation of three genotypic solutions in the objective space.

In Figure 6, three genotypic solutions are represented in the
objective space. One is decoded by the set of square points,
the other one by the set of triangular points and the last one by
the set of round points. As a single genotype is represented by
many points in the objective space, the fitness assignment and
diversity assignment methods of NSGA-II have to be adapted.
This adaptation is detailed, in the next section.

Two decoding strategies to approximate the Pareto front
of T P(π) are studied. The first one uses a weighted sum
method, by solving T Pα(π) for all α ∈ { 0

nα
, 1

nα
, ..., nα

nα
}, with

nα a parameter of the algorithm.
The second one is to use the Aneja-Nair method [19]. This

method gives the set of all the efficient extreme points which
allows to obtain the exact Pareto front. But it can be more
expensive in term of computation time than a simple use of
weighted sum method.

In the following, the set of complete (or phenotypic) solutions
obtained from a partial (or genotypic) solution π is denoted
D(π).

3) Adaptation on NSGA-II (D-NSGA-II): As a genotypic
solution is decoded by a set of phenotypic solutions, the
evaluation process of NSGA-II has to be adapted. More
precisely, the convergence value (non-domination rank) and
diversity value (crowding distance) used to evaluate a solution
can not be applied any more. Then we use D-NSGA-II
(Decoded based NSGA-II) that is proposed in [20].

In D-NSGA-II the evaluation process of NSGA-II is adapted
to take into account that a single genotypic solution π is
decoded by a set of phenotypic solutions D(π). The conver-
gence assigned to a genotypic (or partial) solution π is the
best non-domination rank among the one of the phenotypic
solutions C ∈ D(π). Also, the diversity value assigned to a
genotypic solution π, is the biggest crowding distance between



a phenotypic solutions C ∈ D(π) and the phenotypic solutions
C′ < D(π).

4) Evolutionary operators: To maintain similarity with the
evolutionary operators (see section III-B), swap mutation and
extract and reinsert mutation are re-used, except that, as there
are no idle times in the representation, operators are applied
as if there were a single block. Likewise 2-points crossover is
re-used.

IV. Experimental Design

A statistical analysis is carried out to compare the per-
formances of NSGA-II, D-NSGA-II with decoder based on
the weighted sum (D-NSGA-II(W.S.)) and D-NSGA-II with
decoder based on the Aneja-Nair method (D-NSGA-II(A.N.)).
In this section the experimental design is presented.

A. Instances

The instances used for our experimental analysis are the ones
proposed by Kerem et al. [21]. They are currently available
online at http://www-poleia.lip6.fr/∼safia/et/. Instances of 20,
40, 60, 80 and 100 jobs have been studied. In details, for a size
of N jobs, 5 instances are studied respectively named bkyN 60,
bkyN 120, bkyN 180, bkyN 240 and bkyN 300.

B. Performance assessment

The different methods of performance assessment to compare
multi-objective algorithms are explained in details in [22].
In our case the ε-indicator and the hypervolume difference
indicator are selected for their complementarity. Let Zall be the
set of objective vectors from all the Pareto set approximations
we obtained during all our experiments. Then, a reference set
R contains the non-dominated points of Zall.

a) ε-indicator I1
ε+: The unary version of this indicator

is computed using the binary version given by (7) and the
reference set R, with I1

ε+(A) = Iε+(A,R).

Iε+(A, B) = inf
ε∈R
{∀z1 ∈ B,∃z2 ∈ A,∀i ∈ 1 . . . n, z1

i ≤ ε + z2
i } (7)

b) Hypervolume difference indicator I−H: The
hypervolume indicator IH is computed by the measure
of the hypervolume between a set of solutions and the point
z = (z1, . . . , zn) where zk is the upper bound of the kth objective
regarding all the solutions of Zall. The hypervolume difference
indicator I−H is then computed with I−H(A) = IH(R) − IH(A).

