
Eager Recirculating Memory to Alleviate the Von Neumann Bottleneck

Jonathan Edwards
York Centre for Complex Systems Analysis,

University of York,
York, UK

Simon O’Keefe
York Centre for Complex Systems Analysis,

University of York,
York, UK

Abstract— This paper presents an examination of channel
based time delays and their application as units which perform
storage and computation. We describe the implementation
of compound arithmetic operations, and show that by re-
circulating the impulses along a channel, both memory and
computation can be achieved on the same general channel
unit. In addition, this approach has the further advantage
of performing arithmetic simplification eagerly, so that the
resultant use of memory is optimised by the intermediate
processing during memory circulation phases.

I. INTRODUCTION

Central Processor Unit (CPU) design is fixated on binary
data storage. This is not surprising since the development of
powerful computation devices has become an integral part
of the technological advancement of our modern society.
Edwards et al [1] take a step back from this approach,
exploring an alternative method of performing computation
without the storage and manipulation of binary data. The
method proposed uses time delays across a channel as a
representation of numbers and as a computation medium, and
in [1] this system is shown to have the capacity to perform
all forms of arithmetic computation.

This paper examines this approach in more detail, present-
ing a recirculation method that allows us to store arithmetic
operations on the channel. This allows processing to occur on
the same medium as is used for storage, effectively removing
the “von Neumann Bottleneck” (explained in more detail in
Section II) as storage of operands and operator and applica-
tion of that operator use the same mechanism. Furthermore,
since the storage medium is actively recirculating, operations
may be processed and simplified in an eager fashion (that
is, the operator may be applied at any time before the result
is required), so that the recirculated result is optimised for
when it is externally accessed.

The paper is structured as follows: section II reviews the
von Neumann Bottleneck to assess it’s impact on decreasing
CPU operation throughput. To provide the necessary back-
ground in time delay computation, section III summarizes
the work presented in [1]. This section then expands on
this previous work, to demonstrate that non-trivial compu-
tation can be performed, and discusses the arrangement of
compound arithmetic operations such that they can can be
processed by a single stack-less pass across a channel. The
fourth section presents a discussion of how these signals
on a channel might be recirculated using the addition of a
compute flag to communicate with other processing units

and clocks. The paper concludes with a discussion of the
continued development of the algorithmic capabilities of the
single time based processing units.

II. THE VON NEUMANN BOTTLENECK

The von Neumann Bottleneck is a term coined by John
Backus in his 1978 Turing Award Lecture [2]. It describes the
imbalance between the speed of computation and the speed
of memory access in CPUs designed using the von Neu-
mann architecture. The imbalance arises because the speed
with which data is acquired from Random Access Memory
(RAM) is significantly lower than the speed at which a CPU
can perform computation. This may mean that wait cycles
are required while data is acquired, ultimately increasing
overall computation time. Non-parallel solutions are mainly
defined in terms of pipelining, enhanced caching and branch
prediction methods [3]. Alternative architectures such as the
Harvard Architecture [4] also manipulate the nature of
memory by providing programme and data stores accessed
via separate data buses, that may be of different widths. To
a large extent the current directions in chip development
have masked this problem, by using ever larger caches
and ever smaller elements on a chip, in line with Moore’s
Law [5], to increase computation throughput. Comparable
areas of research occur in highly distributed parallel systems,
such as brain simulation [6] and neuromorphic hardware
[7]. Neuromorphic hardware, and in particular examples
implemented in analog, such as IBM’s Truenorth processor
[8], and on digital channels photonically [9] have similar
goals to our work, however, the computational units are
often designed to specifically mimic neuronal spike-timing
operations rather than our hybrid, initially simple, arithmetic
instruction set.

