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Abstract— Ordinal regression which aims to classify instances 
into ordinal categories has numerous applications. As a 
supervised learning problem, a large number of labeled data is 
needed to train an accurate model, in particular when the 
number of categories is large. Learning an effective ordinal 
classifier from a small dataset is a challenging task. This paper 
proposes a framework to transform the ordinal regression 
problem to a binary classification problem and then recover the 
ordinal information from the binary outputs. The labeled 
instances are paired up to train a binary classifier, and therefore, 
the number of training points is squared, which alleviates the 
lack of training points. The transformed binary classification 
problem is solved by a pairwise SVM method. Experimental 
results demonstrate that on 12 widely used benchmarks, the 
proposed method is effective comparing with the state-of-the-art 
ordinal regression methods. 
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I. INTRODUCTION 
Ordinal regression is a supervised learning problem, where 

the objective is to predict discrete labels with a natural order. 
For example, movie reviews usually involve rating movies 
based on an ordinal scale such as 1 star to 5 stars and a movie 
with 4 stars has a better rating than those with 3 stars. Ordinal 
regression is an active research area because of numerous 
governmental, commercial and scientific applications, such as 
disease grading [1], sovereign credit rating [2] and risk rating 
for beetle infestation [3]. Although in the last decade big data 
problems attracted great attention, many real-world ordinal 
regression problems are in fact small data problems. For 
example, in computer-aided diagnostic problems, datasets of 
rare disease grading or tumor staging are usually fewer than 
100 data points. These diseases affect a relatively small 
percentage of population and in many cases, collecting data is 
difficult, expensive and invasive. Therefore, their clinical and 
experimental records are not large. Even for more common 
diseases, datasets of medical diagnosis are not large. For 
example, some researchers explored solutions of automated 
grading age-related macular degeneration (AMD) [4], which is 
one of the leading causes of central vision loss in people aged 
over 50 years. Two popular databases Diaretdb0 [5] and 
Diaretdb1 [6] of AMD contain only 79 and 43 color fundus 
images respectively. Besides of the medical field, such small 
dataset problems also arise in failure prediction in engineering 

area. Because collecting run-to-failure data is very expensive, 
datasets are extremely small. Small dataset is an important 
issue in many applications and is studying by other researchers 
for classification [7] and foresting [8]. The purpose of this 
paper is to establish an effective ordinal regression model for 
small datasets.  

Learning from a small dataset is challenging because lack 
of data increases uncertainty and easily causes overfitting. 
However, for ordinal regression problems, the ordinal 
relationship between instances in different categories is 
valuable information, which can be used to alleviate problems 
of small training sets. Recently, threshold approaches [9] have 
been investigated extensively. They assume that there is a 
latent function ݂(x) mapping the instances to a real line, and 
the category of the instances is an interval on the real line. The 
natural order of interval boundaries on the real line represents 
the ordinal relationship between categories. Binary 
decomposition approaches transform an original dataset with 
ordinal labels into several datasets with binary labels. There are 
two popular decomposition approaches: training multiple 
models for sub problems [10] and training a single multi-output 
model [11]. The derived datasets for both of these approaches 
and the original dataset have the same number of instances. 
SVOR [12] and RED_SVM [13] are two state-of-the-art 
algorithms. SVOR is a threshold approach and RED_SVM is a 
binary decomposition approach. However, they are neither 
special for small datasets nor make use of the relationship 
between individual instances. 

To deal with lack of training data, semi-supervised learning 
and transfer learning have been applied to ordinal regression 
[14][15]. However, small dataset problems are different from 
these two settings. Semi-supervised learning aims to make use 
of unlabeled data for training, typically given a small amount 
of labeled data with a large amount of unlabeled data, but in 
small dataset problems, both labeled and unlabeled data are 
few. Taking rare diseases as an example, the labeled data are 
instances with grading labels, such as low, moderate and high, 
and the unlabeled data are from patients with the disease but 
without the severity level labels. These unlabeled data are also 
difficult to obtain. Transfer learning aims to make use of other 
data from related domains for training. However, it is difficult 
to measure whether a dataset is related or not and hard to 
guarantee no negative transfer. 



