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Abstract—In order to evaluate complex and computationally
expensive experiments, data-driven meta-models are used to
replace costly experiments and approximate the real experiments’
outcome. In this study, an evaluation framework is proposed for
measuring the performance of these models. Explored is how the
performance is related to the difference between the benchmark
optimum and the model optimum, and a novel method to
measure the performance of this ‘optima-fit’ is proposed. The
evaluation framework is presented using an experimental setup of
four meta-modeling techniques (Decision Tree, Random Forests,
Support Vector Regression and Kriging), which are systematically
compared to each other. The techniques are fitted to eleven
benchmarks, with dimensionality ranging from 2 to 32. The meta-
models are trained with varying input sample sizes and sampling
strategies. In addition, the relations between the performance to
the various sampling strategies and sizes on these benchmarks
are explored. Our novel designed metric can provide additional
insight in the performance of a specific range of meta-models.
Index Terms—Meta-models; Evaluation; Optimisation.

I. INTRODUCTION

In competitive engineering environments such as the
automotive industry, the product designs are often optimized
through non-linear, global optimizers where the goodness of
designs are determined by costly physical experiments or
heavy computer codes (simulators).

However, these simulations are often expensive to evaluate.
Due to the high time complexity, these simulations may only
lead to a trial-and-error approach where the designer, instead
of deliberately changing variables to optimize the design,
tries varying parameters until a sufficiently good solution is
found (see Simpson et al. [21]).

For example; most (if not all) major automotive companies
use computer simulations to analyze and test the safety of
their new models. According to the researchers at Ford,
simulation time can take from six to twenty hours (see
Akkerman [1]).

The enormous computational cost of some tests makes
it infeasible for state-of-the-art optimizers, which usually

take up many simulation runs (Jin et al. [10]). Developing
optimization algorithms that can produce decent results
in a limited number of evaluations is a great challenge.
Considering the previously mentioned example of a car crash:
even with a limited budget of only 50 iterations and under
the assumption that every iteration needs only one simulation,
a minimum of 300 hours of simulation time would be required.

One way to solve this problem is by building meta-models
(models of the simulation models) to provide approximations
of these simulations. Provided that they are sufficiently
well-fitted (providing predictions close to the truth, even on
unseen data), these models are able to replace the simulation
models, and are especially useful in the early phases of the
design process, where many different blueprints can be tested
and designs are still optimized on a larger scale. Once a
suitable design has been found, the actual simulation could
then be used to perform the final, more locally oriented
optimization. The major advantage of this approach is the
speed-up obtained by leaving out simulation, allowing for
more evaluations by the optimization algorithms. Other
benefits are easier integration of optimization algorithms on
different problem domains, and a better understanding of the
relationship between input variables and their output (see
Simpson et al. [21]).

Using meta-models for optimization is called Meta-model-
based Design Optimization (MBDO) (see e.g. Ryberg
[19]). Many different variants of meta-models, experimental
designs and optimization methods exist and have been tested.
Subsequently, a great deal of studies comparing different
meta-models with varying dimensions or sampling techniques
have been performed (see Jin et al. [10], Shi et al. [20], Fang
et al. [6], Li et al. [14], Kim et al. [13] etc.). Jin et al. [10]
note in their future work that more test problems with large
dimensions, as well as with more medium dimensions should
be tested. Furthermore, the quality of the meta-models with
respect to optimization algorithms were tested by Li et al.
[14]. Since one of the main usages of these meta-models is
optimization, it is important to study this more thoroughly. A
well-fitted model might not be the best to optimize on, if the



global optimum of the model does not correspond with the
true global optimum. On the contrary, a simple model which
is unable to represent the whole space well, might have a good
fit in the neighbourhood of the location of the global optimum.

