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Abstract—This study will discuss the capacitated vehicle rout-
ing problem with simultaneous pick-up and delivery in a cross–
docking environment. The transportation system includes three
levels in the supply chain management:(1)Suppliers, (2)Retailers,
(3)Customers. This paper addresses the CVRPCD, where a set
of homogeneous vehicles are used to transport products from
the suppliers to the corresponding customers via a cross-dock.
The objective of the CVRPCD is to minimize the total traveled
distance while respecting time window constraints at the nodes
and a time horizon for the whole transportation operation. In
this paper, a mixed integer programming formulation for the
CVRPCD is proposed.

I. INTRODUCTION

The advantages of the cross-docking technique have been
increasingly appreciated in literature and in practice. This
appreciation, coupled with the advances of numerous applica-
tions in the vehicle routing problem (VRP) across numerous
practical contexts, presents an opportunity to explore the
Capacitated VRP with cross-docking (CVRPCD). This study
considers a single product and single cross-dock wherein
capacity-homogeneous vehicles start at cross-dock and finish
in the cross-dock after serving all customers(Delivery process)
and all suppliers (different pickup points). The vehicles are
scheduled to route in the network synchronously to arrive at
the cross-dock center simultaneously. In the delivery opera-
tions, all customers must be served at most once and deliveries
should be finished at a predetermined duration. We model
CVRPCD as a mixed-integer linear program that minimizes
the total cost (vehicle hiring cost and transportation cost). A
genetic algorithm (GA) is proposed to solve the problem. GA
is first verified by solving the CVRPCD benchmark instances;
We have tested our algorithm on a set of VRPCD benchmarks
with some modification of the benchmark to be adapted with
our approach, the results are compared with those obtained by
Augerat et al (2012) instances. Computational results show
that GA can obtain optimal solutions to more than 80% of
instances.
The remainder of this paper is organized as follows. A detailed
description of the CVRPCD is given in the next section. A
mixed integer formulation of the problem is then presented,

followed by a hybrid heuristic approach to solve the problem.
Computational results are presented and conclusion follow.

II. RELATED WORK

Cross-docking is a new warehousing strategy in logistics.
It is defined as the consolidation of products from incoming
shipments so that they can be easily sorted at a distribution
center for outgoing shipments. The distribution center in this
case is referred to as a cross-dock. It essentially eliminates the
inventory holding function of a traditional warehouse while
still allowing consolidation.
The advantages of the cross-docking technique have been
increasingly appreciated in literature and in practice. This
appreciation, coupled with the advances of numerous ap-
plications in the vehicle routing problem (VRP) across nu-
merous practical contexts, presents an opportunity to explore
the Capacitated VRP with cross-docking (CVRPCD). Many
companies are trying to develop efficient strategies to control
the physical flow of their supply chain. The important aspects
in finding new strategies is minimizing the total cost and
achieving a high level of agility, flexibility, and reliability for
various demands. Cross-docking is one innovative strategy to
minimize unnecessary cost, particularly in terms of inventory
and customer service level (Apte et Viswanathan, 2000). The
shipments arriving from disparate sources are regrouped and
dispatched directly by the outgoing trailers without being
stored. Shipments typically spend less than 24 hours at the
cross-dock, sometimes less than an hour. This way, cross-
docking not only provides good customer service but also
yields substantial advantages over traditional warehousing:
reduction in inventory investment, storage space, handling cost
and order-cycle time, as well as faster inventory turnover and
accelerated cash flow (Cook, Gibson and MacCurdy, 2005;
Apte and Viswanathan, 2000). Agustina, Lee, and Piplani
(2010) noted that cross-docking is important for the efficient
operation of a distribution network because it reduces or
eliminates the storage activities that belong to the warehousing
system. In general, the concept of cross-docking does not
allow products to be stored at the cross-docking center but
may occur whenever the inventory cost incurred is lower than