This paper proposes a framework to make use of 
relationship between two instances in every possible pairs to 
increase training samples. The framework transforms an 
ordinal regression problem with n training instances to a binary 
classification problem with ݊ଶ − మ


 training instances (C is the 

number of ranks). A decoder is developed to predict the 
category of an instance from the binary outputs of the 
classifier. Although in this paper a revised SVM method is 
employed, other binary classification methods with high 
performance can be considered. 

The contributions of this paper include: 

 Increase the number of training points from ݊  to 
݊ଶ − మ


 by transforming the ordinal regression problem 

to a binary classification problem. 

 Modify SVM by employing pairwise kernels and 
introducing distances between different ranks into the 
constraints. 

 Develop a decoder to predict the rank of a test point 
from the outputs of SVM. 

The rest of this paper is organized as follows. Section II 
reviews the literature of ordinal regression. Section III 
describes the proposed ordinal regression framework and 
introduces the pairwise SVM and the decoder. Section IV 
reports the experimental results. Section V gives some 
conclusive remarks. 

II. RELATED WORK  
A number of machine learning methods have been 

proposed for ordinal regression. The survey paper published by 
Gutierrez et al. recently [9] summarized a set of ordinal 
regression algorithms in a taxonomy containing naive, binary 
decomposition and threshold approaches. Binary 
decomposition includes two types of approaches ─ single 
multi-output model and multiple binary models. Generally 
speaking, binary decomposition methods answer the question: 
"Is the rank of an instance x greater than ݇?" Frank and Hall 
(2001) [16] transformed data from ݉-rank ordinal regression to 
݉ − 1 binary classification problems. In prediction phase, the 
rank labels of test points were assigned by applying ad-hoc 
rules on the predications of class probability. This method 
required training multiple classifiers. RED_SVM [13] 
improved the performance further. It extended each instance 
to m instances for m ranks and based on the derived dataset, a 
binary classifier was trained to predict the rank of an instance 
is greater or smaller than each rank. The proposed method in 
this paper converts the original regression problem to a single 
binary classification problem which answers the question for 
every two instances: “Whose rank is greater?” and it uses a 
tailor-made decoder to recover the rank labels from the outputs 
of the classifier. 

Because of the high generalization performance of SVM, 
several SVM-based formulations have been proposed for 
ordinal regression. Herbrich et al. (1999) [17] proposed a SVM 
formulation based on a loss function of pairs of instances. 
Shashua and Levin (2002) [18] generalized SVM with multiple 

thresholds. They proposed two formulations: one is fixed-
margin-based and the other one is sum-of-margins-based. 
SVOR [12] improved the fixed-margin-based SVM 
formulation further. SVOR is a state-of-the-art SVM-based 
ordinal regression method. The binary classifier in the 
proposed algorithm is also SVM-based, but other binary 
classifiers with good performance can be applied. 

An important difference between ordinal regression and 
metric regression is that the distance between ranks are 
undefined for ordinal regression. Sanchez-Monedero et al. 
(2013) [19] proposed a method, PCDOC, which explores 
pairwise rank distances for ordinal regression problems. 
Sanchez-Monedero et al. modeled the projection from the input 
space to a 1-dimensional latent space directly using pairwise 
rank distance calculations. However, PCDOC is limited by 
scalability and computational time, not all pairs of instances 
being truly used. 