C. Parameters setting

Proper settings of an evolutionary algorithm parameters are
required to achieve the best performance. For this reason,
a sensitivity analysis was carried out for NSGA-II and D-
NSGA-II(W.S.) to determine the effect of the crossover rate, the
mutations rates and the population size. In the case of D-NSGA-
II(W.S.) the parameter nα (number of points to approximate
the Pareto front of the timing problem) has also been set.
This analysis is done thanks to Irace [23] for each algorithm
and each instance size. Irace is a package for R (a statistical

software) that implements the iterated racing procedure. This
procedure is an extension of the Iterated F-race procedure.
Its main purpose is to automatically configure optimization
algorithms by finding the most appropriate settings given a
set of instances of an optimization problem. The parameters
used for D-NSGA-II(A.N.) are the same than the ones used
for D-NSGA-II(W.S.). In each case the stopping criterion used
is a maximum execution time of N seconds.

D. Experimental setting

All the implementations are realized under the ParadisEO 2.0
[24] software framework. The programs have been implemented
in C++, using the gcc 4.8.2 compiler and have been run on
a desktop PC using Intel Pentium(R) Dual CPU T3200 @
2.00GHz x 2 processors, under the Ubuntu 14.04 operating
system.

For each instance 20 runs are performed with 20 different
predefined populations. Then, as the samples are paired, the
statistical analysis is based on Friedman statistical test with a
p − value < 0.01 as criteria of rejection of the null hypothesis.
The statistical tests are achieved using PISA [25] platform
and its performance assessment module.

V. Results and discussion

Table II summarizes the results of the statistical tests
obtained for the hypervolume difference indicator and Table
III summarizes the results obtained for the ε-indicator.

In the tables the symbol ”�” means that the method named
in the row is statistically significantly better than the method
named in the column for the chosen indicator. On the contrary,
the symbol ”≺” means that the method named in the row is
statistically less efficient than the method named in the column
for the chosen indicator. Finally the symbol ”'” indicates an
equivalence between the two methods.

It must first be noticed that for all size of instances D-
NSGA-II is significantly better than the classical NSGA-II. This
confirms the benefice of using a decoder-based hybridization.

However, the results of statistical comparisons between the
two versions of D-NSGA-II varies from an instance to another.
Indeed for small instances (20 and 40 jobs) the use of a decoder
based on Aneja-Nair method gives better results than the use
of a decoder based on the weighted sum method. But for
bigger instances (60, 80 or 100 jobs) the decoder based on a
simple weighted sum method gives results significantly better
than the decoder based on Aneja-Nair method. This can be
due to the fact that the approximation of the Pareto fronts of
the timing sub-problems obtained with Aneja-Nair method are
more precise and contain more points than the ones obtained
with a simple weighted sum method, then the evaluation process
in D-NSGA-II(A.N.) is more costly in term of computation
time than the evaluation process of D-NSGA-II(W.S.). Actually,
nα the number of points compute by the weighted sum has
been optimally determine by the Irace tuning process and, as
show in Table IV, for the stopping criteria chosen (N seconds),
this number is relatively low compare to the average number



D-NSGA-II NSGA-II
W.S. A.N.

20
Jo

bs

IHD mean 0.5182 0.0461 0.6962
std 0.0708 0.0014 0.0657

D-NSGA-II W.S. X ≺ �

A.N. � X �

NSGA-II ≺ ≺ X

40
Jo

bs

IHD mean 0.1438 0.35489 0.4848
std 0.01066 0.0315 0.0387

D-NSGA-II W.S. X ≺ �

A.N. � X �

NSGA-II ≺ ≺ X

60
Jo

bs

IHD mean 0.096 0.1732 0.4203
std 0.0079 0.005 0.0469

D-NSGA-II W.S. X � �

A.N. ≺ X �

NSGA-II ≺ ≺ X

80
Jo

bs

IHD mean 0.0792 0.2149 0.4063
std 0.0048 0.0025 0.0651

D-NSGA-II W.S. X � �

A.N. ≺ X �

NSGA-II ≺ ≺ X

10
0

Jo
bs

IHD mean 0.14 0.2604 0.4805
std 0.0065 0.0024 0.0361

D-NSGA-II W.S. X � �

A.N. ≺ X �

NSGA-II ≺ ≺ X

TABLE II
Results of the statistical comparison study based on the hypervolume
difference indicator among the two versions of D-NSGA-II and NSGA-II.

of points obtained by decoding a partial solution with the
Aneja-Nair method.

As a future work it will be interesting to make additional
comparison study with other stopping criteria in order to let
time to each approach to converge. Also, it will be interesting
to apply Aneja-Nair method with a fixed maximum number of
iterations n′α. This way, it will permit to control the number
of points decoding a partial solution and to have a better
repartition on the Pareto front than with a classical weighted
sum method.

