
Improving RL Power for On-Line Evolution of
Gaits in Modular Robots

Milan Jelisavcic, Matteo De Carlo, Evert Haasdijk, and A.E. Eiben
Computational Intelligence Group
Department of Computer Science

Vrije Universiteit Amsterdam
Email: milan.jelisavcic@gmail.com

Abstract—This paper addresses the problem of on-line gait
learning in modular robots whose shape is not known in
advance. The best algorithm for this problem known to us is a
reinforcement learning method, called RL PoWER. In this study
we revisit the original RL PoWER algorithm and observe that
in essence it is a specific evolutionary algorithm. Based on this
insight we propose two modifications of the main search operators
and compare the quality of the evolved gaits when either or
both of these modified operators are employed. The results show
that using 2-parent crossover as well as mutation with self-
adaptive step-sizes can significantly improve the performance of
the original algorithm.

I. INTRODUCTION

The work reported in this paper is part of a larger research
programme towards the Evolution of Things as outlined in
[1]–[3]. In particular, we are developing and investigating
robotic systems where robot morphologies and controllers can
evolve in real-time and real-space. A theoretical model of such
systems, called the Triangle of Life, has been introduced in [4]
distinguishing three principal stages: Morphogenesis, Infancy,
and Mature Life as illustrated in Figure 1.

Fig. 1. The Triangle of Life. The pivotal moments that span the triangle
and separate the three stages are: 1) Conception: A new genome is activated,
construction of a new robot starts. 2) Delivery: Construction of the new robot
is completed. 3) Fertility: The robot becomes an adult, ready to conceive
offspring.

There are many possible implementations of the general
Triangle of Life (ToL) framework, distinguishable by different
morphologies and controller architectures, but in all of these
newborn robots are random combinations of the bodies and
minds of their parents. This raises a problem: new robots are
born with new bodies that can and will be different from the
bodies of the parents. This implies that every newborn robot
must acquire a new controller that matches the new body
quickly after birth.1

In this paper we focus on a specific case of this problem,
that of gait learning in modular robots whose shape is not
known in advance. The general question we address is: How
can a modular robot learn a good gait quickly? Technically
speaking, we are interested in a general gait learning algorithm
that works for any given robot within the space of all possible
morphologies constructible with the modules we use. Our
algorithm of choice is the RL PoWER algorithm as proposed
by Kober and Peters [6] and employed for gait learning in
Roombots in our previous work [7].

In particular, we pursue two research objectives:
• To see whether RL PoWER also works for modular

robots based on RoboGen [8], instead of Roombots.
• To increase the performance of RL PoWER by altering

the main search operators used therein.
The basis for the second objective is (re)describing RL

PoWER as an evolutionary algorithm (EA) with a specific mu-
tation and crossover operator. Considering RL PoWER from
an EA perspective provides hints for possible improvements
by using a different crossover, a different mutation, or both.
Therefore, we implement three new versions of RL PoWER
and assess the performance of these on a test suite of 12 robots
in simulation. The results confirm that RL PoWER works in
this new type of robots and we observe that the new search
operators improve its performance.

II. RELATED WORK

The design of a good and fast gait-learning method is not
a trivial task. Locomotion requires the creation of rhythmic
patterns which satisfy multiple constraints: generating forward

1Even if the parents had well matching bodies and minds, there is no general
guarantee that recombination and mutation will keep the good match. See also
[5]

motion, without falling over, with low energy, possibly coping
with different environments, hardware failures, changes in the
environment and/or of the organism, as Spröwitz stated [9].

An early approach is based on gait control tables where a
control table is an array of control sequences for an actuators
with transitional conditions between sequences [10], [11].
Another approach exploits central pattern generators (CPG),
which models circuitry found in vertebrates that outputs cyclic
patterns [12]. The actuators of a robot are controlled by
the signal generated by coupled synchronised CPGs which
allows them to synchronise their movement. Another popular
approach is based on neural networks (NN), and especially
on HyperNEAT [13]–[15]. Looking at the performance of
investigated techniques has shown that they produce well
performing and stable gaits on both non-modular and modular
organisms [16]–[18]. In summary, HyperNEAT can produce
efficient gaits, but the costs of learning time are too high for
a real-time application.