III. A PAIRWISE APPROACH FOR ORDINAL REGRESSION 
For the sake of clear presentation, the problem setting and 

notations are given first. An ordinal regression problem with m 
ranks denoted by W = {1,2, … , ݉}  is considered, where the 
natural order of numbers indicates the order of ranks. Let 
(X, Y)  be a training set with n  labeled instances, i.e., X =
,ଵݔ} ,ଶݔ … , }, andݔ  Y = ,ଵݕ} ,ଶݕ … , ݔ }, whereݕ ∈ ܴௗ  is an 
input vector, and y୧ ∈ W is the rank label. (ݔ ,  ) represents aݔ
pair of input vectors, and ܫ = {(݅, ݔ|(݆ , ݔ ∈ X} is defined as 
the index set of input pairs in the training set. ܺ ⊆ ܺ is the 
subset of input vectors whose rank labels are all k. ݊୩ denotes 
its size and x୩୨ denotes its ݆-th input vector. It is assumed that 
each rank has at least one instance, i.e., ܺ ≠ ∅. The task of 
ordinal regression is to predict the rank label ݕ௧ of a new input 
vector ݔ௧. 

A. A pairwise framework 
The proposed pairwise ordinal regression (POR) 

framework is based on a simple intuition. Because there are 
some training instances in each rank, the prediction of a test 
point can be obtained by comparing it to each of training 
instances. More precisely, given a test point ௧ݔ  , if we can 
answer "Is ݕ௧ > ݔ  true?" for anyݕ ∈ X, the rank label ݕ௧ will 
be easily inferred from these answers. Figure 1 shows the POR 
framework, which is a realization of this intuition. The 
framework contains four steps: the first three steps solve the 
binary classification problem to answer above question, and the 
final step is to determine the rank label of a test point based on 
the answers. 

POR starts from deriving new datasets from the original 
dataset in step 1. Any two instances from different ranks in the 
original training set are paired up to form one new instance, 
and the new instance is labeled as positive or negative 
according to the original ranks of the two entries. For example, 
two instances ݔ  and ݔ  come from different ranks ݕ  and ݕ .     
If ݕ  < ݕ  , the new instance ൫ݔ ,  ;൯ will be labeled as +1ݔ
otherwise, it will be labeled as -1. The number of instances in 
the derived dataset is ݊ଶ − ∑ ݊

ଶ
ୀଵ , which is O(݊ଶ) . The 

dataset of the new binary problem has been extended 
quadratically to relieve the difficulties brought by small 



datasets. The second step of POR is to train a pairwise SVM on 
the derived dataset. The input of this SVM is a pair ൫ݔ ,  ,൯ݔ
and its output is a binary label +1 or -1. The SVM kernels are 
pairwise:  K: (X × X) × (X × X) → R . The distance between 
rank ݕ and ݕ  is introduced into the constraints of the SVM, 
and the details will be discussed in Section III B. In the third 
step, given a test point ݔ௧, it is paired up with all the training 
points to form a set of pairs {(ݔ௧ , ݔ|(ݔ ∈ X} . Then the 
predicted binary label ݈௧ for all (ݔ௧ ,  ) will be computed andݔ
these labels indicate that the rank of ݔ௧  should be larger or 
smaller than the rank of ݔ. Because the ranks of all the training 
points are known, the fourth step of POR is to decode the 
estimated rank ݕො௧  from {((ݔ௧ , ,(ݔ ݈௧)|ݔ ∈ X, ݈௧ ∈ {+1, −1}} 
for ݔ௧. 

 
Fig.1 The flowchart of the POR framework 

B. A pairwise SVM 
Brunner et al. (2012) [20] proposed a pairwise SVM to tackle 
pairwise classification problems. The task of pairwise  
classification is to predict whether the instances a and b in a 
pair (a, b) belong to the same class or not. This pairwise SVM 
is modified in this paper for the rank comparison problem, 
which is to predict whether the rank of instance a in a pair 
(a, b)  is smaller than that of instance  b . The following 
formulation is defined for the rank comparison problem on the 
derived dataset. 