In the literature, there seems to be only limited consensus
on what the correct number of samples is in order to train
a model properly. In Akkerman et al. [1] an initial sampling
size between 3N and 4N is recommended, with N being
the number of dimensions of the problem. However, Jones et
al. [12] take approximately 10N points in the initialization
of their model, although it is only used as an initial step in
their proposed algorithm. More thorough work is done by
Shi [20], who concludes that 3N is a good choice for sample
size when considering computational cost. Simpson et al.
[22] conducted several tests with different sample sizes and
different models, but since they only apply their methods on
two problems, no solid general conclusions can be drawn.
Finally, only a few comparisons have been made, where
besides the number of samples, also the number of dimensions
and models were tested on a set of representative benchmarks.

Contributions: a framework for measuring the performance of
meta-models with respect to optimization is proposed, taking
both the meta-models’ optimum and the true optimum into
account. In addition, a new metric is introduced to give more
insight in the performance for a particular meta-model. One of
our goals is to give a well argued recommendation for sample
sizes and investigate what effect the distribution of samples has
on the performance of models. In Section II we will present
the methods studied in this paper in a more formal way. The
approach taken in our experiments is highlighted in Section
IV and the results are discussed in Section V.

II. RELATED RESEARCH

When designing meta-models for optimization algorithms,
typically two choices have to be made:
1) the selection of a sampling strategy, where a number of
samples are picked in the design space, and
2) the actual meta-model itself. In this chapter the sampling
strategies and meta-models used in the experimental setup
are explained.

A. Sampling strategies

The design of a meta-model optimization strategy starts with
the selection of an experimental design, where a number of
sampling points are picked in the design space. The theory
of placing design points in this space is called the Design
of Experiments. Since in most cases only little is known
about the simulation function that needs to be modeled, some
strategies try to fill the space, by spreading out sampling
points as evenly as possible. These methods are referred to
as ‘space-filling’ designs. Examples are: Latin Hypercube
sampling (McKay et al. [15]), minimax and maximin designs
(Johnson et al. [11]) and orthogonal arrays (Owen et al.

[16]). However, little is known from literature as to what
performance can be obtained when the distribution of
samples is not space-filling or even uniformly distributed.
In a real-world scenario, it might not always be possible
to select design points in advance due to budget or time
constraints. When this is the case, one would have to work
with the existing data that are not necessarily evenly spaced
across the search space. Therefore, only a single space-filling
distribution of samples is selected in our experiments, and
compared with theoretically less favorable distributions in
order to determine the effect of the following sampling
strategies.

1) Uniform Sampling: Samples are drawn from a uniform
distribution within a range between values a and b for each
dimension. The probability density function of the uniform
distribution is:

p(x) =
1

b− a
, (1)

between the values of a and b, and zero everywhere else.
Uniform sampling is used in our experiments as one of
the sampling strategies, because it is the most naı̈ve and
simple way to select samples spread over the entire domain.
However, due to the random nature there is no guarantee that
the discrepancy of the sample is low.

2) Normal Sampling: Another sampling technique is normal
random sampling, where samples are drawn from a normal
distribution, with σ = 1 and µ = 0 (the data is normalized).
Selected samples are multiplied by 1

4 , such that the probability
of selecting samples outside the given range is almost 0. The
probability density function of the Gaussian distribution in 1D:

p(x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 (2)

where µ is the mean, and σ is the standard deviation. Normal
random sampling simulates datasets where samples show
clustering patterns. This might influence the accuracy of the
model.

3) Latin Hypercube Sampling: Latin Hypercube sampling
was first proposed by McKay, Conover and Beckman [15]. It
ensures that each sample is the only one in each axis-aligned
hyperplane. The co-domain of each random variable Xi is
split into N strata of equal probability, and on each stratum
one sample is generated uniformly. This works especially
well when only a few samples are needed. Latin Hypercube
sampling is one of the most well-known and often-used
space-filling sampling methods, spreading the samples over
the design space. This method is expected to give the best
results.



4) Normal-centered sampling: Samples are drawn from a
normal distribution, with σ = 1 and µ = 0. However, this
time the value is set to µ = opt per dimension, where opt is
the value of where the optimum is located on that axis. This
ensures that samples are centered on the optimum of our
benchmark. Note that this would not be possible in real-world
scenarios where the optimum of the benchmark is unknown.
Normal-centered sampling is included in order to test the
results when samples are generated around the optimum of
the benchmark functions.