Figures 7, 8, 9 and 10 show empirical attainment surface
for NSGA-II and D-NSGA-II on instances of 20 and 100 jobs.
In the figures the line “median” represents the curve where the
fraction of attainable points (that is, dominated in Pareto sense)
is 50%. The line “worst” represents points that are always
attainable and line “points” the points that are attainable at less
once. On both instances D-NSGA-II has a much more bigger
empirical attainment surface than the classical NSGA-II. In
case of 20 jobs it can be observed that D-NSGA-II(N.A.) has
bigger empirical attainment surface than D-NSGA-II(W.S.) but
the opposite situation is observed for 100 jobs case.

VI. Conclusion

In this paper, an efficient multi-objective decoder-based
hybrid method, called D-NSGA-II (Decoder based NSGA-
II), has been designed to solve the bi-objective Just-In-Time
Job-Shop Scheduling Problem (JIT-JSP). This method is based
on a decoding strategy where a partial solution is decoded
into a Pareto set of solutions. A solution of bi-objective JIT-
JSP is indirectly represented by a permutation order while a

D-NSGA-II NSGA-II
W.S. A.N.

20
Jo

bs

Iε+ mean 0.4667 0.0526 0.6305
std 0.0567 0.0014 0.0533

D-NSGA-II W.S. X ≺ �

A.N. � X �

NSGA-II ≺ ≺ X

40
Jo

bs

Iε+ mean 0.1372 0.1687 0.4486
std 0.0092 0.0215 0.0326

D-NSGA-II W.S. X ≺ �

A.N. � X �

NSGA-II ≺ ≺ X

60
Jo

bs

IHD mean 0.0884 0.1611 0.383
std 0.0064 0.004 0.0388

D-NSGA-II W.S. X � �

A.N. ≺ X �

NSGA-II ≺ ≺ X

80
Jo

bs

IHD mean 0.0723 0.1949 0.3691
std 0.0039 0.0021 0.053

D-NSGA-II W.S. X � �

A.N. ≺ X �

NSGA-II ≺ ≺ X

10
0

Jo
bs

IHD mean 0.1281 0.238 0.4368
std 0.1281 0.0018 0.0299

D-NSGA-II W.S. X � �

A.N. ≺ X �

NSGA-II ≺ ≺ X

TABLE III
Results of the statistical comparison study based on the epsilon difference

indicator among the two versions of D-NSGA-II and NSGA-II.

Weighted Sum Aneja-Nair Method
20 Jobs 6 9.5
40 Jobs 3 10.1
60 Jobs 4 13.9
80 Jobs 3 14.2

100 Jobs 3 17.8

TABLE IV
Average number of points decoding a partial solution using weighted sum

method or Aneja-Nair method.

Fig. 7. Empirical Attainment Function of D-NSAGA-II on instance of 20
jobs. With Aneja-Nair based decoder at left and simple weighted sum at right.

Fig. 8. Empirical Attainment Function of NSAGA-II on instance of 20 jobs.



Fig. 9. Empirical Attainment Function of D-NSAGA-II on instance of 100
jobs. With Aneja-Nair based decoder at left and simple weighted sum at right.

Fig. 10. Empirical Attainment Function of NSAGA-II on instance of 100
jobs.

decoder is used to solve the bi-objective Timing sub-problem
and to fix the idle times. Two algorithms have been designed
for the decoder of D-NSGA-II and compared. The first one
uses the weighted sum method with several predefined weights.
The second one uses Aneja-Nair method and is optimal. The
comparison study shows that the decoder based on Aneja-Nair
method is more efficient on small instances whereas, for big
instances, the weighted sum method performs better. All the
proposed decoding strategies outperform the classical NSGA-II
algorithm.

Moreover, as the biggest drawback of the Aneja-Nair based
decoder is computation time, it could be interesting to fix its
maximum number of iterations. This will reduce the number
of points in the approximation of the Pareto front as it is done
for the weighted sum method.

A deeper comparison with different stopping criteria will be
used in future work to compare the methods. We believe that
an interesting line of research will be to study other evaluation
strategy for multi-objective decoder-based hybrid metaheuristic.
Particularly, one of our perspective of work is to study indicator
based evaluation on this kind of problem.
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