min
୵,க

1
2

ଶ‖ݓ‖ + C  ,ߝ
(,)∈ூ

 

          
s. t.   ݓ ∙ ߮൫ݔ , ൯ݔ ≥ ݀, − ,ߝ         if ݕ > ݕ

ݓ           ∙ ߮൫ݔ , ൯ݔ ≤ −݀, + ,ߝ     if ݕ < ݕ
,ߝ ≥ 0

              (1)  

where ܫ is the index set, ߝ, is the slack variable with respect to 
pairs ൫ݔ , ݔ൯, ߮(∙,∙) is a function mapping pair ൫ݔ , ൯ݔ  to a 
high dimension space and ݀, = ݕ| − |ݕ . In the first two 
constraints, ݀, = ݕ| − |ݕ  is used to quantify the distance 
between rank ݕ and ݕ . By introducing the distance into the 

constraints, the contributions of different pairs are 
distinguished. For example, assuming that ݔଵ, ݔଶ, ݔଷ  are from 
rank 1, 2, 3 respectively; both (ݔଵ, ,ଵݔ) ଶ) andݔ  ଷ) are positiveݔ
instances for the new binary classification problem, but the 
contributions of these two instances should not be same 
because their rank distances are different. 

The index set I is symmetric. In other words, if (݅, ݆) ∈ I, 
then (݆, ݅) ∈ I, and ݅ ≠ ݆. Therefore, Eq. 1 can be rewritten as 
following: 

min
୵,க

1
2

ଶ‖ݓ‖ + C  ,ߝ
(,)∈ூ

 

s. t.   sgn൫ݕ − ݓ൯ݕ ∙ ߮൫ݔ , ൯ݔ ≥ ݀, − ,ߝ     ∀(݅, ݆) ∈  ܫ
,ߝ ≥ 0      (2) 

where sgn(∙) is a sign function. Eq. 2 is the pairwise SVM 
formulation proposed for rank comparison. The input of this 
SVM is a pair  ൫ݔ , ൯ݔ  and the corresponding kernels are 
defined on pairs: K: (X × X) × (X × X) → R , 
K ቀ൫ݔ , ,൯ݔ ݔ) , )ቁݔ = 〈߮൫ݔ , ,൯ݔ ݔ)߮ ,  )〉. Pairwise kernelsݔ
for ordinal regression must fulfill the following properties, 
(a)  K ቀ൫ݔ , ,൯ݔ ݔ) , )ቁݔ = K ቀ(ݔ , ,(ݔ ൫ݔ , ൯ቁݔ , because 
according to Mercer's theorem, a kernel matrix must be 
symmetric and (b)  K ቀ൫ݔ , ,൯ݔ ݔ) , )ቁݔ = K ቀ൫ݔ, ,൯ݔ ݔ) , )ቁݔ . 
Brunner et al. (2012) gave several examples of pairwise 
kernels, such as metric learning pairwise kernel, direct sum 
learning pairwise kernel, and tensor metric learning pairwise 
kernel. Any traditional kernel K: X × X → R can in fact be used 
if a new feature vector representing a pair ൫ݔ ,  ൯ isݔ
constructed in advance. In implementation, a lot of methods 
can be used to construct a feature vector ݔᇱ  from the 
pair ݔ)  , (ݔ , such as ݔᇱ = ݔ − ݔ   and ݔᇱ = [ݔ ;ݔ]  which 
appends ݔ  to ݔ. 

After training the pairwise SVM, the decision function defined 
in Eq. 3 is used to predict the rank of a test point.  

ݔ)݂ , (ݔ ≜ ∑ ݕ,sgn൫ߙ − ൯Kݕ ቀ൫ݔ , ,൯ݔ ݔ) , )ቁ(,)∈ூݔ      (3) 

where ߙ,  is the Lagrange multiplier of ൫ݔ ,  ൯. For the ordinalݔ
regression problem, the decision function must fulfill the 
property ݔ)݂  , (ݔ = ݔ)݂− , (ݔ , which is called negative 
symmetric. Obviously, if the kernel used in the SVM fulfills 
the property (c) K ቀ൫ݔ , ,൯ݔ ݔ) , )ቁݔ = −K ቀ൫ݔ , ,൯ݔ ݔ) ,  ,)ቁݔ
the decision function will be always negative symmetric. 