the gain from consolidation or a delay of shipment (Vahdani,
Soltani, and Zandieh, 2009).
In the supply chain, the classical vehicle routing problem
(VRP) plays an important role in distribution management and
logistics, as well as the costs associated with operating vehicles
(Barbarosoglu and Ozgur, 1999). VRP finds optimal delivery
or pick-up routes from a depot to a set of customers subject
to various side constraints (Eksioglu, Vural, and Reisman,
2009). Because of its importance, VRP has been studied
extensively over the past decades with many extensions and
different solution approaches (Braekers, Ramaekers, and Van
Nieuwenhuyse, 2015). Among those studies, the integration of
a cross-docking strategy has only been recently investigated.
Several recent studies published VRP with cross-docking
(VRPCD) as a variant of the classical VRP. Lee, Jung, and
Lee (2006) considered such a variant to have synchronous
product arrival times with stable demand for consolidation.
Their objective was to find the optimal number of vehicles and
routing schedule to minimize transportation cost. The results
of the proposed tabu search (TS) algorithm were compared
with those obtained by an enumeration method. On average,
a 4% error existed in the near-optimal solutions from 1000
search iterations. Liao, Lin, and Shih (2010) proposed a new
TS algorithm for the VRPCD. They used the TS algorithm to
solve the set of benchmark problems introduced by Lee et al.
(2006) and the results show improvements in terms of solution
quality and computational time. The average improvement was
as high as 1036% for problems of various sizes compare
to the results obtained by TS of Lee et al. (2006). Wen,
Larsen, Clausen, Cordeau, and Laporte (2009) investigated
another version of VRPCD slightly different from the one
introduced by Lee et al. (2006) where asynchronous arrival is
allowed. The dependency among the vehicles is determined
by consolidation decisions. They modeled the problem to
minimize the total distance traveled. Tarantilis (2013) and
Morais, Mateus, and Noronha (2014) also investigated the
same problem as defined by Wen et al. (2009). Tarantilis
(2013) proposed a heuristic based on the adaptive multi-restart
procedure associated with a TS heuristic to solve VRPCD,
which provides better solutions than the solutions obtained
by Wen et al. (2009) for 14 out of 20 instances. Morais et
al. (2014) applied the iterated local search heuristic (ILS)
to solve VRPCD. Their computational results showed that
ILS outperformed the tabu search heuristic proposed by Wen
et al. (2009) and the adaptive multi-restart TS heuristic of
Tarantilis (2013). Hasani-Goodarzi and Tavakkoli-Moghaddam
(2012) applied the cross–docking strategy for a vehicle fleet
that was allowed to make split deliveries and pick-ups in
different nodes of the network. They called this variant the split
VRP, which was formulated as a mixedinteger programming
model that aims to minimize transportation cost by using
the GAMS optimization software.Mousavi and Tavakkoli–
Moghaddam (2013) proposed the location and routing schedul-
ing problems with cross–docking which aims to design a
cross–dock location and a vehicle routing scheduling model.
The algorithm based on a two–stage hybrid simulated anneal-