The RL PoWER is reinforcement learning algorithm de-
scribed by Kober and Peters [?], [6]. The properties of this
algorithm were investigated in comparison to HyperNEAT and
Simulated Annealing [7], [19]. These studies have shown that
RL PoWER is a superior method for on-line gait learning
since it converges quickly to learn sufficiently good gaits in
a short time. In this article we investigate different variations
of the original algorithm and present the details in subsequent
sections.

III. ROBOT DESCRIPTION

The robots we use here are based on the RoboGen system
specifically designed for evolutionary robotics studies [8]. The
main advantage of this system is that any given robot can be
easily constructed in the real world through assembling 3D-
printed and prefabricated modules (e.g., servos, logic boards,
batteries). We altered the original RoboGen design by making
the ‘head’ module bigger and using Raspberry Pi 2 boards,
instead of Arduinos for increased computing power.

Further to changing the morphologies, we also changed the
controllers and employ a set of cyclic splines that define an
open-loop gait. Each controller, called policy in the sequel,
consists of one spline for each active joint (servo). Thus, in
total we have as many splines as there are servos, where each
spline specifies the angular positions of a servo over a certain
amount of time. Formally, a cyclic spline is a mathematical
function that is defined using a set of n control points. Each
control point is defined by (ti, αi) where ti represents time
and αi the corresponding value. ti ∈ [0, 1] is defined as

ti =
i

n− 1
, ∀i = 0, . . . , (n− 1) (1)

and αi ∈ [0, 1] is freely defined. An additional control point
(tn, αn) is defined to enforce that the last value is equal to the
first, i.e. α0 = αn and so enable cyclic splines. These control
points are then used to interpolate a cubic spline with periodic
boundary conditions using GSL [20] dedicated C functions.
Using GSL it is possible to query a spline for a different

number of points than it was defined with. This use of sets of
cyclic spline functions as the representation was taken from
[21]. The task of the learning algorithm is then to optimise the
parameters of a set of splines so that performance –distance
travelled by the given robot in our case– is maximised.

IV. GAIT LEARNING ALGORITHM

RL PoWER has been introduced for optimising parameters
of cyclic splines based on an Expectation-Maximization ap-
proach. The algorithm creates the initial policy with one spline
per servo, each having 2 control points. These control points
are initialised at 0.5 and then perturbed using Gaussian noise
N(0, σ). The algorithm then enters an evaluation–adaptation
loop to refine the policy, until the stopping condition is
reached.

Evaluation of a policy is carried out by using it to control
the robot and measuring the distance travelled over a given
period of time. The reward awarded to a policy is calculated
as:

R =

100

√
∆2
x + ∆2

y

∆t

6

(2)

where ∆x and ∆y is the displacement over the x and y axes
measured in meters and ∆t the evaluation time.

Adaptation consists of three components: spline size in-
crease, exploitation and exploration. The spline is gradually
refined by incrementing the number of control points period-
ically as proposed in [21] In the exploitation step, the current
parameters are adapted based on the values of the k best
policies encountered so far. These k best policies P1, . . . , Pk
are kept in a ranked list that is updated after each evaluation
and they are used to create a new policy P by

P = w1 · P1 + · · ·+ wk · Pk (3)

The used weights are reward proportional, defined as

wi =
Ri

ε+
∑k
j=1Rj

, (4)

where Ri is the reward of Pi and ε is a parameter to avoid
division by 0, set to 10−10.

In the exploration phase policies are adapted by applying
Gaussian perturbation to every control point in the policy
resulting from exploitation. Over the course of the run the
variance σ2 is diminished which decreases exploration and
increases exploitation.

The operating parameters for RL PoWER, such as the
variance and its decay factor, as well as the reward function,
were taken from [21]. The values were: 0.008 for the variance
and 0.98 for the variance decay, k is set to 10 as it was used in
previous research [7]. The splines are initialised with 2 control
points and are allowed to grow to a maximum of 100 control
points over the course of a run, in this case the spline is grown
every 10 evaluations (round(1000

100−2 = 10). ε is a parameter to
avoid division by 0.

