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Abstract—In evolutionary algorithms, it is difficult to balance
the exploration and exploitation. Usually, global search is utilized
to find promising solutions, and local search is beneficial to
the convergence of the solutions in the population. Combing
different search strategies is a promising way to take advantages
of different methods. Following the idea of DE/EDA, this paper
proposes another way to combine estimation of distribution
algorithm and differential evolution for global optimization. The
basic idea is to choose either differential evolution or estimation
of distribution algorithm for generating new trial solutions. To
improve the algorithm performance, a local search strategy is
used as well. The new approach, named as EDA/DE-EIG, is
systematically compared with two state-of-art algorithms, and
the experimental results show the advantages of our method.

Index Terms—DE, EDA, global optimization, eigenvector

I. INTRODUCTION

Estimation of distribution algorithms (EDAs) are stochas-
tic optimization algorithms exploring the space of potential
solutions [1]–[3]. Unlike traditional evolutionary algorithms
(EAs), there is no mutation or crossover in EDAs. They build
explicit probabilistic models and sample from the built prob-
abilistic models to obtain promising solutions. The explicit
use of the probabilistic model has significant advantages over
other methods, as it can utilize the global information of the
population for producing more promising solutions.

Differential evolution (DE) has attracted a number of re-
searchers from various background since proposed by Storn
and Price [4], [5]. It uses the distance and direction information
from the solutions in the current population to guide the
process of search. DE is easy to be implemented and it
has been widely applied to a variety of fields, i.e., control
systems [6], robot control [7], remote sensing [8], electrical
engineering [9], economic dispatch [10]. The main reasons of
the popularity of DE are as follows [11]: (a) DE is much more
simple to implement compared to other EAs with complex
operations, (b) the parameters are fewer in comparison with
other EAs (CR, F , NP in classical DE), and (c) recent
researches have shown its superior performance on a wide
variety of problems [12]–[14].

To improve the efficiency of DE for dealing with hard
optimization problems, DE has also been hybridized with other
search strategies, and the examples include DE/EDA [15],
DE/BBO [16], DEPSO [17], DEFO [18], and etc.. Among
them, DE/EDA utilizes the global information extracted by

EDA and the differential information exploited by DE to ob-
tain promising solutions [15]. The differential information (i.e.,
direction and distance) from the solutions of the population is
beneficial to accelerate the convergence speed, whereas the
global information produced by EDA can guide the search
to a more promising direction. By combing DE and EDA,
ED/EDA is able to utilize both of the information and thus to
balance the exploration and exploitation.

Following the idea of DE/EDA, this paper proposes another
way to combine DE and EDA. The basic idea is to use either
a DE operator or an EDA operator to generate a new trail so-
lution. The new approach, named as EDA/DE-EIG, combines
EDA with an enhanced DE [19], which utilizes an eigenvector-
based crossover operator. Meanwhile, in order to improve
the performance and avoid the solutions converged without
obtaining optimal solutions, a local search is incorporated into
this algorithm.

The remainder of the paper is organized as follows. In
Section II, the definition of the problem is presented, and the
basic algorithm frameworks of DE and EDA are introduced as
well. Section III gives the details of the proposed algorithm
EDA/DE-EIG. In Section IV, a systematic experiment is
conducted to show the performance of EDA/DE-EIG. Finally,
the paper is concluded in Section V.

II. RELATED WORK

This section firstly defines the global optimization problem.
Then the basic algorithm frameworks of DE and EDA algo-
rithms are introduced.

A. Definition

The box-constrained continuous global optimization can be
stated in the following:

min f(x)
s.t x ∈ [ai, bi]

n (1)

where x = (x1, x2, · · · , xn)T ∈ Rn is a decision vector,
[ai, bi]

n is the search space and f : Rn → R is the objective
function.



B. Differential Evolution
DE is a population-based global optimization algorithm.

There are mainly three operations in classical DE, i.e., muta-
tion, crossover and selection. The main algorithm framework
of classic DE is given in Algorithm 1.

