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Abstract—A design method of adaptive consensus control of
multi-agent systems composed of fully actuated mobile robots
which are described as a class of Euler-Lagrange systems on
directed network graphs, is presented in this paper based
on the notion of inverse optimal H∞ control criterion. The
proposed control scheme is deduced as a solution of certain H∞
control problem, where estimation errors of tuning parameters
are considered as external disturbances to the process. The
resulting control system is shown to be robust to uncertain system
parameters and the approximate consensus tracking is achieved
via adaptation schemes and L2-gain design parameters.

I. INTRODUCTION

Cooperative control problems of multi-agent systems have
been active research fields, and many control strategies were
developed in those areas, such as formation control, task
assignment, traffic control, and scheduling et al. (for example,
[1]-[10]). Among those, distributed consensus tracking of
multi-agent systems with limited communication networks,
has been a basic and important issue, and various research
results have been proposed for various processes and under
various conditions such as [11]-[20]. In those works, adaptive
control methodologies were also investigated in order to deal
with uncertainties of agents, and stability of control systems
was checked via Lyapunov function analysis. Furthermore, ro-
bustness properties of the control schemes were also examined.
However, so much attention does not have been paid on control
performance such as optimal property or transient performance
in those research works, and especially, the case of multi-agent
systems composed of processes with unknown and different
system parameters on directed information network graphs,
does not have been investigated in detail in the previous works.

The purpose of the paper is to propose a design method of
adaptive consensus control of multi-agent systems composed
of fully actuated mobile robots which are described as a class
of Euler-Lagrange systems [21] on directed network graphs
based on the notion of inverse optimal H∞ control criterion
[22], [23]. This is an extension of our previous work [24],
[25], where the first-order or second-order linear or nonlinear
regression models on directed network graphs were consid-
ered. The proposed control scheme is derived as a solutios
of certain H∞ control problem, where estimation errors of

tuning parameters are considered as external disturbances to
the process. The resulting control system is shown to be
robust to uncertain system parameters and the approximate
consensus tracking is achieved via adaptation schemes and L2-
gain design parameters. Effectiveness of the proposed control
scheme is also confirmed by simulation studies.

The present work provides basic schemes for coordinate
control of multiple robotic manipulators or formation control
of vehicles on highways, and other useful examples.

II. MULTI-AGENT SYSTEMS AND NETWORK GRAPHS

First, mathematical preliminaries on information network
graph of multi-agent systems are briefly surveyed [16], [19],
[20]. As a model of interaction among agents, a weighted
directed graph G = (V, E) is considered, where V =
{1, · · · , N} is a node set corresponding to a set of agents,
and E ⊆ V × V is an edge set. An edge (i, j) ∈ E indicates
that agent j can obtain information from i, but not necessarily
vice versa. In the edge (i, j), i is denoted as a parent node
and j is denoted as a child node, and the in-degree of the node
i is the number of its parents, and the out-degree of i is the
number of its children. Especially, an agent having no parent
(or with the in-degree 0), is called as a root. A directed path
is a sequence of edges in the form (i1, i2), (i2, i3), · · · (∈ E),
where ij ∈ V . The directed graph is called strongly connected,
if there is always a directed path between every pair of distinct
nodes. A directed tree is a directed graph where every node
has exactly one parent except for a unique root, and the root
has directed paths to all other node. An directed spanning tree
GS = (VS , ES) of the directed graph G = (V, E) is a subgraph
of G such that GS is a directed tree and VS = V .

Concerned with the edge set E , a weighted adjacency matrix
A = [aij ] ∈ RN×N is introduced, and the entry aij of it is
defined by

aij =

{
> 0 : (j, i) ∈ E ,
0 : otherwise.

For the adjacency matrix A = [aij ], the Laplacian matrix L =
[lij ] ∈ RN×N is defined by



lii =
N∑

j = 1
j ̸= i

aij ,

lij = −aij , (i ̸= j).

Laplacian matrix has at least one zero eigenvalue and all
nonzero eigenvalues have positive real parts. Especially, it is
known that the Laplacian matrix has a simple 0 eigenvalue
with the associated eigenvector 1 = [1 · · · 1]T , and that all
other eigenvalues have positive real parts, if and only if the
corresponding directed graph has a directed spanning tree.