Algorithm 1: RL PoWER

1 initialisation;
2 policy ← initialisation;
3 evaluate(policy);
4 while evaluation < total evaluations do

/* Update the ranking of k best
policies */

5 ranking.insert(policy);
6 if ranking.size > k then
7 ranking.remove worst();
8 end

/* Spline size increase */
9 if evaluation mod increase delta = 0 then

10 spline size ← spline size + 1;
11 reinterpolate all(ranking);
12 reinterpolate(policy);
13 end

/* Exploitation */
14 rewards ← 0;
15 weighted total ← 0;
16 for p in ranking do
17 rewards ← rewards + p.reward;
18 weighted parameters ← p.reward *

(policy.parameters - p.parameters);
19 weighted total ← weighted total +

weighted parameters;
20 end
21 next policy.parameters ← policy.parameters +

weighted total / (rewards + ε);
/* Exploration */

22 next policy.parameters ← next policy.parameters +
normrnd(0,sqrt(variance));

23 policy ← next policy;
24 variance ← variance * variance decay;
25 evaluate(policy);
26 end

RL PoWER can be viewed as evolutionary algorithm with
policies as individuals, fitness defined as the corresponding re-
ward, population size k, an elitist (k+1) selection strategy, a k-
parent crossover, and Gaussian mutation [22]. This evolution-
ary perspective provides hints for possible improvements of
the algorithm by altering the crossover and mutation operators.
Multi-parent crossovers are known to lead to fast convergence
to local optima [23], suggesting that using two parents instead
of ten may increase overall performance. Obviously, if not
all ten population members are involved in crossover, then
we need a parent selection mechanism as well. To this end,
we use binary tournament selection that is a common and
often good choice for selecting parents [24]. Thus, to select
the two parents we execute two independent 2-tournaments.
In each tournament two individuals are chosen with uniform
distribution from the population of 10 and the best of these
two becomes a parent.

Regarding mutation, using self-adaptive step-sizes (σs) is a
promising option that is known to work well for numerical
optimization problems. The simplest version of this method
uses one step size globaly. This σ is mutated each time step
before using it to create a new individual by multiplying it
by a term expΓ where Γ is random variable from normal
distribution;

σ′ = σ · expτ ·N(0,1) (5)

The constant τ is external parameter that is set by user
and we set it to 0.2 in our experiments to have fine-grained
adaptation.

Based on these modifications we obtain four gait learning
algorithms:
• Algorithm A: the original RL PoWER
• Algorithm B: RL PoWER with 2-parent crossover
• Algorithm C: RL PoWER with self-adaptive σ
• Algorithm D: the combination of B and C.

V. EXPERIMENTS

To evaluate the gain learning algorithms quickly, all experi-
ments were done in simulation. To this end we used Revolve,
the Robot Evolve toolkit developed at our department. Revolve
is a set of Python and C++ libraries created to aid in setting
up simulation experiments involving robots with evolvable
bodies and/or minds. It builds on top of the Gazebo simulator,
complementing this simulator with a set of tools that aim
to provide a convenient way to set up such experiments.
Revolve’s source code with RL PoWER implementation can
be found at https://www.github.com/milanjelisavcic/revolve.

Table 2 shows the 12 robot shapes used for our experiments
divided by shape and size. Three of the shapes are named
after animals they resemble, spider, gecko, and snake, and each
comes in three different sizes. This yields 9 different robots,
all symmetrical. They have interlocked joints by 90◦ which
gives them one more degree of freedom on every increase in
size. Because of the nature of RL PoWER algorithm where
an independent spline is generated for each joint there is
no direct interactions or constraints among them. All joint
behaviors evolve independently and only the final outcome of
their combined movement in form of a speed the body induces
indirectly influences evolution of a next policy. Distinguishing
robots by size enables us to investigate whether increasing
the robot size, hence the freedom, increases the speed of the
evolved gaits.