C. A decoder 
In the POR framework, once the binary prediction values 

are obtained, a rule is applied to determine the rank labels. In 
the prediction phase, a testing point ݔ௧ is paired up with all 
training points, and the pairs are inputted to the pairwise SVM. 
The decoder is designed to estimate the rank of ݔ௧ from the 
SVM outputs. Algorithm 1 presents the proposed decoding 
algorithm, where the rank of ݔ௧ is determined by majority 
voting. Assuming that the rank of ݔ௧ is equal to c, the decoder 
calculates how many SVM outputs from the input pairs fit the 



assumption. The rank label is assigned to the c who fits the 
SVM outputs best. 

 Algorithm 1. Pseudo code for decoder 

Input: Y = ,ଵݕ} … , ܮ }, andݕ = {݈ଵ, … , ݈|݈ ∈ {1, −1}}. ݈ 
is the prediction of the pairwise SVM for (ݔ௧ ,  ௧ݔ ), whereݔ
is the test point, and ݔ ∈ ܺ. ݈ = 1 indicates the rank of ݔ௧ 
is higher than that of ݔ; otherwise, the rank of ݔ௧ is lower.  

Output: yො୲, the predicted rank of ݔ௧. 

1: for ܿ =  1 to ݉ do     (where ݉ is the number of ranks) 
2:       Let ݎ be the number of correct predictions in ܮ 
assuming the rank of ݔ௧ is ܿ. 
3:       Initialize ݎ = 0. 
4:       for ݅ =  1 to ݊ do 
5:             if ݕ < ܿ and ݈ = −1 then 
ݎ                  :6 = ݎ + 1 
7:             else if ݕ > ܿ  and ݈ = 1 then 
ݎ                  :8 = ݎ + 1 
9:             end if 
10:      end for 
11:      Assign prediction accuracy  = 

ି
. 

12: end for 
13: return yො୲ = argmaxୡ(). 

 

 In the literature, the prediction phase of the decomposition 
methods for ordinal regression using a single multi-output 
classifier and multiple binary classifiers can be unified under 
the Error Correcting Output Codes (ECOC) framework 
developed by Allwein [21]. The ECOC framework is proposed 
for multi-class classification originally. Take an one-against-all 
method for a 4-class classification problem as an example and 
let ℎ(∙), ݆ = 1, … ,4  be a decision function of the binary 
classifier distinguishing whether an instance belongs to class ݆ 
or not. A coding matrix ܯ ∈ {+1, −1,0}×௦  is defined 
associating with the decomposition method, where ݉  is the 
number of classes, and ݏ  is the number of the decision 
functions. Table 1 is a coding matrix for 4 class classification 
problems solved by one-against-all methods. Each row is for 
one class and each column is for one decision function. For the 
sake of clear presentation, the first column is labeled as 
[1|2,3,4] for ℎଵ(∙), which considers class 1 as a positive class 
and the rest are negative classes. The rest of the columns are 
for ℎଶ(∙), ℎଷ(∙) and ℎସ(∙). The elements in the matrix represent 
the training targets for different functions and different classes. 
For example, ܯଵଵ  is +1, meaning that ℎଵ(∙)  uses +1 as a 
training target for class 1. In the prediction phase, given a test 
point ݔ௧ , the estimated values are obtained from all the 
classifiers, i.e., ℎଵ(ݔ௧) ,..., ℎ௦(ݔ௧) . A predefined similarity 
metric ݀(∙, ∙) is used to measure the closeness between the ݅-th 
row of the coding matrix ܯ(݅)  and the estimated vector 
ܼ = [ℎଵ(ݔ௧), … , ℎ௦(ݔ௧)] . The rank of ݔ௧  is determined by 
argmax൫݀(ܯ(݅), ܼ)൯. 