5) Wald-centered sampling (inverse Gaussian): This tech-
nique draws samples from a Wald distribution, with µ =
1, λ = 10.

P (x;µ, λ) =

√
λ

2πx3
· e

−λ(x−µ)2

2·µ2·x (3)

Again, values are scaled by multiplying by 1
4 . Since the

Wald distribution is strictly positive, the value of our sample
is negated in 50% of cases. Finally, the ‘center’ of our
distribution is shifted to the optimum of the tested benchmark,
in order to test what would happen if samples are located away
from the optimum. Wald sampling mimics poorly sampled
design spaces, when samples are not evenly spread over the
design space and are located away from the optimum.

B. Meta-models

Many different models exist that can learn from data and
predict values that have not been seen before. Frequently
used ones are: Neural Networks, RBF-networks, Multivariate
Adaptive Regression Splines, Decision Trees, Random
Forests, Kriging and Support Vector Regression. In this
section we will look at four most commonly used meta-
models that have been used in our experiments.

1) Decision Trees: Decision Trees (DT) are commonly used
in data mining (see Alpaydin [2]). A Decision Tree model
consists of nodes, where in each interior node, input values
are split into two or more branches to build a tree. The
leaves, the exterior nodes, represent the output values of the
target variable, given the path from the root of the tree along
the different splits to the leaf. Decision Trees can be used for
both classification as well as regression. When target values
are represented by a finite set of discrete classes, Decision
Trees are called classification trees, when target values are
continuous, they are called regression trees.

Trees can be learned with algorithms such as ID3, CART
and C4.5, belonging to the class of top-down induction of
decision trees (TDIDT) (see Quinlan [18]). In this process the
input dataset is recursively partitioned into subsets of items.
When all remaining items in a subset have the same value,
the recursion stops.

Different metrics can be used to determine the splits. In
classification trees, Information Gain [18] or the Gini impurity
[5] can be used as the splitting criterion. In regression trees,
the splits are often determined by maximum variance reduction
(which is equal to minimizing the sum of squared errors S in
equation 4).

S =
∑
l∈L

∑
i∈l

(yi − µl)2 (4)

where L is the set of leaves of the tree, and µl = 1
nl

∑
i∈l yi

is the prediction for leaf L (where nl is the number of items
in leaf l).

2) Random Forest Regression: Random Forests is the name
for an ensemble of learning techniques. It was first coined by
Leo Breiman [4]. In Random Forests, the notion of bagging
[3] is used. In bagging, multiple Decision Trees (or other
learners) are built and combined into a ‘forest’ of trees. The
technique of using Random Forests for regression is called
Random Forest Regression (RFR).

To ensure differences in the tree structures, each tree depends
on a random subset of selected samples. Furthermore, trees
no longer split on the best split found (as usually is the case
of Decision Trees), but instead on the best split found in a
random subset of the features. This increases the ‘randomness’
of each tree, and thus reduces the biasness of the estimation.
After the generation of a number of trees, all trees vote on a
class (in classification), and the most popular class is picked
as a result. In regression, a prediction is simply the average
of the predicted outcomes of each tree.

The main advantages of Random Forests, compared to
Decision Trees, are that the increased randomness counteracts
over-fitting and exhibits more smooth behavior while retaining
the good qualities of Decision Trees. A drawback is that they
cannot be interpreted easily.

3) Support Vector Regression: The original Support Vector
Machines (SVM) were invented by Vapnik [23] in 1963.
They are well described by Alpaydin [2]. In Support Vector
Machines, an optimal separating hyperplane is constructed,
allowing for tasks such as classification and regression. The
hyperplane is optimal when it has a maximal margin between
the data-points of the classes, minimizing the generalization
error (the error in predicting new, unseen input values). In
order to construct these hyperplanes, only a limited number
of samples, called the support vectors, are necessary. Only
this (usually small) subset of samples is used to determine
the margin.