III. TIME DELAY PROCESSING

We define channel computation as the arrangement of data
into a signal which is communicated between an encoder
and a decoder, via some channel. A channel may be any
communication medium between the encoder and decoder,
in the sense of Shannon [10]. The data can represent both
operators and their operands, and communication via the
channel facilitates an efficient decoding, resulting in the
evaluation of the computation encoded in the data.

A discrete stream of these data (which can be loosely
thought of as a program) can exist on one channel, and
the system encoder, channel, decoder (see Figure 1) can



Fig. 1. The channel computation arrangement

Fig. 2. A Time Delay Unit representing the value 2 as a delay between
two impulses.

be thought of as a unit of processing, with the encoder
and decoder described by suitable finite state machines
(implicitly with some requisite digital state).

Edwards et al [1] propose an encoding approach in this
domain which utilises the temporal aspect of the commu-
nication to represent the data as a time delay between
individual impulses (see Figure 2). This encoding bears
some similarity to various schemes, including Pulse Width
Modulation (PWM) [11] and Action Potentials [12].

It is shown then that addition can be performed by the
concatenation of two values (see Figure 3) and this is
easily extended to subtraction and comparison (See [1],
section 3.2). The simplicity of this approach suggests that
the encoding and decoding finite state machines will be quite
small, which in turn suggests an advantage in real-world
instantiation (which we discuss further in section V).

Furthermore, by the inclusion of two clocks measuring
the relative speed of the impulses traversing the channel
we can extend the set of arithmetic operations available to
include multiplication and division. The term “clock” in this
context is a device measuring units of time, which subdivides

Fig. 3. Simple Addition can be performed by concatenation. This more
abstract diagram can be read right to left, and shows the addition operator
applied to processing two operands of magnitude 1. This would result in a
single output on the channel of magnitude 2.

Fig. 4. Multiplication can be implemented using changes to the clock
speed. The clock speed is shown at the top right of the diagram, so 1 cycle
on this channel represents 3 to an external timer.

Fig. 5. Instructions can be coded as a separate state on the channel.

the channel discretely into absolutely equivalent time-steps
within the encoder and decoder. Also implicit are the notions
that the clocks start synchronised and equivalent, and that
a mechanism exists to scale their time steps, effectively
changing the meaning of a unit time-step at each end the
channel. This is illustrated in Figure 4.

A. Representing Operands and Operators

An important design consideration for this system is to
develop a form of representation for operators. The most
straightforward method is to extend the representation so that
it is a tri-state channel (for example with states labelled
0, 1, and 2). The magnitude of an operand is represented
by the time delay between impulses of value 1, and an
operator is represented by the time delay between impulses
of value 2. This is illustrated in Figure 5. A suitable (simple)
FSM is necessary to map between the numerical magnitude
representing the computation, and the actual operation.

B. Performing Compound Operations

1) Addition and Subtraction: A requirement for this com-
putation system is that it should utilise the least theoretical
“hardware” to perform calculations. There is some subtlety
to the way compound operators are stored on the channel
as there is no stack to store values from intermediate com-
putations. Figure 6 illustrates this for the concatenation of
addition operators.

In evaluating an expression such as 2+3+3, the processing
unit requires intermediate storage to compute the compound
expression. To resolve this difficulty, a simple modification
of the position of the operator is required. For the system



Fig. 6. Addition requires some form of internal memory when performed
using an intermediate infix notation.

Fig. 7. Addition is a natural process, with a simple algorithm, when
represented in prefix notation.

to perform addition no intermediate storage is required,
so long as the addition/subtraction operators are arranged
in a prefix manner. The processing algorithm for addition
and subtraction then counts the number of operators and
concatenates accordingly. A simple working example (in
Figure 7) demonstrates compound addition of 2 + 2 + 3.

After observing the addition operators, the algorithm starts
timing at the first data impulse and then simply ignores the
corresponding number of data impulses (thus implementing
addition operators) past this point. It stops timing when the
subsequent data impulse arrives. So for example, a prefix of
++ would result in skipping two impulses.