The decoder of the POR framework given in Algorithm 1 
can be formulated as a special case under the ECOC 
framework. Table 2 is the coding matrix ܯᇱ of POR for 4 ranks 
ordinal regression. Each row is for one rank and the proposed 

decision function ݂(∙,∙) in Eq. 3 is run on all columns. Different 
columns represent different subsets of data with different 
ranks. Column (ݔ, ({ݎ}  represents ݂(∙,∙)  running on pairs 
formed by an input vector and all instances from rank ݎ . 
ܯ 

ᇱ = +1  indicates that (ݔ , (ݔ  whose ranks are ݅  and ݆ 
respectively is used as a positive training sample, while 
ܯ 

ᇱ = −1  indicates that (ݔ , (ݔ  is used as a negative 
training sample.  ܯ

ᇱ = 0 means that samples from the same 
rank are not used in training. The elements in the i-th row, 
except for the diagonal elements, are expected outputs for a test 
sample with rank i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As described before, in the ECOC framework, the rank of a 
test point is determined by argmax୧൫݀(ܯ(݅), ܼ)൯, where ܯ(݅) 
is the ݅-th row vector of ܯ and ܼ is the estimation vector of a 
test point ݔ௧. For the decoder of POR, let ܼᇱ = ,ଵݖ] … ,  ] beݖ
the estimation tensor of a test point ݔ௧ and each element ݖ be 
the prediction vector for the pairs of ݔ௧ and all instances from 
rank ݎ, i.e., ݖ = ௧ݔ)݂ൣ , ,(ଵݔ … , ݂൫ݔ௧ , ೝݔ ൯൧. Define 

,(ܿ)ᇱܯ)݀ ܼᇱ) = ଵ
ି

∑ ೝାெ,ೝ
ᇲ [ೝ]∙௭ೝ



ଶୀଵ,…,ஷ         (4)            

where [ೝ] is the all-ones vector with dimension one by n୰ , 
,ܯ

ᇱ  is the element in the ܿ-th row and the ݎ-th column in the 
coding matrix ܯᇱ, and ݊ and ݊  are the number of instances 
with rank ܿ and ݎ in the training set. If ܯ,

ᇱ = 1, the equation 
ೝାெ,ೝ

ᇲ [ೝ]∙௭ೝ


ଶ
 inside the summation in Eq. 4 returns the 

number of ones in ݖ , while if ܯ,
ᇱ = −1 , it returns the 

number of negative ones in ݖ . Therefore, Eq. 4 is a 
mathematical representation of line 2 to line 11 in the 
Algorithm 1. In the Algorithm 1 the rank of a test point is 
determined by  argmax݀(ܯᇱ(ܿ), ܼᇱ) . Clearly, the coder of 
POR is a special case of the ECOC framework.  

IV. EXPERIMENTAL RESULTS 
 To evaluate the performance of the proposed algorithm, it 

is compared with three state-of-the-art methods on 12 widely 
used benchmark datasets. Table 3 lists their details. The first 

Table 1. Coding matrix of one-against-all method 
for 4 class classification 

 Coding values 
Class [1|2,3,4] [2|1,3,4] [3|1,2,4] [4|1,2,3] 

1 +1 -1 -1 -1 
2 -1 +1 -1 -1 
3 -1 -1 +1 -1 
4 -1 -1 -1 +1 

Table 2. Coding matrix of POR for 4-rank ordinal 
regression 

 Coding values 
Rank (x, {1}) (x, {2}) (x, {3}) (x, {4}) 

1 0 -1 -1 -1 
2 +1 0 -1 -1 
3 +1 +1 0 -1 
4 +1 +1 +1 0 



eight datasets are real ordinal regression datasets and the other 
four datasets are generated from UCI regression datasets [12] 
by discretizing the target values into ordinal quantities using 
equal-frequency binning. Each of them has no more than 300  

 

data points. Table 3 lists the partitions between training sets 
and testing sets. For example, 18/6 means that 18 instances in 
the database are for training and the rest 6 instances are for 
testing. K indicates the feature dimensions and Q indicates the 
number of ranks. The last column shows the number of points 
in different ranks. Note that some of them are highly 
imbalanced. More information of the datasets can be found in 
[12] and [19]. Two metrics are used to evaluate the 
performance of the methods. The first one is mean zero-one 
error (MZE) defined by ݁ = ଵ

|்|
∑ ො௧ݕ⟧ ≠ ்∋௧⟧௫ݕ , where ܶ is a 

testing set,  |ܶ| is its size, ݕ௧ is the ground truth of ݔ௧,  ݕො௧ is the 
prediction for ݕ௧ and ⟦∙⟧ is the indicator function. The second 
one is mean absolute error (MAE) defined by ݁ =
ଵ

|்|
∑ ො௧ݕ| − ்∋௧|௫ݕ . 