In order to generalize the method to regression, the ε-sensitive
loss function can be used. In regression, the goal is not to
separate the data, but to contain all samples within a margin
ε, and then minimize the margin. For the details, please see



Alpaydin. [2]

4) Kriging: Kriging uses Gaussian Processes (GP) as the
assumption on the data. GP can be seen as an extension of a
multivariate Gaussian distribution on infinite dimensions. The
prediction of Kriging is a sum of a non-linear trend and a GP:

G(X) =

k∑
j=0

βjfj(x) + Z(X) (5)

where Z(X) is a centered GP with 0 mean and covariance
function K. The correlation between two samples is modeled
only by the covariance function K. Different covariance
functions can be chosen, a popular choice is the squared
exponential:

k(x, x′) = σ2
f exp

[
− (x− x′)2

2l2

]
(6)

In order to predict new values, the hyper-parameters of this
function, such as σ and l, have to be learned from the data.
This can be done with any multivariate optimization algorithm.

C. Quality Measurement

The first measure used to determine the performance of the
model is the R2 score:

R2 ≡ 1−
∑
i (yi − fi)2∑
i (yi − ȳ)

2 , (7)

with data y1 . . . yn, with predicted value f1 . . . fn. ȳ is the
mean of the actual value of the data.
R2 scores are widely used to provide an estimate of the
accuracy of the model. Scores have an upper bound of 1.0,
and can be negative. A constant model, predicting only the
mean value of y would get an R2-score of 0. A drawback
of using the R2 score is that it will for some regression
techniques never decrease when additional variables are added
to the model, which can cause irrelevant data to be learned.
Since our models are fitted to mathematical benchmarks, this
is not a problem, as each dimension is necessary to correctly
fit the model. Therefore the R2-score can be safely used to
compare with our own metrics, presented below in Section III.

D. Optimization

In order to determine the optimum in the model, a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) algorithm
is used. CMA-ES was originally invented by Hansen (see
Hansen and Ostermeier [9]). It is considered the state-of-the-
art in evolutionary strategies, and widely used for black-box
optimization problems.
In Algorithm 1 the pseudo-code of the CMA-ES algorithm is
presented. First, a set of µ parents are initialized and evaluated.
A new population of λ offspring is generated, by sampling
from a multivariate normal distribution:

Initialize and evaluate µ initial parents
while not terminated do

Mutate parents into λ children
Evaluate, select and recombine children into µ parents
Update covariance matrix and σ

end
Algorithm 1: Pseudo-code of CMA-ES

xg+1
k = mg + σgN (0, Cg) for k = 1, · · · , λ (8)

The best µ individuals are selected and averaged.

mg+1 =

µ∑
i=0

wix
g+1
i:λ , (9)

where i : λ denotes the i-th best individual in λ. The weights
wi can be set to 1

µ . Finally the covariance matrix is updated.
From selected individuals, the new mean of the next generation
is computed. For a detailed explanation please see Hansen [8].

The major advantages are that it conducts an adaptive search
to local function topology with properly controlled step-size
on the benchmarks that are considered in this paper. This
is necessary in order to find the optimum in the model,
which approximates the benchmarks. It should be noted that
derivative based methods that converge much faster, usually
get stuck in local optima.

Our settings are as follows: 250 generations, population size
of 20N , (with N the number of dimensions), starting with
σ = 0.2. In order to maintain all individuals in the feasible
range of [−1, 1] per dimension, the value of individuals outside
the hypercube is set to 1010.