In addition, we have three asymmetrical shapes that are
obtained by making a crossover between the symmetrical
shapes. The rationale for this lies in the general motivational
scenario explained in the Introduction, a population of self-
reproducing robots, where crossover between different mor-
phologies is possible. BabyA is formed from gecko7 and
spider9, babyB is formed from snake7 and spider13, and
babyC was formed from snake9 and gecko17. These forms
were also introduced to test how does this algorithm behave on
asymmetrical morphologies and to check weather asymmetry
could be seen as a defect considering gait learning problem.

Fig. 2. Images of the used morphologies. The top three rows exhibit the basic shapes named spider, gecko, and snake in three sizes. The bottom row shows
the three ’baby’ morphologies created through recombining basic shapes.

The implementation of RL PoWER is a C++ plugin that is
loaded in the Gazebo environment. Once loaded, the plugin
controls the behaviour of a given robot. It is important to
note that controller evolution is done in on-line manner, which
means that every new evaluation starts from a position of joints
where previous evaluation finished. This enables us to test
our methods in real hardware, where resetting everything to a
starting position for each evaluation is not practicable.

We run each gait learning algorithm on each shape ten
times independently with a new random seed. In every run we
record the best fitness values after every evaluation up to 1000
evaluations which is a stop condition for every experiment.
Best fitnesses after every evaluation were averaged throughout
ten trials and results are presented in Section VI.

VI. RESULTS

The performance of the algorithms is exhibited in Figure 3
for the spider-like, gecko-like, snake-like and three asymmet-
rical shapes respectively. Each column in the figure contains
four plots for every version of the tested algorithm. Each plot

contains three curves that shows the performance for same
shape in different sizes. Comparing plots for Algorithm A
and B shows difference in performance; with a slightly faster
convergence in Algorithm A. This shows that adding modi-
fications to the crossover operator indeed decreases the con-
vergence speed, but also leads to a better solution. Comparing
plots for Algorithm A and C shows improvements in reaching
better solution, but in a longer time period. Comparing plots
for Algorithm A, C and D shows that combining the modified
crossover operator to the self-adaptive sigma does provide an
added value. Results indicate that modified crossover operator
does improve performance, as well as adding self-adaptive
sigma, but the results improve the best using the combination
of these modifications.

For a closer analysis, Table I shows the mean best fit-
ness after 1000 evaluations for each algorithm. The best
performance for each morphology are highlighted in grey.
Algorithms C and D (the variants with self-adaptive σ) yield
the best performance, but the variance of the performances is
substantial. Table II highlights the effects of the modifications

Algorithm A Algorithm B Algorithm C Algorithm D

Sp
id

er
G

ec
ko

Sn
ak

e
B

ab
y

Fig. 3. Mean best fitnesses over time. Each plot shows the mean best fitness for three sizes of a shape (one shape per row, as indicated in the first column)
one of the algorithms (one algorithm per column, as indicated in the first row).

in algorithms B,C, and D as the change in performance vis a
vis unmodified RL PoWER (algorithm A).

TABLE II
IMPROVEMENT OF MEAN BEST FITNESS VALUES IN PERCENTAGES

COMPARED TO THE STANDARD RL POWER IMPLEMENTATION (ALG. A),
BASED ON THE DATA IN TABLE I

Alg. B Alg. C Alg. D

spider 9 13 8 14
spider 13 22 10 40
spider 17 76 89 1.46
gecko 7 7 23 16
gecko 12 18 2 21
gecko 17 55 34 1.13
snake 5 22 42 59
snake 7 9 8 24
snake 9 36 58 71
babyA 21 14 30
babyB 26 39 27
babyC 0 2 36
Avg. 25.41 27.41 49.75

TABLE III
AVERAGE NUMBER OF EVALUATIONS WHEN MAXIMUM SPEED IS

REACHED.