Algorithm 1: DE

1 Initial the population P0 randomly :
P0 = {x1,D, x2,D, x3,D, · · · , xN,D}

2 while not terminate do
// mutation

3 vi,G = xr1,G + F · (xr2,G − xr3,G)
// crossover

4 if randj(0, 1) ≤ CR or j = jrand then
5 ui,j,G = vi,j,G
6 else
7 ui,j,G = xi,j,G
8 end

// selection

9 if f(ui,G) ≤ f(xi,G) then
10 xi,G+1 = ui,G
11 else
12 xi,G+1 = xi,G
13 end
14 end

Some details of DE is given as follows.
• Initial population: The points in the population are the

target vectors. N is the size of the population, and D is
the dimension of the target vector.

• Mutation: The rand-1-bin mutation schema is used here,
and there are other schemas that can be utilized in DE. At
each generation G, a mutant vector vi,G is obtained by
the mutation operator. F is the scaling factor, r1, r2, r3
are mutually different integers randomly selected from
[1, N ] and also different from i.

• Crossover: The trial vector ui,j,G is generated by combing
the mutant vector vi,G and the target vector xi,j,G ac-
cording to the crossover operator. Hereby, randj(0, 1) is
a uniformly distributed random number between 0 and 1,
and jrand is a random integer between j and D, avoiding
the trial vector is totally same as the target vector. CR is
the controlling parameter.

• Selection: The trial vector ui,G and the target vector xi,G
compete to enter the next generation in accordance with
the objective function value.

C. Estimation of Distribution Algorithm
EDA is an emerging algorithm for the optimization, and it

is distinct from traditional EAs. EDA consists of three main
steps, including modeling, sampling and selection generally.
The basic framework of EDA is shown in Algorithm 2.

III. OUR METHOD

DE/EDA is a hybrid algorithm for global optimization based
on the combination of DE and EDA. However, as the DE

Algorithm 2: EDA

1 Initialization: Initial the Pop(t) randomly, and t is the
generation.

2 while not terminate do
3 Modeling: Build a probabilistic model p(x)

according to the statistical information of the Pop(t).
4 Sampling: Generate a new solution set Q by

sampling from the built probabilistic model p(x).
5 Selection: Select from Q ∪ Pop(t) to construct the

next population Pop(t+ 1). The selection criterion is
the objective function value.

6 t = t+ 1
7 end

utilized in DE is quite simple. A more promising DE algorithm
DE-EIG is imported to improve the performance. DE/EDA
generates the offspring generation by utilizing the DE and
EDA by the CRP . Meanwhile, for the further improvement,
expensive LS [20] is applied. This section will introduce
the framework of DE/EDA, DE-EIG and expensive LS re-
spectively. And the algorithm framework of EDA/DE-EIG is
presented finally.

A. DE-EIG

As traditional DE operates the crossover in the original co-
ordinate, it is inevitable to lose some statistical information. To
utilize the statistical information of the population, the eigen-
vectors of the solutions have been applied to the crossover
in DE [19], [21]. DE-EIG makes the crossover rotationally
invariant by transform the coordinate system of the solutions in
the population [19]. It has shown impressive advantages over
BBOB 2012 [22] and CEC 2013 [23] benchmark functions
and two real-world optimization problems in CEC 2011 [24]
compared other six algorithms.

In DE-EIG, an alternate coordinate system is employed
by the individuals during the crossover. The eigenvector of
the population is utilized to transform the coordinate system.
Meanwhile, to exploit the diversity of the population and
prevent the premature of the solutions in the population, the
candidate solutions are generated with the original coordinate
system or the rotated coordinated system randomly by a
parameter.

The Algorithm 3 is the main framework of DE-EIG.

B. DE/EDA

The EDA/DE-EIG is proposed on the basis of the frame
work of DE/EDA [15]. EDA is incorporated with DE to
generate more promising solutions. Hence, the efficiency of the
search is improved meanwhile. The main algorithm framework
of DE/EDA is presented in Algorithm 4.