III. FRAMEWORK FOR EVALUATING META-MODELS

Commonly, the performance assessment of meta-models are
made on the accuracy or some other properties. However, in
simulation-optimization, these models are used to find (global)
optima. Therefore, the optima-fit (the relation between the
optimum of our model and the optimum in the benchmark)
is of major importance.
As explained in Section II-C, the R2-score can be used to
provide an estimate of the accuracy of the predictions of a
trained model. However, it might not accurately represent the
usability of the model for optimization. Therefore the ∆x and
∆f metrics are proposed. Besides testing the model accuracy,
the difference between the optimum in the benchmark and the
optimum found in the model is compared both in the input
space (∆x) and in the objective space (∆f ). In Figure 1, a
graphical overview is provided of the two metrics.
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Fig. 1: Graphical interpretation of ∆x and ∆f

The distance between objects (or ∆x) is simply the L2 norm,
or the Euclidean distance between two points:

∆x = ‖x̂∗ − x∗‖ (10)

=
√

(x̂∗1 − x∗1)2 + (x̂∗2 − x∗2)2 + · · ·+ (x̂∗n − x∗n)2 (11)

In real-world problems, the location of the optimum is not
known in advance. Therefore we are also interested in the
difference in fitness (or ∆f ) between the estimated optimum
and the real optimum on different functions, as this can give
us an insight as to how close these models can come to the
true value.

∆f is the difference between the fitness of the best individual
found by the model, and the fitness of the actual optimal point:

∆f = f(x̂∗)− f(x∗)

Note that small values of ∆x do not necessarily imply
small values of ∆f , as the fitness landscape can be highly
irregular. Vice versa, high values of ∆x might not necessarily
be inferior, as functions might have similar local optima at
different locations in the search space. One might argue that
in this case, either of the points could be sufficient.

As the input values of our benchmarks are all normalized, a
comparison between the different benchmarks can be made
for ∆x. For ∆f however, this produces some complications
as the maximum in our input space is not always known.
Therefore, the maximum values from the two dimensional
problem are used to normalize the output values. The ranges
used to normalize can be found in Table I.

IV. EXPERIMENTAL SETUP

The following parameters are varied in our set of experiments:
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(c) 8 dimensions.
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(d) 16 dimensions.
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(e) 32 dimensions.

Fig. 2: Comparison of modeling techniques on R2 scores in
2, 4, 8, 16 and 32 dimensions with varying sampling sizes.

1) Dimensions (ranging from 21 to 25, increasing with
powers of two)

2) Number of samples (ranging from 24 to 212, increasing
with powers of two)

3) Meta-models (Decision Tree, Random Forest Regres-
sion, Support Vector Regression and Gaussian Process
Regression)

4) Sampling strategies (uniform, normal, Latin Hypercube,
normal-centered, and wald-centered sampling)

5) Benchmark functions (11 functions, see Table I)

The benchmarks are normalized on their input for equal
comparison, each input dimension ranges between [−1, 1].
Samples are generated per distribution and dimension, after
which all models are trained with the same dataset. In total
5 × 9 × 4 × 5 × 11 = 9900 tests are conducted. Each test is
5-fold cross-validated. In cross-validation, the dataset is split
up into n folds. One of these folds is taken out in order to
serve as a validation set, the other folds are used for training
the model. This is repeated until each fold has been used
exactly once as validation set. In this way, scores obtained
for each fold, which are averaged in order to determine how
well the model fits to this dataset. All algorithms used were
taken from Scikit-learn [17]. The benchmarks are taken from
DEAP [7].



TABLE I: Functions used in the experimental setup.

Number: Name: Function: Range: Optima: ∆f range

1 Ackley f(x) = 20− 20 · exp

(
−0.2

√
1
N

∑N
i=1 x

2
i

)
+ e− exp

(
1
N

∑N
i=1 cos (2πxi)

)
xi ∈ [−15, 30] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 25]

2 Bohachevsky f(x) =
∑N−1

i=1

(
x2i + 2x2i+1 − 0.3 cos (3πxi)− 0.5 cos (4πxi+1 + 0.7)

)
xi ∈ [−100, 100] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 30000]

3 Griewank f(x) = 1
4000

∑N
i=1 x

2
i −

∏N
i=1 cos

(
xi√
i

)
+ 1 xi ∈ [−600, 600] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 200]

4 Plane f(x) = x0 xi ∈ [−100, 100] x0 = −∞, f(x) = x0 [-100, 100]
5 Rastrigin f(x) = 10N

∑N
i=1 x

2
i − 10 cos (2πxi) xi ∈ [−5.12, 5.12] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 90]