In this manuscript, a consensus control problem of leader-
follower type is considered, where y0 is a leader which each
agent i ∈ V should follow (i is called a follower). Associated
with the leader, ai0 is defined such as

ai0 =

 > 0 : leader′s information is available
to follower i,

0 : otherwise,
(1)

and from ai0 and L, the matrix M ∈ RN×N is defined by

M = L+ diag (a10 · · · aN0). (2)

It is shown that −M is a Hurwitz matrix, if and only if 1. at
least one ai0 (1 ≤ i ≤ N) is positive, and 2. the graph G has
a directed spanning tree with the root i = 0.

Hereafter, we assume that
1) The graph has a directed spanning tree with the root

i = 0.
2) At least one ai0 (1 ≤ i ≤ N) is positive, that is, the

information of the leader y0 (ẏ0, ÿ0), is available to at
least one follower i.

3) For the leader, y0, ẏ0, ÿ0 are uniformly bounded.
Hereafter, two adjacency matrices A = [aij ], C = [cij ] ∈

RN×N are introduced for a directed graph G, and the corre-
sponding matrices are denoted as La, Lc (Laplacian matrices),
and Ma, Mc, respectively.

III. PROBLEM STATEMENT

We consider a multi-agent system composed of N fully
actuated mobile robots which are described as a class of Euler-
Lagrange systems [8], [9] written as follows:

Mi(yi)ÿi + Ci(yi, ẏi)ẏi = τi, (i = 1, · · · , N), (3)

where yi ∈ Rn is an output (a generalized coordinate),
τi ∈ Rn is a control input (a force vector), Mi(yi) ∈ Rn×n

is an inertia matrix, and Ci(yi, ẏi) ∈ Rn×n is a matrix
of Coriolis and centripetal forces. Each component has the
following properties as a Euler-Lagrange system.

Properties of Euler-Lagrange Systems [21]
1) Mi(yi) is a bounded, positive definite, and symmetric

matrix.
2) Ṁi(yi)− 2Ci(yi, ẏi) is a skew symmetric matrix.
3) The left-hand side of (3) can be written into

Mi(yi)ai + C(yi, ẏi)bi = Yi(y, ẏi, ai, bi)θi, (4)

where Yi(yi, ẏi, ai, bi) is a known function of yi, ẏi, ai,
bi (a regressor matrix), and θi is an unknown system
parameter vector.

The control objective is to achieve consensus tracking of
the leader-follower type for the unknown multi-agent system
(unknown θi) such as

yi → yj , (i, j = 1, · · · , N), (5)
yi → y0, (i = 1, · · · , N), (6)

under the limited communication structure G among agents.
Remark 1 More generalized Euler-Lagrange systems

which include damping terms and gravitational forces, can
be also considered in the present framework, since those are
written in the similar form to (4). However, for simplicity of
notations, the description (3) is to be adopted hereafter.

IV. CONTROL LAW AND ERROR EQUATION

As the first step of the controller design, an estimator of ẏ0
(the leader’s information) is developed via available data from
the follower i. A similar estimation procedure was presented
in [15].

˙̂zi(t) = −β
N∑

j = 1
j ̸= i

cij{ẑi(t)− ẑj(t)}

−βci0{ẑi(t)− ẏ0(t)}+ ni0ÿ0(t), (7)

where ẑi is a current estimate of ẏ0, and is synthesized from
the data available to the follower i. cij (1 ≤ i ≤ N, 0 ≤ j ≤
N) is defined as the entry of the adjacency matrix C and (1)
deduced from the directed graph G, and β > 0 is a design
parameter. Associated with ci0, ni0 is defined such as

ni0 =

{
1 : ci0 > 0,
0 : otherwise.

(8)

By employing the estimate ẑi, the control scheme is con-
structed as follows:

ẏri(t) = ẑi(t)− α
N∑

j = 0
j ̸= i

aij{yi(t)− yj(t)}, (9)

si(t) = ẏi(t)− ẏri(t), (10)

τi(t) = Yi(t)θ̂i(t) + vi(t), (11)
Yi(t) ≡ Yi(y, ẏi, ÿri, ẏri), (12)

where aij (1 ≤ i ≤ N, 0 ≤ j ≤ N) is defined similarly from
the entry of the adjacency matrix A and (1) deduced from G,
and α > 0 is a design parameter. θ̂i is denoted as a current
estimate of unknown θi, and vi is a stabilizing signal which is
to be determined later based on the notion of inverse optimal
H∞ control criterion. An estimation error between the leader
ẏ0 and the estimate ẑi is defined by

z̃i(t) ≡ ẑi(t)− ẏ0(t), (13)

and the following relations are deduced for si and z̃i.