ing (HSA) with a tabu list in the TS algorithm is proposed
to solve the problem.Mousavi, Tavakkoli–Moghaddam, and
Jolai (2013) studied the location and VRP in the cross–
docking distribution networks under uncertainty, and proposed
a hybrid fuzzy possibilistic-stochastic programming solution
approach. Agustina, Lee, and Piplani (2014) integrated cross-
docking, vehicle scheduling and routing in food supply chain
to ensure that food can be delivered to customers just in
time. They formulated the problem as a mixed integer linear
program and used the concepts of customer zones and hard
time windows for delivery to reduce the solution space and
then solved the problem by CPLEX.Kkoglu and ztrk (2015)
introduced VRPCD with 2–dimensional truck loading. They
hybridized TS with simulated annealing (SA) algorithm to
solve the problem. The combinatorial nature of VRP makes
this type of problem an NP-hard problem. Thus, studies with
the same intrinsic complexity usually use heuristic and meta-
heuristic solution approaches. For example, Dondo and Cerd
(2013) proposed a sweep heuristic algorithm and Morais et al.
(2014) used an iterated local search heuristic to solve VRPCD.
Pisinger and Ropke (2007) used an adaptive large neighbor-
hood search heuristic algorithm to solve five different variants
of VRP, including the vehicle routing problem with time
windows, capacitated vehicle routing problem, multi-depot
vehicle routing problem, and site-dependent vehicle routing
problem. Some studies employed meta–heuristic approaches
to solve VRP and its variants, such as tabu search (Gendreau,
Hertz, & Laporte, 1994;Gendreau, Laporte, Musaraganyi, &
Taillard, 1999; Lee et al., 2006;Liao et al., 2010), genetic
algorithm (Baker & Ayechew, 2003; Hwang, 2002; Kergosien,
Lent, Billaut, & Perrin, 2013), simulated annealing (Lin, Yu,
& Chou, 2009; Wang, Mu, Zhao, & Sutherland,2015; Yu &
Lin, 2014, 2015a, 2015b; Yu, Lin, Lee, & Ting, 2010), particle
swarm optimization (Ai & Kachitvichyanukul, 2009a, 2009b;
Kachitvichyanukul, Sombuntham, & Kunnapapdeelert, 2015;
MirHassani & Abolghasemi, 2011), and some recently devel-
oped hybrid heuristic algorithms (Goksal, Karaoglan, & Alti-
parmak,2013; Ho, Ho, Ji, & Lau, 2008; Marinakis & Marinaki,
2010;Mousavi & Tavakkoli-Moghaddam, 2013; Subramanian,
Penna,Uchoa, & Ochi, 2012; Subramanian, Uchoa, & Ochi,
2013; Yu, Ding, & Zhu, 2011). The computational results
of these studies show that these hybrid approaches can find
optimal or near-optimal solutions to large-scale problems in a
competitive computational time.
The problem considered in our study is the Capacitated Vehicle
Routing Problem with Cross-Docking (CVRPCD). The prob-
lem is similar to that of Lee, Jung and Lee (2006)(VRPCD)
where a heterogenous vehicle can pick-up or deliver more than
one supplier or customer, and the pick-up and delivery routes
start and end at the cross-dock. However, there is no constraint
on simultaneous arrival for all the vehicles in our problem.
Instead, the dependency among the vehicles is determined
by the consolidation decisions. Moreover, each pick-up and
delivery has predetermined time windows.



III. PROBLEM STATEMENT AND MATHEMATICAL MODEL

This study tackle three levels in supply chain management
which are (suppliers, retailers’cross-docks’ and customers).
The relation between suppliers and cross-docks is called the
pick-up process while the relation between cross-docks and
customers is called the delivery process. Let p is a set of
pick-up nodes, and D is a Set of delivery nodes and O is
the cross-dock. The goal is to pick up a set of products from
suppliers and deliver them to a set of Customers Inquiries
according to their demands through a set of available vehicles
M via cross–docking O. The mathematical model can be
divided into two parts: the pick-up process model and delivery
process model. Constraints are added to the model to cover the
general situations that often occur in the distribution network.
Moreover, to address the cross–docking network, we introduce
a cross-dock in the model. The cross-dock was assumed to
connect to all possible nodes with a distance not null. We
provide the notations used in formulating CVRPCD in the
following.

IV. MATHEMATICAL FORMULATION

A. Notation

We enumerate in the main symbols used throughout this
paper.

TABLE I
NOTATIONS

Symbols Description

P Set of pick-up nodes; P = 1, 2, 3, ..., p
D Set of delivery nodes; D = 1, 2, 3, ... , d
O Cross-dock
M Set of available vehicles;M = 1, 2, 3, ...,m
Qi Vehicle capacity
di Quantity of products to be collected at pick-up

node i
Dj Quantity of products to be delivered to delivery

node j
ci, j Transportation cost from node i to node j in the

pick-up process
c′i,j Transportation cost from node node j in the

deivery process

B. Mathematical Model

The CVRPCD is formulated as:

Min Z(x) =
∑
i,j∈E

∑
k∈K

cijx
k
ij (1)

The first objective function computes the total transportation
cost incurred in the pick-up processes.

• Pick-up process∑
i∈O∪P

∑
i 6=j,k∈M

xk
i,j ≤ 1∀j ∈ P (2)

∑
j∈O∪P

∑
j 6=i,k∈M

xk
i,j ≤ 1∀i ∈ P (3)

∑
i,j

xk
Oj ≤ 1∀k ∈M (4)

∑
i,j

xk
iO ≤ 1∀k ∈M (5)

∑
i,j

Dix
k
i,j ≤ Qi∀i, j ∈ P (6)

∑
i∈p

pix
k
ij (7)

In the pick-up process, constraints (2) and (3) express that
only one vehicle can arrive at and depart from every pick-up
node. Constraint (4) ensures the consecutive movement of
vehicles. The vehicles leave the cross-dock as stated and
are required to visit the cross-dock immediately after the
last pick-up node as stated in constraint. Constraints (5) and
(6) calculate the total amount of products that have been
collected by a vehicle when the vehicle leaves a pick-up
node. Constraint (7) calculates the number of vehicles used
in the pick-up process.