The process is similar for subtraction, with the same
labeling method as proposed in the original paper ([1] section
3.2). Figure 8 explains the compound arithmetic expression
4 − 2 + 1 graphically. The − operator causes the FSM to
start timing at the second data impulse (corresponding to the
end of the operand 2), so the interval measured to the third
data impulse is 4− 2. The + operand then causes the FSM
to ignore the third impulse, so we have 4− 2 + 1.

Fig. 8. Subtraction is also easily performed when specified as a prefix
operation. We represent the subtraction operands as parallel magnitudes for
notational simplicity - the resultant calculation requires a single channel
only.

Fig. 9. Multiplication is naturally performed using infix. The first value
is moved to the speed register to affect the multiplication. This illustrates
evaluation of the expression 3× 2× 2.

Fig. 10. Division is similar in process to multiplication. This illustrates
evaluation of the expression 3/1/3.

2) Multiplication and Division: Multiplication and Divi-
sion are also possible with only clock speed modification.
The most suitable position of the operator is infix as again
this removes the necessity of the intermediate storage. The
one caveat is that values must pass to the clock register before
exiting the channel. A simple worked example evaluating the
expression 3×2×2 is shown in Figure 9. This is performed
without the need for intermediate storage of operands and
operators. Likewise division is similarly scaled. A simple
worked example evaluating the expression 3/1/3 is shown
in Figure 10.

As a final summary, Figure11 collects all the ideas above
and demonstrates an arithmetic operation with arbitrary com-
plexity, in this case 3 + 4× (6 + 5/(3− 2)).

Fig. 11. Complex operations can be performed on a single channel.

IV. EAGER RECIRCULATING MEMORY

The section above expands the description of the compu-
tational qualities of the arithmetic processes described in the
original paper. This computational process can be further
modified to become a memory system. This is achieved
by the provision of structure allowing recirculation of the
impulses. The simplest structure is to connect two channels
in a circular fashion to form a closed loop, with impulses
recirculated around the loop indefinitely. The computation
from this loop can be exposed by the further addition of a
computation switch which transfers the data out of the loop.
Figure 12 represents this recirculation graphically.

When the switch is toggled and the circuit becomes open,
computation occurs and the data emerges from the channel.
Significantly, computation and storage are held together on
the same channel.

One interesting aspect of the model is that, during recircu-
lation, computation can be silently performed, progressively

Fig. 12. Memory is implemented using recirculation of the impulses.



Fig. 13. Instructions can be simplified whilst circulating in memory.

simplifying the data stored in memory. This performs opti-
misation of the stored expression for free, and simplifies the
memory constraints by removing any processable impulses
prior to being made externally available through the setting
of the computation switch. The simplest example application
of this eager memory is the addition of 1 + 1. This is the
shown in Figure13, and is trivially simplified to 2 by one
circulation of the impulses around the channel loop.

Addition and subtraction operations only manipulate the
actual signal on the channel, hence are amenable to simplifi-
cation. In contrast, multiplication is more problematic since
it affects the speed of the channel, and produces multiplica-
tively larger operands which, as they are temporally encoded,
increase the amount of time necessary for computation.
Instead, it may (and we are actively investigating) be more
efficient to leave the operands in their unoptimised pre-
calculation format as multiplicative tuples. An example of
this is shown in Figure 14.

Fig. 14. The intermediate relative clock speeds used in multiplication may
prohibit the optimisation of an expression held on the processing unit.

So, the output value is only evaluated when the com-
putation is directly decoded into its final (possibly digital)
form. The enticing by-product of this is that large numbers
may be encoded as multiplications, so the system has an
implicit computational compression scheme, although care
must be taken with prime numbers (which we are currently
investigating as a part of our further research).

The idea of laziness is not a new concept in the field of
language design and computation. Several modern languages,
particularly functional ones, operate an implicit laziness;
holding on to computation without extending them out into
memory. Even popular multi-paradigm languages like Python
have a yield operator which stalls computation until a do
step.