˙̃zi(t) = −β
N∑

j = 1
j ̸= i

cij{z̃i(t)− z̃j(t)}

−βci0z̃i(t) + (ni0 − 1)ÿ0(t), (14)
Mi(yi)ṡi(t) + Ci(yi, ẏi)si(t)

= vi(t) + Yi(t){θ̂i(t)− θi}. (15)

Then, the overall representations of the multi-agent system are
given as follows:

˙̃z(t) = −β (Mc ⊗ I) z̃(t) + {(N0 − 1)⊗ I} ÿ0(t), (16)

Mṡ(t) + Cs(t) = Y (t){θ̂ − θ(t)}+ v(t), (17)

where

z̃ = [z̃T1 , · · · , z̃TN ]T, (18)
s = [sT1 , · · · , sTN ]T, (19)
M = block diag (M1, · · · , MN ), (Mi ≡ Mi(yi)), (20)
C = block diag (C1, · · · , CN ), (Ci ≡ Ci(yi, ẏi)), (21)
Y = block diag (Y1, · · · , YN ), (22)
θ = [θT1 , · · · , θTN ]T, (23)
N0 = [n10, · · · , nN0]

T, (24)
1 = [1, · · · , 1]T, (25)
v = [vT1 , · · · , vTN ]T, (26)

and ⊗ denotes Kronecker product.

V. ADAPTIVE H∞ CONSENSUS CONTROL FOR
EULER-LAGRANGE SYSTEMS

Stability analysis of the overall control system is composed
of four steps. First, for stability analysis of s and the related
terms, a positive function W0 is defined such as

W0(t) =
1

2
s(t)TMs(t). (27)

Then, the time derivative of W0 along its trajectory is derived
as follows:

Ẇ0(t) = s(t)T[Y (t){θ̂ − θ(t)}+ v(t)]. (28)

By considering the evaluation of Ẇ0 (28), the next virtual
system is introduced.

ṡ = f + g1d+ g2v, (29)
f = 0, (30)
g1 = Y, g2 = I, (31)
d = (θ̂ − θ). (32)

The virtual system is to be stabilized via a control input v
based on H∞ criterion, where d is considered as an external
disturbance to the process. For that purpose, the following
Hamilton-Jacobi-Isaacs (HJI) equation and its solution V0 are
introduced.

LfV0 +
1

4

{
∥Lg1V0∥2

γ2
− (Lg2V0)R

−1(Lg2V0)
T

}
+ q = 0,

(33)

V0 =
1

2
sTs, (34)

where q and R are a positive function and a positive definite
matrix respectively, and those are deduced from HJI equation
based on the notion of inverse optimality for the given solution
V0 and the positive constants γ. The substitution of the solution
V0 (34) into HJI equation (33) yields

1

4
sT

{
Y Y T

γ2
−R−1

}
s+ q = 0. (35)

From (35), R and q are obtained such as

R =

(
Y Y T

γ2
+K

)−1

, (36)

q =
1

4
sTKs, (37)

where K is a diagonal positive definite matrix (a design param-
eter), From R, v is derived as a solution of the corresponding
H∞ control problem as follows:

v = −1

2
R−1(Lg2V0)

T = −1

2
R−1s

= −1

2

(
Y Y T

γ2
+K

)
B̂Ts. (38)

Then, via HJI equation, the time derivative of W0 (28) is
evaluated as follows:

Ẇ0 = −q − vTRv

+

(
v +

1

2
R−1s

)T

R

(
v +

1

2
R−1s

)
+γ2∥d∥2 − γ2

∥∥∥∥d− Y Ts

2γ2

∥∥∥∥2 , (39)

and it follows that s is bounded for bounded θ̂ and for the
stabilizing signal v (38).