6 Rastrigin scaled f(x) = 10N +
∑N

i=1

(
10( i−1

N−1 )xi
)2
− 10 cos

(
2π10( i−1

N−1 )xi
)

xi ∈ [−5.12, 5.12] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 3000]

7 Rastrigin skewed f(x) = 10N
∑N

i=1 y
2
i − 10 cos (2πxi) with yi =

{
10 · xi if xi > 0,
xi otherwise xi ∈ [−5.12, 5.12] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 6000]

8 Rosenbrock f(x) =
∑N−1

i (1− xi)2 + 100
(
xi+1 − x2i

)2
xi ∈ [−2, 3] xi = 1, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 12000]

9 Schaffer f(x) =
∑N−1

i=1

(
x2i + xi+1

)0.25 · [sin2
(

50 ·
(
x2i + x2i+1

)0.10)
+ 1.0

]
xi ∈ [−100, 100] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 25]

10 Schwefel f(x) = 418.9828872724339 ·N −
∑N

i=1 xi sin
(√
|xi|
)

xi ∈ [−500, 500] xi = 420.9687, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 1800]

11 Sphere f(x) =
∑N

i=1 x
2
i xi ∈ [−100, 100] xi = 0, ∀i ∈ {1 . . . N} , f(x) = 0 [0, 20000]

V. RESULTS

The performance of the models are assessed by comparing
the ∆x, ∆f and R2 scores obtained from the experiments.
In addition, the influence of the number of samples and the
sampling distribution is discussed in the section below.
The results of our tests, ∆x, ∆y and R2-scores, are shown in
Figure 3. Our newly designed metrics can provide additional
information about the performance of the models when
comparing them with the R2 score.

1) ∆x versus R2 score: In order to investigate whether
higher R2 scores correspond with better found optima, we
can have a look at the R2 and ∆x scores in Figure 3. This
shown us that higher values of the R2-score indeed seem to
correlate with lower ∆x, improving the quality of our search
when the model corresponds closely to the benchmark.

2) ∆f versus R2-score: In Figure 3, something interesting
can be observed: larger values of ∆x do not necessarily
imply larger values of ∆f . In two dimensions, Figure 3e
paints a much brighter picture than Figure 3c. This leads us
to believe that the ∆f score might be a better representation
than ∆x, as this shows how good the found optimum is,
had we assumed that it was located at the actual benchmark
optimum. Note that the values in 32 dimensions are much
higher, caused by the fact that the output of the models is
normalized by the ranges in 2 dimensions.

It can also be observed that even with the maximum number of
samples, RFR cannot compete with SVR and GP when used
for optimization. This can be explained by the smoothness
of the models, as the predictions of RFR are not necessarily
smooth. Our optimization might get stuck in one of the local
optima present in the model.

A. Influence of number of samples and distribution

In Figure 2 our four meta-models are compared on different
numbers of samples, distributions and dimensions. The values
are averaged over the benchmarks: each point represents
the score of the model, averaged over the 11 five-fold
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(b) R2 scores, 32 dimensions
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Fig. 3: Comparing R2 score, ∆x and ∆f for all benchmarks
in both 2 and 32 dimensions for 4096 samples according to a
Latin Hypercube design.



cross-validated benchmarks.

As expected, increasing the number of samples leads to
higher scores (higher R2 scores are better). Comparing our
results to the recommendations made by Akkerman et al.
[1] and Shi [20], who conclude that 10N or 3N samples
should be sufficient, our results show that more samples are
necessary to obtain good average scores on all benchmarks.
To demonstrate this, the knee-point (the closest point to the
point (0,1)) of the function is computed for each distribution
and dimension. The average of these values is 44N with a
median of 32N. The guideline of 32N is visualized in the
plots in Figure 2. This would mean that our recommended
sample size is 26 for 2 dimensions, increasing to 210 for 32
dimensional problems. These results will of course also vary
per benchmark, which explains the difference and makes the
creation of rough guidelines a difficult task.