C. Expensive local search

It is noteworthy that EAs are not very good at refining
promising solutions especially in the later stage. Hence, it
is significant to apply other search methods to accelerate



Algorithm 3: DE-EIG

1 Initial the population Pop(t) = {x1, x2, x3, · · · , xN} (N
is the size of the population)

2 while not terminate do
3 vi,G = xr1,G + F · (xr2,G − xr3,G)
4 if rand() < p then
5 if rand() ≤ CR then
6 ui,G = vi,G
7 else
8 ui,G = xi,G
9 end

10 else
11 Compute the the eigenvector matrix E of xi,G,

let E′ be the inverse matrix.
12 x′i,G = E′ · xi,G
13 v′i,G = E′ · vi,G
14 if rand() ≤ CR then
15 u′i,G = v′i,G
16 else
17 u′i,G = x′i,G
18 end
19 ui,G = E · u′i,G
20 end
21 if f(ui,G) ≤ f(xi,G) then
22 xi,G+1 = ui,G
23 else
24 xi,G+1 = xi,G
25 end
26 t = t+ 1
27 end

the convergence speed. For this purpose, the expensive local
search (LS) is introduced to improve this condition [20]. For
simplicity, the details of the algorithm will not be presented
here.

D. EDA/DE-EIG

In order to combine an enhanced DE with EDA and balance
the global search and local search, the EDA/DE-EIG is pro-
posed. EDA is utilized to extract the statistical information of
the population, and the DE-EIG is beneficial to obtain the most
important information of the population. The CRP to allocate
the resource of EDA and DE-EIG is crucial to the performance
of the algorithm. It is relatively problem-dependent. Hence it is
a significant topic to study the CRP setting of the algorithm.

In Algorithm 5, the CRP is utilized to generate solutions by
DE-EIG and EDA. Both the two algorithms play an important
role to generate promising solutions. For Converage(θ,G,Ge)
at line 18, it is essential to judge whether to operate expensive
local search. Full description can be obtained from [20].

IV. EXPERIMENTAL STUDY

In this section, EDA/DE-EIG will be compared with
JADE [25] and DE/EDA [15]. The source codes of JADE are

Algorithm 4: DE/EDA

1 Generate population Pop(t) randomly consists of N
solutions x1, x2, · · · , xN from the feasible search space.
while not terminate do

2 Construct the probabilistic model:
3 pk(x) =

∏n
i=1N (xi;µi, σi)

4 For all j = 1, 2, · · · , n, produce a trial solution
u = (u1, u2, · · · , un)

5 if rand() < CRP then
6 uj =

(xi)j+(xd)j
2 +F ·[(xd)j−(xi)j+(xb)j−(xc)j ]

7 else
8 uj is sampled according to N (xi;µi, σi)
9 end

10 where CRP is the controlling parameter.
11 if f(u) < f(xi) then
12 xt+1

i = u
13 else
14 xt+1

i = xti
15 end
16 t = t+ 1
17 end

Algorithm 5: EDA/DE-EIG

1 Initial the population Pop(t) = {x1, x2, x3, · · · , xN} (N
is the size of the population)

2 while not terminate do
3 Construct the probabilistic model:
4 p(x) =

∏n
i=1N (xi;µi, σi)

5 Generate a trial solution ui,G as follows:
6 if rand() < CRP then
7 ui,G is produced by DE-EIG.
8 else
9 ui,G is sampled from the probabilistic model

p(x).
10 end
11 if f(ui,G) < f(xi,G) then
12 xi,G+1 = ui,G
13 else
14 xi,G+1 = xi,G
15 end
16 if Converage(θ,G,Ge) then
17 Operate the expensive local search.
18 end
19 t = t+ 1
20 end

from the authors. DE/EDA is implemented by ourself. The
test instances and parameter settings are introduced in this
section. A comprehensive study of the experimental results
will be presented to illustrate the impressive advantages of
EDA/DE-EIG.



TABLE I
STATISTICAL RESULTS (mean± std) FOR THE THREE ALGORITHMS ON INSTANCES f1− f13.