Next, for stablity analysis of the estimation error z̃, a
positive function V1 is introduced such as

V1 = z̃T(Pc ⊗ I)z̃, (40)
PcMc +MT

c Pc = I, (Pc = PT
c > 0). (41)

There exists a positive definite and symmetric matrix Pc sat-
isfying (41), since −Mc is Hurwitz. Then, the time derivative
of V1 along its trajectory is evaluated as follows:

V̇1 = −β∥z̃∥2 − 2z̃T(Pc ⊗ I){(N0 − 1)⊗ I}ÿ0

≤ −β

2
∥z̃∥2 + 2

β
∥Pc ⊗ I∥2∥{(N0 − 1)⊗ I}ÿ0∥2,

(42)

and it is shown that z̃ is bounded for bounded ÿ0.
Thirdly, for stability analysis of the control error yi − y0

and the related terms, ỹi, ỹ are defined by

ỹi = yi − y0, (43)
ỹ = [ỹT1 , · · · , ỹTN ]T. (44)

Then, the following relation holds
˙̃y = s+ z̃ − α(Ma ⊗ I)ỹ, (45)

and −Ma is shown to be Hurwitz because of the assumption
of the network graph G. From that property, a positive function
V2 is defined by



V2 = ỹT(Pa ⊗ I)ỹ, (46)
PaMa +MT

a Pa = I, (Pa = PT
a > 0). (47)

Similarly to the previous case (Mc), there exists a positive
definite and symmetric matrix Pa satisfying (47), since −Ma

is Hurwitz. Then, the time derivative of V2 along its trajectory
is evaluated as follows:

V̇2 = −α∥ỹ∥2 + 2ỹT(Pa ⊗ I)(s+ z̃)

≤ −α

2
∥ỹ∥2 + 4

α
∥Pa ⊗ I∥2(∥s∥2 + ∥z̃∥2). (48)

From the three stages of stability analysis (the evaluations
of Ẇ0, V̇1, V̇2), the next theorem is obtained.

Theorem 1 The nonlinear control system composed of
the control laws (7), (9), (10), (11), (12), (38) is uniformly
bounded for an arbitrary bounded design parameter θ̂i, and
bounded y0, ẏ0, ÿ0, and v is an optimal control input which
minimizes the following cost functional J .

J(t) ≡ sup
di,d2,d3∈L2

[∫ t

0

{q + vTRv}dτ +W0(t)

−γ2

∫ t

0

∥d∥2dτ
]
. (49)

Also the next inequality holds.∫ t

0

{q + vTRv}dτ +W0(t)

≤ γ2

∫ t

0

∥d∥2dτ +W0(0). (50)

Theorem 1 denotes the properties of the proposed nonlinear
control system (7), (9), (10), (11), (12), (38), where the tunings
of θ̂ is not included (or not necessarily required).

Next, the tuning law of θ̂ is determined as follows:
˙̂
θ(t) = Pr

{
−ΓY (t)Ts(t)

}
, (51)

where Pr(·) is a projection operation in which the tuning
parameter θ̂ is constrained to a bounded region deduced from
upper-bounds of ∥θ∥ [26]. As the fourth step of stability
analysis of the overall control system, a positive function W1

is defined by

W1(t) =
1

2
s(t)Ts(t) +

1

2

{
θ̂(t)− θ

}T

Γ−1
{
θ̂(t)− θ

}
,

(52)

and the time derivative of W1 along its trajectory is evaluated
such as

Ẇ1(t) ≤ −1

2
s(t)TR−1s ≤ 0. (53)

From the four stages of stability analysis (the evaluations of
Ẇ0, Ẇ1, V̇1, V̇2), the next theorem is obtained.

Theorem 2 The adaptive control system composed of the
control laws (7), (9), (10), (11), (12), (38), and the tuning law
of θ̂ (51), is uniformly bounded for bounded y0, ẏ0, ÿ0, and
it follows that

lim
t→∞

s(t) = 0. (54)

Especially, if ÿ0(t) = 0 or the information of the leader ÿ0 is
available for all followers ({(N0 − 1) ⊗ I} ẏ0 = 0), then it
follows that

lim
t→∞

ỹ(t) = lim
t→∞

˙̃y(t) = 0, (55)

and the asymptotic consensus tracking is achieved. Otherwise,
when ÿ0(t) ̸= 0 and the information of ÿ0 is not available for
all followers ({(N0 − 1) ⊗ I} ÿ0 ̸= 0), then the next relation
holds.