As the dimensionality of the problem grows it becomes
increasingly difficult to obtain well-fitted models. Especially,
a simple Decision Tree is no longer sufficient to fully
model the problem in higher dimensions. Depending on
the sampling method, either Gaussian Process Regression
(Kriging) or Support Vector Regression (SVR) has the best
average performance on all benchmarks. Random Forests can
be a good choice as well, as it is usually a close second or
third, but is almost always outperformed.

Decision Tree Gaussian ProcessRandom Forest Support Vector
Estimator

0.0

0.2

0.4

0.6

0.8

1.0

r2
 s

co
re

uniform
normal
latinhypercube

normalcentered
wald

Fig. 4: Comparing distributions

Some interesting results can be seen when comparing differ-
ent distributions. Surprisingly, the uniform sampling method
works almost as well as the widely used Latin Hypercube
sampling. As expected, Wald sampling has the worst per-
formance of all sampling methods, becoming more apparent
as the dimensionality of the problem grows. However, the
differences between distributions are relatively small. This can
be seen in Figure 4, where the performance of the models
is shown on different distributions (with 512 samples). SVR

combined with normal and normal-centered sampling gives
surprisingly good results, with much better scores than, for
example, Latin Hypercube sampling.

VI. CONCLUSIONS AND OUTLOOK

In this paper, a new framework for testing the performance
of meta-models is proposed. In this framework, in addition to
only testing model accuracy, also the location of the optimum
is taken into account in order to know whether a model has
been well-fitted. This optima-fit consists of two metrics: ∆x
(measuring distance between optima in the input space) and
∆f (measuring difference in the objective space).

In order to evaluate this framework, four different meta-
modeling techniques (Decision Tree, Random Forest,
Kriging and Support Vector Regression) have been tested on
eleven benchmarks. These models were all trained with nine
sampling sizes, each taken from five distributions. An analysis
of each of the models is performed, to provide insight in their
behaviour and in order to compare different techniques. In
particular, the properties of the model for optimization were
examined, by running a CMA-ES optimizer on the output of
the model. We see that the modelling techniques providing
smooth output (Support Vector Regression and Kriging) not
only outperform the other models solely in model quality, but
also in quality of the optimum (both ∆x and ∆f ). Random
Forests seem to be more robust than these techniques in
lower dimensions. Decision Trees are the fastest to train
and predict, but they only perform well on simple benchmarks.

When comparing different sampling strategies, the distribution
of the samples does not seem to influence the scores as much
as initially was expected. Uniform random sampling produces
very similar results to the widely-spread Latin Hypercube
design. Sampling around the optimum of the benchmark, or
sampling away from the optimum does have an influence on
the results, as the latter produces lower accuracy models, as
expected. However, even though a difference is observable, it
proved to be less than initially expected.

In contrast to other approaches, our results show that we need
at least 32N samples in order to get well-fitted models and
good estimations of the optimum for all benchmarks. The
difference with previous (lower) recommendations in other
papers, might be due to some of the difficult and non-linear
benchmarks included in the experiments.

A. Future work

From our research, we see that in 32 dimensions most
models do no longer provide reliable approximations of
our benchmarks. In engineering practices, problems with
32 parameters are not uncommon, however, increasing
the dimensionality also increases the difficulty in both
the learning of the model, as well as the optimization. One
interesting idea would be to investigate these models in higher



dimensions, and find methods that make them work better, or
devise completely new approaches designed specifically for
high-dimensional data. Additionally, only benchmarks with
single-objectives were considered in this paper. Applying the
experimental setup also to multi-objective optimization would
be an interesting challenge.

Although our research shows the distribution of samples only
has little influence on the accuracy of the models, many other
space-filling distributions exist. In our research, the only space-
filling experimental design that is tested is Latin Hypercube
sampling, and it does not strictly outperform the uniform
random sampling as expected. Other designs of experiments,
such as Hammersley sequences and orthogonal arrays could
be analyzed more thoroughly in future research.
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