Three state-of-the-art methods, SVOR [12], RED_SVM 
[13], and PCDOC [19] are compared with the proposed 

algorithm POR. Gaussian kernel is used in all of the methods. 
The hyper-parameters C and γ are selected respectively from 
{2ିହ, 2ିସ, 2ିଷ, 2ିଶ, 2ିଵ, 2, 2ଵ, 2ଶ, 2ଷ, 2ସ, 2ହ}  and 
{2ିହ, 2ିସ, 2ିଷ, 2ିଶ, 2ିଵ, 2}   using 5-fold cross validation. 
Some features in these datasets are binary but the others are 
real numbers. Normalization does have impacts on most of 
classifiers, including SVM. Two types of normalization are 
considered in this paper: normalizing all features and 
normalizing only none-binary features. Therefore, in the 
experiments, there are three types of features for each dataset: 
original features, normalizing features, and partially 
normalizing features, and they are also selected through cross-
validation. More clearly, 5 fold cross-validation on the training 
set is used to select the best hyper-parameters and the best 
corresponding normalization scheme simultaneously. The 
normalization method used in the experiments is Standard 
Score, which normalizes a feature ݒ  as ௩ିఓ

ఙ
, where ߤ  is the 

mean value of this feature in all instances and ߪ is the standard 
deviation. For SVOR [12], RED_SVM [13], and PCDOC [19], 
the model selection methods reported in the original papers are 
used. For fair comparison, the same experimental settings 
reported in [19] are applied to the first eight datasets and those 
reported in [12] are applied to the rest datasets. Tables 4 and 5 
list the mean errors and their standard derivations of the first 
eight databases. The best performance is highlighted. None of 
the methods can perform the best for all eight datasets. In terms 
of MZE, POR can achieve the best results on three datasets, 
while the others can achieve the best results on no more than 
two datasets. In terms of MAE, PCDOC wins four times, while 
POR wins three times. 

Tables 6 and 7 list the results on the four discrete regression 
datasets. In terms of both MZE and MAE, POR wins two 
times; RED_SVM and PCDOC win one time, while SVOR 
cannot get any best result. Table 8 summarizes the win/loss of 
the four methods on MZE and MAE for the 12 benchmarks. In 
terms of MZE, POR performs the best. In terms of MAE, POR 
and PCDOC perform similarly. 

V. CONCLUSION 
In this paper, a new pairwise ordinal regression algorithm is 

proposed for small data problems. The number of training data  

Table 3. Ordinal regression benchmarks 
Dataset Partition K Q Class Distribution 
contact-
lenses 

18/6 6 3 (15,5,4) 

pasture 27/9 25 3 (12,12,12) 
squash-
stored 

39/13 51 3 (23,21,8) 

squash-
unstored 

39/13 52 3 (24,24,4) 

tae 113/38 54 3 (49,50,52) 
newthyroid 161/54 5 3 (30,150,35) 

bonrate 42/15 37 5 (6,33,12,5,1) 
automobile 153/52 71 6 (3,22,67,54,32,27) 

pyrim5 50/24 27 5 (7,28,17,12,10) 
machine5 150/59 6 5 (152,27,13,7,10) 
pyrim10 50/24 27 10 (2,2,14,14,13,5,10,4,3,7) 

machine10 150/59 6 10 (115,37,21,6,8,5,3,4,4,6) 

Table 4. Mean zero-one error (MZE) on real ordinal regression datasets 

 contact-lenses pasture squash-stored squash-
unstored Tae newthyroid bondrate automobile 