∥ỹ∥ ∼ const. · 1

αβ
∥{(N0 − 1)⊗ I}ÿ0∥, (56)

∥ ˙̃y∥ ∼ const. · 1
β
∥{(N0 − 1)⊗ I}ÿ0∥. (57)

Theorem 2 denotes the properties of the proposed adaptive
control system (7), (9), (10), (11), (12), (38), (51), and states
that the asymptotic consensus tracking is achieved under the
specified condition ({(N0 − 1)⊗ I} ẏ0 = 0), and also shows
that the approximate consensus tracking with the ratios of
1/(αβ), 1/β (> 0) is still assured, even if that condition is
not satisfied ({(N0 − 1)⊗ I} ÿ0 ̸= 0).

Remark 2 It should be noted the proposed control scheme
and the adaptation scheme are all implemented in a distributed
fashion, where availabilities of signals for each agent i are
highly restricted and prescribed by the directed graph G.

Remark 3 Of course, J in Theorem 1 is a fictitious
cost functional, since d is not an actual disturbance but an
estimation error of the tuning parameter, and since it is not
generally included in L2[0,∞). Nevertheless, v, which is
derived as a solution for that fictitious H∞ control problem,
attain the inequality in Theorem 1, stabilize the total system,
and it means that the L2 gain from the disturbance d to the
generalized output

√
q + vTRv is prescribed by the positive

constant γ.

VI. NUMERICAL EXAMPLE

In order to show the effectiveness of the proposed control
scheme, numerical experiments for Euler-Lagrange systems
are performed.

A multi-agent system composed of simple Euler-Lagrange
systems is considered as follows:

miÿi(t) = τi(t), (i = 1, 2, 3),

(y1(0) = 1, y2(0) = 0, y3(0) = −1),

where yi ∈ R, τi ∈ R, and mi ∈ R is an unknown system
parameter. Associated with the information network structure
(Fig.1), the adjacency matrix A = [aij ] (= C) and ai0 (= ci0)
are chosen such that

A =

 0 1 0
1 0 1
0 1 0

 ,

a10 = 1, a20 = a30 = 0.

The control objective is to achieve consensus tracking



yi → yj , ẏi → ẏj ,

yi → y0, ẏi → ẏ0,

(i, j = 1, 2, 3),

where the virtual leader y0 is determined such as
ÿ0 + 2ẏ0(t) + y0(t) = sin t.

The design parameters are chosen as follows:
Γ = 10I, K = 5I, α = β = 10,

γi = 1.

As system parameters mi (i = 1 ∼ 3), we consider both
time-invariant and time-varying cases such that
m1 = 1, m2 = 2, m3 = 3, (time− invariant case),

m1 = fm(t), m2 = 2fm(t), m3 = 3fm(t),

(time− varying case),

where

fm(t) =

{
2 0 ≤ t < 2.5, 5 ≤ t < 7.5, · · · ,
1 2.5 < t ≤ 5, 7.5 < t ≤ 10, · · · .

The simulation results of the proposed design scheme (The-
orem 2) are shown in Fig.2 (time-invariant case) and Fig.4
(time-varying case). For comparison, the adaptive control
systems which do not contain H∞ control scheme (that is,
γ = ∞), are also shown for both cases; Fig.3 (time-invariant
case) and Fig.5 (time-varying case).

From those results, it is seen that the proposed H∞ adaptive
control strategies achieve better tracking convergence proper-
ties together with robustness to abrupt changes of the system
parameters compared with the non-H∞ control scheme, and
those are owing to disturbance attenuation properties of the
proposed H∞ controllers.
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Fig. 1. Information Network Graph

VII. CONCLUDING REMARKS

A Design methodology of adaptive H∞ consensus control
of multi-agent systems composed of fully actuated mobile
robots which are described as a class of Euler-Lagrange sys-
tems on directed network has been presented in this paper as an

extension of our previous works. The proposed control scheme
is derived as a solution of certain H∞ control problem based
on the notion of inverse optimality, where estimation errors
of tuning parameters are considered as external disturbances
to the process. The resulting control system is shown to be
robust to uncertain system parameters, and the approximate
consensus tracking is achieved via adaptation schemes and L2-
gain design parameters. Effectiveness of the proposed design
schemes was also confirmed by the simulation studies. In order
to deal with additional nonlinear terms with unknown struc-
tures in multi-agent systems, three-layered neural networks can
be also applied in the proposed control scheme, and that will
be shown in the future work.
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Fig. 2. Simulation Result for Time-Invariant Case with H∞ Control Scheme
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