Alg. A Alg. B Alg. C Alg. D

spider 9 288.7 446.2 594.8 659.3
spider 13 370.6 333.6 381.8 523.5
spider 17 145.2 424.3 606.7 686.8
gecko 7 520.6 326.6 643.9 549.6
gecko 12 431.2 529.7 589.4 608.4
gecko 17 163.4 425.6 484.7 496.6
snake 5 404.3 495.6 414.7 691.5
snake 7 365.2 426.3 581.9 484.0
snake 9 262.9 361.6 686.6 618.0
babyA 285.9 592.3 710.3 594.7
babyB 278.3 560.7 576.6 494.4
babyC 228.5 402.4 665.1 610.0
Avg. 312.06 443.74 578.04 584.73

To determine whether the differences in performance be-
tween the algorithms are statistically significant, we used the
Kruskal-Wallis test (p = 3.51× 10−10), followed by Dunn’s
test to determine which algorithms differ. The results of these

TABLE I
MEAN BEST FITNESS VALUES (IN CM S−1) AND STANDARD DEVIATIONS FOR THE FOUR ALGORITHMS. RESULTS ARE AVERAGED OVER 10 REPLICATE

RUNS PER ROBOT. ‘SPIDER 9’ INDICATES THE SPIDER-SHAPED ROBOT OF 9 COMPONENTS, ‘SPIDER 13’ THE SAME OF 13 COMPONENTS, AND SO ON, AS
SHOWN IN FIGURE 3. THE BEST RESULT FOR EACH SHAPE IS HIGHLIGHTED IN GREY.

Algorithm A Algorithm B Algorithm C Algorithm D
Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

spider 9 3.35 0.72 3.80 0.41 3.62 0.85 3.81 0.69
spider 13 2.86 0.59 3.50 0.54 3.15 0.84 3.99 0.59
spider 17 1.38 0.64 2.43 0.65 2.61 0.96 3.39 0.70
gecko 7 3.61 0.76 3.86 0.74 4.44 0.26 4.18 0.61
gecko 12 3.68 0.95 4.35 1.04 3.76 1.04 4.44 0.87
gecko 17 1.64 0.61 2.54 0.33 2.20 0.66 3.49 1.33
snake 5 2.62 1.23 3.20 1.08 3.73 0.95 4.17 0.90
snake 7 4.65 1.57 5.07 1.20 5.03 1.61 5.75 0.97
snake 9 3.50 1.90 4.75 1.96 5.52 1.88 6.00 1.06
babyA 3.51 1.07 4.24 0.49 4.01 0.73 4.56 0.40
babyB 2.97 1.14 3.75 0.84 4.13 0.67 3.77 1.01
babyC 2.29 0.91 2.29 0.72 2.34 1.13 3.11 0.57

tests are summarised in Table IV.

TABLE IV
P VALUES FROM DUNN’S TEST COMPARING PERFORMANCE FROM ALL

RUNS OF EACH ALGORITHM. ALGORITHMS C AND D ARE SIGNIFICANTLY
BETTER THAN A AND B.

Alg. A Alg. B Alg. C Alg. D

Alg. A 2.01 × 10−3 3.56 × 10−4 4.82 × 10−11

Alg. B 1.0 2.53 × 10−3

Alg. C 1.15 × 10−2

Alg. D

The first row of Table IV shows that the new algorithm
variants B, C, and D significantly outperform the original one.
Comparing B and C we see no significant difference. That is,
no difference considering the end results. However, the plots in
Figure 3 show that B learns quicker. Looking at the last column
we can observe that D significantly differs from A, B, and C.
In particular, the superior performance displayed in Table I is
not a random effect. This means that the combination of the
two-parent crossover and the self-adaptive mutation step-sizes
yield a significant boost in performance.

To gain additional insights in the behaviour of the system
we investigated the development of genetic diversity over time.
To this end, we divided the total duration of a run into epochs.
An epoch is a period where the number of control points is not
changing. Since RL PoWER adds one control point after every
100 evaluations (per spline), we have 10 epochs e1, . . . , e10,
where e1 runs from evaluation 1 to 99, e2 runs from evaluation
100 to 199, etc., until e10 running from evaluation 900 through
999.