instances EDA/DE-EIG JADE DE/EDA
f1 1.54e-159 ± 5.11e-159 3.90e− 127± 2.74e− 126(+) 1.39e− 59± 2.58e− 59(+)

f2 1.02e-75 ± 7.46e-76 2.60e− 35± 1.64e− 34(+) 5.15e− 28± 4.68e− 28(+)

f3 4.01e-35 ± 8.47e-35 7.79e− 35± 2.51e− 34(∼) 1.23e− 12± 1.20e− 12(+)

f4 5.01e-20 ± 3.06e-19 3.15e− 14± 6.42e− 14(+) 9.90e− 12± 2.69e− 11(+)

f5 1.46e− 29± 2.62e− 29 3.85e-30 ± 9.58e-30(−) 3.37e− 21± 8.66e− 21(+)

f6 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00(∼) 0.00e+00 ± 0.00e+00(∼)

f7 3.60e− 03± 1.00e− 03 6.01e-04 ± 2.23e-04(−) 2.20e− 03± 5.59e− 04(−)

f8 2.79e+ 03± 5.02e+ 02 4.74e+00 ± 2.34e+01(−) 1.82e+ 03± 6.72e+ 02(−)

f9 6.23e+ 00± 2.21e+ 00 0.00e+00 ± 0.00e+00(−) 1.54e+ 02± 1.96e+ 01(+)

f10 4.44e-15 ± 0.00e+00 4.44e-15 ± 0.00e+00(∼) 4.44e-15 ± 0.00e+00(∼)

f11 0.00e+00 ± 0.00e+00 1.48e− 04± 1.05e− 03(∼) 2.96e− 04± 1.46e− 03(∼)

f12 1.57e-32 ± 5.53e-48 1.57e-32 ± 5.53e-48(∼) 1.57e-32 ± 5.53e-48(∼)

f13 1.35e-32 ± 1.11e-47 1.35e-32 ± 1.11e-47(∼) 1.35e-32 ± 1.11e-47(∼)
3(+)6(∼)4(−) 6(+)5(∼)2(−)

1 The bold ones mean the best.

A. Algorithms for Comparison

JADE [25] is an adaptive DE with a novel mutation
strategy ”DE/current-to-pbest” with optional external archive
and updating control parameters. JADE has been compared
with several state-of-art algorithm and performs impressively.
DE/EDA [15] is a hybrid algorithm incorporating EDA with
DE, and it is the main framework of EDA/DE-EIG meanwhile.
The three algorithms will be compared to EDA/DE-EIG on the
same test instances.

B. Test Instances

All the algorithms will be compared on the first 13 test
instances from YYL test instances [26]. The global minimum
objective value is 0 for all test instances. And the test instances
can be categorized into four kinds: f1 − f5 are unimodal
functions. f6 is a step function. And f7 is a function with
white noise. f8 − f13 are multimodal functions with many
local optimal solutions. Hence, the test instances can be able to
assess the performance of the algorithms from various aspects.

C. Parameter Settings

To compare the performance of the algorithms fairly, the
parameter setting will be set according to the setting in the
corresponding papers. All the algorithms are implemented by
Matlab and executed in the same computer. The parameter
settings are as follow:

1) The dimension of the population will be set to be 30 for
all test instances. All algorithms are run independently
50 times and stopped after 450,000 function evaluations.

2) JADE: The parameters N = 150, p = 0.05, c =
0.1, F = 0.5 and CR = 0.9 are recommended in [25].

3) DE/EDA: The parameters are set as: N = 150, F = 0.5
and CRP = 0.9, which are considered according to the
experimental results in [15].

4) EDA/DE-EIG: The CRP is 0.5; F is set to be 0.5;
CR is set to be 0.6; the parameter p to control the
probability to operate crossover two coordinate systems
is 0.5; the convergence threshold θ = 0.1; the size of
the population N is 150. For the parameter setting of
expensive local search, it is same as that in [20].

D. Experimental Results and Analysis

Table I illustrates the mean and the standard deviation of
the results obtained by the four algorithms after 450,000 FEs
over 50 independent runs. The Wilcoxon rank sum test at
0.05 significance is performed to compare the function value
obtained by EDA/DE-EIG to another algorithm. And “+”,
“−”, and “∼” respectively denotes the function objective value
of another algorithm is larger than, less than, and similar to
that of EDA/DE-EIG at 0.05 significance level by a Wilcoxon
rank sum test.