Min Z(x) =
∑
i,j∈E

∑
k∈K

c′i,j + x′kij (8)

The second objective function computes the total transporta-
tion cost incurred in the delivery processes
• Delivery Process∑

i∈O∪P

∑
i 6=j,k∈M

x′ki,j ≤ 1∀j ∈ D (9)

∑
j∈O∪P

∑
j 6=i,k∈M

x′ki,j ≤ 1∀i ∈ D (10)

∑
i,j

x′kOj ≤ 1∀k ∈M (11)

∑
i,j

x′kiO ≤ 1∀k ∈M (12)

∑
i,j

Dix
′k
i,j ≤ Qi∀i, j ∈ D (13)

∑
i∈p

pix
′k
ij (14)

In the delivery process, we employ the same constraints.
Constraints (9) and (10) are included to ensure that only
one vehicle arrives at and leaves from every delivery
node. Constraint (11)warrants the consecutive movement
of vehicles. Vehicles return to the cross-dock as stated in
constraint and are required to start from the cross-dock as
stated in constraint. Constraints 12 calculate the total amount
of products that have been delivered by a vehicle when the
vehicle leaves a delivery node. Constraint (13) ensures that
the total amount of products delivered by a vehicle does not
exceed the vehicles capacity Q. The number of vehicles used
in the delivery process is calculated by constraint (14).



Decision variables

xk
ij


1 : if vehicle k moves from node i to node j in

the pick − up process;

0 : Otherwise

x′kij


1 : if vehicle k moves from node i to node j in

the delivery process;

0 : Otherwise

Example 1

Fig. 1. Illustration of CVRPCD

To strengthen the understanding of the description of the
problem, let consider the following example where P is a
set of 5 pick-ups nodes p = (1, 2, 3, 4, 5) and D is a set of
5 delivery nodes D = (1′, 2′, 3′4′, 5′) and M is a set of 3
vehicles M = (v1, v2, v3) the transportation cost of the vehicle
from i to j is represented by vector of both pick-up and
delivery.
The cost is different between vehicles because of their propri-
eties.

P1 P2 P3 P4 P5

Vi 6 3 7 5 2

Same thing for the delivery process:

D1 D2 D3 D4 D5

Vi 2 6 1 7 15

The result is a matrix that shows the nodes visited by each
vehicle and the cost of consumed pick-up.

P =

0 1 0 1 1
0 0 1 0 0
1 0 0 0 0

 =

10
7
6


The result of the delivery process:

D =

0 1 0 1 1
0 0 1 0 0
1 0 0 0 0

 =

28
1
2


The final result means the total cost consumed by each vehicle
that is an addition of the two matrices P and D.

P +D =

10 + 28
7 + 1
6 + 2

 =

38
8
8



the final results of the project is the summation of all vehicles
costs that is equal in this example:
38+8+8 = 54

V. GA-CVRPCD

CVRPCD belongs to the class of NP-hard problems (Avci
& Topaloglu, 2016; Yu, Jewpanya, & Redi, 2016; Zachariadis,
Tarantilis, & Kiranoudis, 2015; Zare-Reisabadi & Mirmo-
hammadi, 2015), for that reason the exact solution methods
become highly time–consuming as the problem instances
increase in size. Therefore, due to the combinatorial nature of
the CVRP and the GA’s efficiency in solving combinatorial
problems, a GA based approach is developed to solve the
vehicle routing problem with cross-docking.
GA’s can easily be adapted to various types of problems
therefore many different GA approaches exist depending on
the problems studied. There are several ways to maintain
the population and several GA operators. However, all GA
approaches must have a good genetic representation of the
problem, an initial population generator, appropriate fitness
function, and genetic operators such as crossover and mutation
in order to work effectively.