RED_SVM 0.300 ± 0.111 0.352 ± 0.134 0.336 ± 0.104 0.251 ± 0.086 0.478 ± 0.074 0.031 ± 0.022 0.447 ± 0.073 0.316 ± 0.055 
SVOR 0.367 ± 0.127 0.333 ± 0.120 0.361 ± 0.118 0.236 ± 0.103 0.410 ± 0.066 0.031 ± 0.021 0.453 ± 0.092 0.361 ± 0.076 

PCDOC 0.311 ± 0.095 0.344 ± 0.103 0.315 ± 0.123 0.305 ± 0.084 0.418 ± 0.064 0.027 ± 0.020 0.460 ± 0.101 0.322 ± 0.060 
POR 0.344 ± 0.166 0.304 ± 0.149 0.359 ± 0.111 0.226 ± 0.093 0.420 ± 0.094 0.030 ± 0.024 0.449 ± 0.150 0.303 ± 0.102 

Table 5. Mean absolute error (MAE) on real ordinal regression datasets 

 contact-lenses pasture squash-stored squash-
unstored 

Tae newthyroid bondrate automobile 

RED_SVM 0.378 ± 0.169 0.359 ± 0.142 0.346 ± 0.110 0.251 ± 0.086 0.515 ± 0.087 0.032 ± 0.022 0.598 ± 0.088 0.393 ± 0.073 
SVOR 0.506 ± 0.167 0.333 ± 0.120 0.372 ± 0.126 0.239 ± 0.109 0.461 ± 0.081 0.031 ± 0.021 0.591 ± 0.102 0.424 ± 0.090 

PCDOC 0.367 ± 0.154 0.348 ± 0.104 0.326 ± 0.141 0.305 ± 0.084 0.457 ± 0.071 0.027 ± 0.020 0.568 ± 0.126 0.397 ± 0.093 
POR 0.489 ± 0.113 0.304 ± 0.149 0.369 ± 0.104 0.226 ± 0.093 0.539 ± 0.072 0.030 ± 0.024 0.556 ± 0.114 0.431 ± 0.062 



 

is increased quadratically when a pairwise approach is used to 
overcome the problem of lack of data. SVM is revised such 
that the ordinal information is embedded in the constraints and 
a pairwise kernel is used to project data pairs to a high 
dimensional space. A decoder, which takes the SVM binary 
outputs from the pairs formed by the test points and all training 
points as inputs, is designed to recover the ordinal category of 
test points. The experimental results show that the proposed 
algorithm is comparable with the state-of-the-art methods. 
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Table 6. Mean zero-one error (MZE) on discrete 
regression datasets 

 pyrim5 machine5 
RED_SVM 0.413 ± 0.063 0.264 ± 0.010 

SVOR 0.517 ± 0.086 0.431 ± 0.054 
PCDOC 0.483 ± 0.088 0.178 ± 0.036 

POR 0.442 ± 0.075 0.180 ± 0.048 
 pyrim10 machine10 

RED_SVM 0.762 ± 0.021 0.572 ± 0.013 
SVOR 0.719 ± 0.066  0.655 ± 0.045  

PCDOC 0.704 ± 0.071 0.385 ± 0.054 
POR 0.641 ± 0.196 0.333 ± 0.064 

 
Table 7. Mean absolute error (MAE) on discrete 

regression datasets 
 pyrim5 machine5 

RED_SVM 0.454 ± 0.086 0.478 ± 0.031  
SVOR 0.615 ± 0.127 0.462 ± 0.062 

PCDOC 0.552 ± 0.116 0.202 ± 0.046 
POR 0.541 ± 0.049 0.200 ± 0.038 

 pyrim10 machine10 
RED_SVM 1.304 ± 0.040 0.842 ± 0.022   

SVOR 1.294 ± 0.046 0.990 ± 0.026  
PCDOC 1.088 ± 0.159 0.494 ± 0.082 

POR 1.133 ± 0.091 0.476 ± 0.029 
 

Table 8. Win/loss summary 
win/loss MZE MAE 

RED_SVM 3 / 9  2 / 10 
SVOR 1 / 11 0 / 12 

PCDOC 3 / 9 5 / 7 
POR 5 / 7 5 / 7 