We define the genetic diversity for a given control point as
the standard deviation of all values for that control point in
the given population of ten policies. Formally, for each point
in time t, we have nt control points c1, . . . , cnt . The value of
ci in a given policy pj (j = 1, . . . , 10) is then cpi,j(t). Thus,

the standard deviation for ci is σci(t):

σci(t) =

√∑10
j=1 (cpi,j(t)− µi(t))2

10
(6)

where µi(t) is mean value of cpi,j(t) for j.

µi(t) =
1

10
·

10∑
j=1

cpi,j(t) (7)

For a moment t we then calculate averaged value Mt for
σc:

Mt =
1

nt
·
nt∑
c=1

σci (8)

Figure 4 exhibits the mean value M further averaged over
all experimental runs. The graphs show that using self-adaptive
mutation step-sizes can keep higher levels of diversity. This
is a good feature in dynamically changing environments as it
increases the chances of exploring novel regions of the search
space.

VII. DISCUSSION

Enabling robots with different morphologies to acquire a
good gait quickly after birth is essential for the evolution of
robot morphologies in real time and real space. In this study
we examined different versions of the RL PoWER algorithm
for this purpose.

Our results showed a difference between employing the
RL PoWER algorithm in its original form and using it with
modified mutation and crossover operators. The original RL
PoWER is fast to learn, but also that it converges very quickly
to suboptimal solutions. Reducing the number of parents in
the crossover from ten to two improves performance and so
does the usage of self-adaptive mutation step-sizes. The overall
’winner’ regarding the final solution quality is algorithm D that
combines both extensions.

It is interesting to note that for most shapes, smaller bodies
tend to move faster. The snake morphology, however does

Algorithm A Algorithm B Algorithm C Algorithm D

Sp
id

er
G

ec
ko

Sn
ak

e
B

ab
y

Fig. 4. The distribution of a genetical diversity over time. Each plot shows the mean best fitness for three sizes of a shape (one shape per row, as indicated
in the first column) one of the algorithms (one algorithm per column, as indicated in the first row).

move faster with larger shapes. A possible explanation may be
that the larger number of actuators in larger bodies increases
the amount of interference between moving limbs. For the
snake morphology this may be less problematic because all
the actuators are aligned (i.e., they move in the same plane).
Whether this explanation holds remains to be investigated in
future studies.

Future work will be devoted to spline-based controllers
capable of handling sensory feedback. With this extension
we will be able to handle more complex problems, such as
obstacle avoidance and phototaxis.

REFERENCES

[1] A. Eiben, “In Vivo Veritas: towards the Evolution of Things,” in Parallel
Problem Solving from Nature – PPSN XIII, ser. LNCS, T. Bartz-
Beielstein, J. Branke, B. Filipič, and J. Smith, Eds., vol. 8672. Springer,
2014, pp. 24–39.

[2] A. Eiben, S. Kernbach, and E. Haasdijk, “Embodied artificial evolution,”
Evolutionary Intelligence, vol. 5, no. 4, pp. 261–272, 2012.

[3] A. Eiben and J. Smith, “From evolutionary computation to the evolution
of things,” Nature, vol. 521, no. 7553, pp. 476–482, May 2015.

[4] A. Eiben, N. Bredeche, M. Hoogendoorn, J. Stradner, J. Timmis,
A. Tyrrell, and A. Winfield, “The triangle of life: Evolving robots in
real-time and real-space,” in Advances In Artificial Life, ECAL 2013,
P. Liò, O. Miglino, G. Nicosia, S. Nolfi, and M. Pavone, Eds. MIT
Press, 2013, pp. 1056–1063.

[5] N. Cheney, J. Bongard, V. Sunspiral, and H. Lipson, “On the Difficulty of
Co-Optimizing Morphology and Control in Evolved Virtual Creatures,”
in Proc. Artif. Life Conf. 2016 (ALIFE XV). Cancun. MX: MIT Press,
2016, pp. 226—-234.

[6] J. Kober and J. Peters, “Learning motor primitives for robotics,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Confer-
ence on. IEEE, 2009, pp. 2112–2118.