A. GA-CVRPCD operators:

1) Initial population:: The encoding of a chromosome is
designed in a vector form that expresses the vehicle in which
we assigned the nodes travelled in the pick–up and delivery
process. For example, in table 2 nodes are assigned to one
vehicle in the pick-up process and it’s the same representation
for the delivery process.

Chromosomes 6 1 2 4 3 5

Fig. 2. Individual Encoding for the pick-up process

In figure 3, we show a set of chromosomes (Population) in
which each line represent a solution and each gene represent
a node from the pick-up process.

s0 4 1 2 6 3 5
s1 5 2 1 6 3 4
. . . . . . .
. . . . . . .
. . . . . . .

sn 1 4 5 3 2 6

Fig. 3. Population encoding

As numerous, methods to select the best chromosomes,
roulette wheel selection, Boltzman selection, tournament se-
lection, rank selection, steady state selection and some others.
In our algorithm we used to select the chromosome from using
the roulette wheel selection.



2) Crossover operator: Two types of crossover operators
are considered: one-point and two-point crossover.
• One-point Crossover:

Two individuals, denoted as Parent 1 and Parent 2 are
selected, Then an integer number q is generated randomly
between 1 and J to obtain two new individuals: Son
1{1....q} and Son 2{q....j}. Pick-up or delivery Nodes in
positions i = 1...q in Son 1 are taken form Parent 1. Pick-
up or delivery Nodes in positions i = q+1; ...; J in Son
1 are taken from Parent 2. As an example, let us consider
Parent 1 {1,3,2,5,4,6 } and Parent 2 {2,4,6,1,3,5}. With
q = 3, Son 1 {1,3,2,4,6,5}.

Fig. 4. One point crossover

• Two-point Crossover:
Two-point crossover is an extension of one-point
crossover. Two integer numbers q1 and q2 are randomly
generated with 1 ≤ q1 ≤ q2 ≤ j. Now, Son 1 is generated
with nodes list on positions i = 1.....q1 taken from Parent
1, nodes in positions i = q1 + 1; ...; q2 are taken from
Parent 2 and finally positions i = q2 + 1, ...., j are again
taken from Parent 1.
Taken the same example of the previous subsection,
let us consider Parent 1 {1,3,2,5,4,6 } and Parent 2
{2,4,6,1,3,5}. With q1 = 1 and q2 = 2 Son 1 is
{1,2,4,3,5,6 }.

Fig. 5. Two-point crossover

3) Mutation operator: Given the chromosome based on
the nodes-list P + D, the mutation operator modifies the
structure of the chromosome as follows. For every position

i
.
= 1......j − 1, nodes ji and ji+1 switch their positions with

probability pmut ∈ [0, 1] if the resulting nodes-list continues
to meet the satisfaction of constraints. Mutation operator may
create nodes-list that have not yet been created by crossover
operators.
Only the index 0 of the cross-dock can’t be switched.

0 1 3 8 2 7 0 1 4 5 0

0 1 3 8 2 7 0 8 4 5 0

Fig. 6. Mutatation for a chromosomes

B. GA-CVRPCD Algorithm:

The inputs of the algorithm are respectively the Delivery and
pick-up nodes demands, the vehicle capacity and the number
of nodes P and D.
The best solution of the procedure is the Routes with minimum
cost traveled for serving pick-ups and delivery nodes.

INPUTS - Delivery and pick-up nodes demands
- Vehicle capacity
- Number of nodes P, D

OUTPUTS
- Best solution: Routes with minimum cost
traveled for serving pick-ups and delivery
nodes

In order to run the algorithm, This algorithm consists of
6 steps: First Generate initial population then we have to
evaluate the population, select the chromosomes, Perform
crossover on selected elements, perform mutation on selected
elements and finally evaluate the new generation of elements.
We repeat all this instruction until the stopping criteria is met.