V. CONCLUSION AND FUTURE DEVELOPMENTS

Computation using time as an analogue for magnitude of
value offers an alternative theoretical strategy to traditional
digital computation. In this paper we have expanded the

model to incorporate more compound operations and dis-
cussed how they might be held in memory. Furthermore,
we have demonstrated that individual time-based units can
perform both memory and computation and with a minimal
modification to the originally framework presented in [1].
Using the scheme we discuss above, we have no differ-
entiation between memory unit and computation unit, and
this lack of bottleneck has the added advantage of allowing
intermediate expression optimisation during storage.

The next step is to build a more general instruction
set that incorporates “Minimum Instruction Set Computing”
(MISC)-type instructions, with the aim of building a fully
Turing complete, universal processing unit. This is likely
to involve the linking of several individual units of the
type discussed here into more powerful arrays such that
sequence, selection and iteration can occur as a part of inter-
channel unit communication. It is also hoped that future
research will assess the nature of optimising memory and
demonstrate processes that may benefit from its application.
It may be possible to perform a system warm-up whilst
loading the data into memory, so that effectively much of
an algorithmic process has already been worked through
prior to program inception. This is effectively a compilation
phase for a more extensive time-based processing system.
One can speculate on the substrate for a practical hardware
system, as time is a channel independent property. At present
channels are most readily implemented photonically [13],
however microprocessor level integration of our model, to
enable computation at ”the speed of light” would be limited
by the resolution and accuracy of a suitably fast clock.

VI. ACKNOWLEDGMENTS

The authors would like to thank Mark Hill, for help in
preparation of the diagrams.

REFERENCES

[1] J. Edwards, S. O’Keefe, and W. D. Henderson, “Unconventional
arithmetic: A system for computation using action potentials,” in Proc.
of Unconventional Computation and Natural Computation, 2014, pp.
155–163.

[2] J. Backus, “Can programming be liberated from the von neumann
style?: A functional style and its algebra of programs,” Commun.
ACM, vol. 21, no. 8, pp. 613–641, Aug. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359576.359579

[3] J. P. Shen and M. H. Lipasti, Modern processor design : fundamentals
of superscalar processors. Boston: McGraw-Hill Higher Education,
2005, index. [Online]. Available: http://opac.inria.fr/record=b1129703

[4] B. Cohen, Howard Aiken, Portrait of a computer pioneer. The MIT
Press, 2000.

[5] G. E. Moore, “Readings in computer architecture,” M. D. Hill,
N. P. Jouppi, and G. S. Sohi, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, ch. Cramming More
Components Onto Integrated Circuits, pp. 56–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=333067.333074

[6] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “Spinnaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational
Intelligence). Ieee, 2008, pp. 2849–2856.

[7] C.-S. Poon and K. Zhou, “Neuromorphic silicon neurons and large-
scale neural networks: challenges and opportunities,” Frontiers in
neuroscience, vol. 5, p. 108, 2011.



[8] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[9] A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R.
Prucnal, “Photonic neuromorphic signal processing and computing,”
in Nanophotonic Information Physics. Springer, 2014, pp. 183–222.

[10] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[11] W. Maass and C. M. Bishop, Eds., Pulsed Neural Networks. Cam-
bridge, MA, USA: MIT Press, 1999.

[12] J. J. Hopfield, “Pattern recognition computation using action potential
timing for stimulus representation,” Nature, vol. 376, no. 6535, pp.
33–36, 1995.

[13] A. G. Bakaoukas, “An all-optical soliton fft computational
arrangement in the 3nlse-domain,” in Proceedings of the 15th
International Conference on Unconventional Computation and
Natural Computation - Volume 9726, ser. UCNC 2016. New York,
NY, USA: Springer-Verlag New York, Inc., 2016, pp. 11–24. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-41312-9 2