[7] B. Weel, M. D’Angelo, E. Haasdijk, and A. Eiben, “On-line gait learning
for modular robots with arbitrary shapes and sizes,” Artificial Life
Journal, 2016 (in press).

[8] J. Auerbach, D. Aydin, A. Maesani, P. Kornatowski, T. Cieslewski,
G. Heitz, P. Fernando, I. Loshchilov, L. Daler, and D. Floreano,
“Robogen: Robot generation through artificial evolution,” in Artificial
Life 14: Proceedings of the Fourteenth International Conference on the
Synthesis and Simulation of Living Systems, no. EPFL-CONF-200995.
The MIT Press, 2014, pp. 136–137.

[9] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, “Learning to
move in modular robots using central pattern generators and online
optimization,” The International Journal of Robotics Research, vol. 27,
no. 3-4, pp. 423–443, 2008.

[10] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through

continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–1121,
2006.

[11] M. Yim, W. M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems [grand
challenges of robotics],” Robotics & Automation Magazine, IEEE,
vol. 14, no. 1, pp. 43–52, 2007.

[12] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural Networks, vol. 21, no. 4, pp.
642–653, 2008.

[13] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, “Evolving
coordinated quadruped gaits with the hyperneat generative encoding,” in
Evolutionary Computation, 2009. CEC’09. IEEE Congress on. IEEE,
2009, pp. 2764–2771.

[14] E. Haasdijk, A. Rusu, and A. Eiben, “Hyperneat for locomotion control
in modular robots,” Evolvable Systems: From Biology to Hardware, pp.
169–180, 2010.

[15] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. Zagal, and H. Lipson,
“Evolving robot gaits in hardware: the hyperneat generative encoding
vs. parameter optimization,” in Proceedings of the 20th European
Conference on Artificial Life, 2011, pp. 11–18.

[16] D. J. Christensen, U. P. Schultz, and K. Støy, “A distributed and
morphology-independent strategy for adaptive locomotion in self-
reconfigurable modular robots,” Robotics and Autonomous Systems,
vol. 61, no. 9, pp. 1021–1035, 2013.

[17] A. Kamimura, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji, and
S. Murata, “Distributed adaptive locomotion by a modular robotic
system, m-tran ii,” in Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 3. IEEE,
2004, pp. 2370–2377.

[18] M. DAngelo, B. Weel, and A. Eiben, “Online gait learning for modular
robots with arbitrary shapes and sizes,” in International Conference on
Theory and Practice of Natural Computing. Springer, 2013, pp. 45–56.

[19] M. D’Angelo, B. Weel, and A. Eiben, “Hyperneat versus rl power for on-
line gait learning in modular robots,” in Proceedings of EvoApplications
2014: Applications of Evolutionary Computation, ser. Lecture Notes in
Computer Science, A. Esparcia-Alcázar, Ed., no. 8602. Springer, Berlin,
Heidelberg, New York, 2014, pp. 777–788.

[20] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and
F. Rossi, Gnu Scientific Library: Reference Manual. Network Theory
Ltd., 2009.

[21] H. Shen, J. Yosinski, P. Kormushev, D. G. Caldwell, and H. Lipson,
“Learning fast quadruped robot gaits with the RL PoWER spline
parameterization,” Cybernetics and Information Technologies, vol. 12,
no. 3, pp. 66–75, 2012.

[22] A. Eiben and J. Smith, Introduction to Evolutionary Computing, 2nd ed.
Springer, 2015.

[23] A. E. Eiben, “Multiparent recombination in evolutionary computing,” in
Advances in Evolutionary Computing, ser. Natural Computing Series,
A. Ghosh and S. Tsutsui, Eds. Springer, 2002, pp. 175–192.

[24] K. De Jong and J. Sarma, “On decentralizing selection
algorithms,” in Proceedings of the Sixth International Conference
on Genetic Algorithms, L. Eshelman, Ed. San Francisco,
CA: Morgan Kaufmann, 1995, pp. 17–23. [Online]. Available:
citeseer.ist.psu.edu/dejong95decentralizing.html