Algorithm 1 Genetic Algorithm (GA-VCRPCD)
Step1: Initialization

2: 1. set t=0
2. Generate initial population P

4: 3. Evaluate The population p
Algorithm For g=2 to N -1 DO

6: 4. While [not termination condition] do
5. Select some elements from P to copy in p′

8: 6. Perform crossover on selected elements of P and move
them to P ′

• One-point crossover
• Two-point crossover

7. Create p′ from p by mutation operator
10: 8. Evaluate P ′

9. P = P ′



VI. COMPUTATIONAL STUDY ON BENCHMARKS

Our algorithm is coded in JAVA using Netbeans in Win64
mode. All tests were performed on a computer with an Intel
Core I5-2410M CPU 2.30 GHz with 4 GB of RAM. In
all our experiments, we have used a population size of 100
individuals. We run our GA until a maximum number of
iterations set depending on the problem size. In order to
examine and evaluate the performance of our GA-CVRP, we
run it on all the instances of Augerat, et al(2012) in Class
’A’,’B’ and ’P’.
For the instances in the class ’A’, both customer locations and
demands are random. The instances in class ’B’, however, are
clustered instances. The instances in class ’P’ are modified
versions of instances from the literature.
We applied some modification on the benchmarks to adapt our
approach GA-CVRPCD.

A. Augerat, et al. Instances

TABLE II
PARAMETERS OF AUGERAT, ET AL.’CLASS ’A’,’B’, ’P’ BENCHMARKS

Parameter Description

M Number of Vehicles

n Number of Nodes

Q Capacity of Vehicles

D + P Total OF Pick-up and Delivery Nodes

Optimal Minimum Cost

Finally, we start our algorithm with a population size equal
to 50 with 150 number of iteration. We tested the GA-
CVRP on the class of Augerat, et al(2012) benchmark and
we found many best known. To present our results, we used
the same parameters with some modifications like changing
the distance matrix with a cost matrix in the three tables
which are respectively IV, V, and VI, then we added a cross
dock position generated randomly in the benchmark and we
doubled the number of nodes and the number of demands for
the delivery process.
• Class: A, B, P, A set of Instances
• Augerat benchmark: Best Known Value
• GA-CVRPCD: The results of our procedure
• AVG: the sum of all GAP divided by the number of

instances for each class
• Hits: the number of appositions of results of GA-

CVRPCD among the instances of Augerat benchmark.
• GAP:

GAP =
Best Known V alue− GACV RP V alue

100
(15)

• AVG: The sum of all Gap devised by all instances for
each Class

TABLE III
RESULTS GA-CVRPCD ”CLASS A”

Class (SET A) Augerat benchmark GA-CVRPCD GAP
A-n32-k5 784 700 0.84
A-n33-k5 661 661 0
A-n33-k6 742 740 0.02
A-n34-k5 778 775 0.03
A-n36-k5 799 603 1.96
A-n37-k5 669 627 0.42
A-n37-k6 949 926 0.23
A-n38-k5 730 689 0.41
A-n39-k5 822 749 0.73
A-n39-k6 831 807 0.24
A-n44-k6 937 937 0
A-n45-k6 944 944 0
A-n45-k7 1146 1146 0
A-n46-k7 914 914 0
A-n48-k7 1073 1073 0
A-n53-k7 1010 1010 0
A-n54-k7 1167 1159 0.08
A-n55-k9 1073 1086* 0.13
A-n60-k9 1354 1345 0
A-n61-k9 1034 1034 0
A-n62-k8 1288 1288 0
A-n63-k9 1616 1616 0

A-n63-k10 1314 1314 0
A-n64-k9 1401 1395 0.06
A-n65-k9 1174 1174 0
A-n69-k9 1159 1171* 0.12

A-n80-k10 1763 1763 0
AVG - - 1.69

TABLE IV
RESULTS GA-CVRPCD ”CLASS B”

Class (SET B) Augerat benchmark GA-CVRPCD GAP
B-n31-k5 672 672 0
B-n34-k5 788 693 0.95
B-n35-k5 955 948 0.07
B-n38-k6 805 805 0
B-n39-k5 549 549 0
B-n41-k6 829 823 0.06
B-n43-k6 742 738 0.04
B-n44-k7 909 701 2.08
B-n45-k5 751 751 0
B-n45-k6 678 678 0
B-n50-k7 741 741 0
B-n50-k8 1312 1312 0
B-n51-k7 1018 978 0.5
B-n52-k7 747 739 0.08
B-n56-k7 707 541 0.66
B-n57-k7 1144 1119 0.46
B-n57-k9 1598 1598 0