From Table I, the impressive performance of EDA/DE-EIG
is distinct with comparison to the other two algorithms for the
mean value of the final results. EDA/DE-EIG obtain the best
results on 9 test instances except f5, f7, f8 and f9. For further
comparison, EDA/DE-EIG will be compared with the other
two algorithms respectively. For DE/EDA, EDA/DE-EIG has
a substantial improvement of the performance. EDA/DE-EIG
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Fig. 1. The mean function value versus evaluation counts on the test instances.



performs better than DE/EDA on 7 test instances. EDA/DE-
EIG has made a relatively significant improvement for the first
five test instances and f11. The difference between the two
algorithms over these test instances are distinct.

Compare EDA/DE-EIG with JADE, EDA/DE-EIG has ad-
vantages over JADE on 5 test instances. And both the two
algorithms obtain the best results on f6, f10, f12 and f13.
In conclusion, the significant performance of EDA/DE-EIG
is competitive. For f6, f10, f12, f13, the three algorithms
have the same results. For f11, only EDA/DE-EIG obtains
the best result. JADE does not perform well enough because
of worse performance of several runs. It should be noteworthy
that EDA/DE-EIG has a distinct performance for f1−f4 and
f11. As for f7 f8 and f9, EDA/DE-EIG may be impacted
by the local optimum of DE. It is worthwhile to improve the
performance of EDA/DE-EIG on these test instances.

Meanwhile, from a more objective prospect, the Wilcoxon
rank sum test is implemented to compare the performance
of EDA/DE-EIG with that of others. For JADE, EDA/DE-
EIG outperforms on 3 test instances. And the two algorithms
obtain the similar performance on 6 test instances. EDA/DE-
EIG does not perform as well as JADE on 4 test instances. In
general, EDA/DE-EIG has made an substantial improvement
in comparison with DE/EDA. It does indicate the effect
brought by DE-EIG. As for JADE, EDA/DE-EIG nearly has
similar performance on 13 test instances statistically. Hence,
the performance of EDA/DE-EIG is relatively promising and
need further exploration.

Moreover, for a more detailed illustration of the perfor-
mance of EDA/DE-EIG, the Figure 1 is the mean function
value of the three algorithms, intuitively illustrates the com-
parison of the performance of the three algorithms on 12 test
instances except f6. As the results of JADE and EDA/DE-
EIG except DE/EDA converges very fast on f6. For a better
presentation, the result of f6 will not be presented here.
Statistically, EDA/DE-EIG obtain the best results on 8 out
of 12 test instances. EDA/DE-EIG is superior to the other two
algorithms on convergence speed or the final solution. Espe-
cially for some instances, including f1, f2, f3 f4 and f11, the
improvement is extremely distinct. For DE/EDA, it performs
worse than EDA/DE-EIG on 11 test instances except f7 and
f8. In comparison with JADE, EDA/DE-EIG outperforms on
f1− f4 both on convergence speed and the final solution. As
for f5, though JADE obtains a better solution. EDA/DE-EIG
has a more promising convergence trend and converge faster.
For f7, f8 and f9, EDA/DE-EIG does not have a desired
performance. Hence, the performance of ED-EIG to improve
the solution need more exploration. For f10, f12 and f13,
EDA/DE-EIG has advantages on the convergence speed. In
conclusion, EDA/DE-EIG has made a impressive improvement
of DE/EDA. Meanwhile, with comparison to JADE, EDA/DE-
EIG has the advantages on convergence speed or the final
solution. In conclusion, the performance of EDA/DE-EIG is
relatively competitive.

V. CONCLUSIONS AND FUTURE WORK

DE/EDA [15] is a promising method that utilizes both
the the global and local information for global optimization.
However, the potential improvement of the performance of this
algorithm has not been exploited furthermore. In this paper,
an improved DE, DE-EIG, is imported to combine with EDA,
bringing an impressive improvement on the performance. DE-
EIG is beneficial to utilize the statistics information of the
population to accelerate the convergence. And expensive local
search is applied to improve the performance further. The
experimental results have shown the distinct advantages of the
proposed method, named as EDA/DE-EIG, in comparison with
two state-of-art algorithms JADE [25] and DE/EDA [15].

The results reported in this paper is preliminary and there
are several ways to improve the algorithm performance. Firstly,
the algorithm framework of EDA/DE-EIG can be simplified.
Secondly, it is worth to investigate how to allocate the com-
putational resources to both DE-EIG and EDA.
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