B-n63-k10 1496 1496 0
B-n64-k9 861 843 0.18
B-n66-k9 1316 1093 2.23

B-n67-k10 1032 1032 0
B-n68-k9 1272 1272 0

B-n78-k10 1221 1221 0
AVG - - 0.317



TABLE V
RESULTS GA-CVRPCD ”CLASS P”

Class (SET P) Augerat benchmark GA-CVRPCD GAP
P-n16-k8 450 443 0.07
P-n19-k2 212 212 0
P-n20-k2 216 216 0
P-n21-k2 211 211 0.02
P-n22-k2 216 204 0.12
P-n22-k8 590 592* 0.02
P-n23-k8 529 529 0
P-n40-k5 458 452 0.06
P-n45-k5 510 503 0.07
P-n50-k7 554 554 0
P-n50-k8 629 622 0.07
P-n50-k10 696 536 1.60
P-n51-k10 741 733 0.08
P-n55-k7 568 557 0.11
P-n55-k10 694 694 0
P-n55-k15 945 945 0
P-n60-k10 744 744 0
P-n60-k15 968 968 0
P-n65-k10 792 788 0.04
P-n70-k10 827 822 0.05
P-n76-k4 593 593 0
P-n76-k5 627 627 0
P-n101-k4 681 681 0

AVG - - 0.743

Table III displays a comparison between the Augerat et al.
(2012) instances (first class ”CLASS A”) with the results
generated from our approach ”GA-CVRPCD”. Like we said
before, for the instances in the class ’A’, both customer
locations and demands are random. From 27 instances in the
class ’A’ we found 13 Best known solutions and we improved
2 instances witch are ”A-n55-k9” and ”A-n69-k9”.

Table IV displays a comparison between the Augerat et
al(2012) instances (second class ”CLASS B”) with the results
generated from our approach ”GA-CVRPCD”. The instances
in class ‘B, however, are clustered instances. Since we changed
the parameters of the benchmark, we found only 12 best
known solutions from 23 instances. Table V shows the per-
formance of our approach cause we found 12 best known
solutions from 23 instances and we improved 1 instance which
is P-n22-k8. Our algorithm is executed 95 time for each class
of Augerat et al.(2012) instances to ensure that our results are
feasible. We note that the instances in class ”P” are modified
versions of instances from the literature. Figure 7 represents
the number of best Known solutions found by comparison to
Augerat et al(2012) instances.

B. Van Breedam instances

We tested the GA-CVRP on the class of Van Breedam
instances and we found all the best known. To present our
results, we used the same parameters with some modifications
like changing the distance matrix with cost matrix in the three
tables which is respectively in table IV, V and VI.

VII. CONCLUSION

The Capacitated Vehicle Routing Problem with cros–
docking is a challenging problem that can be applied to a wide
variety of practical applications. In this paper, we developed
a framework which represent a new procedure noted GA-
CVRPCD based on the genetic algorithm technique, to solve
the Capacitated Vehicle Routing Problem with Cross–Docking.

Fig. 7. A graphical illustration of the performances of the GA-CVRPCD for
Augerat et al. instances

TABLE VI
PARAMETERS OF VAN BREEDAM BENCHMARKS

Description Value

VRP instances 60

Number of depot(Cross-dock) 1

Number of demands Q 10

Nr. of Vehicles Unlimited

Capacity of Vehicles C 50

GA-CVRPCD is easy to understand, easy to follow, and easy
to implement. It generated competitive quality solutions in a
regular frame time. When applied to 73 August et al.(201)
all instances, GA-CVRPCD is found to be the best known
or optimal solutions to 37 instances found as three new best
solutions on instances. In further work, we hope to investigate
other variants of the Vehicle routing problem with cross–
docking and try to apply our procedure for the multi-mode
CVRPCD.

CONCLUSION

this paper investigates the capacitated vehicle routing prob-
lem with cross-docking. Due to its combinatorial nature and
wide range applicability, we proposed a new framework based
on Genetic Algorithm techniques to handle it.

The efficiency of the GA-CVRPCD is ascertained by means
of computational experiments using benchmark problems from
August et al.(2012).

the empirical results show that the proposed framework is
efficient for the CVRPCD.

As future investigations, other variants of the CVRP with
cross-docking and multi-mode will be considered under so-
phisticated metaheuristics for efficiently solving large-scale
instances.
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