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Abstract—Network segmentation is a security measure that
partitions a network into sections or segments to restrict the
movement of a cyber attacker and make it difficult for her to
gain access to valuable network resources. This threat-mitigating
practice has been recommended by several information security
agencies. While it is clear that segmentation is a critical defensive
mitigation against cyber threats, it is not clear how to properly
apply it. Current standards only offer vague guidance on how to
apply segmentation and, thus, practitioners must rely on judg-
ment. This paper examines the problem from a decision support
perspective: that is, how can an appropriate segmentation for
a given network environment be selected? We propose a novel
method for supporting such a decision that utilizes an approach
based on heuristic search and agent-based simulation. We have
implemented a first prototype of our method and illustrate its
use via a case study on a representative network environment.

I. INTRODUCTION

Modern states require secure computer networks to support
most, if not all, sectors of their critical infrastructure includ-
ing those of finance, healthcare, transportation, wastewater,
information technology, and defense [1]. Recent high-profile
cyber breaches [2], [3] demonstrate that the threat faced by
these networks is serious. Network segmentation (sometimes
referred to as network compartmentalization or partitioning)
has been proposed by a number of corporations and govern-
ment agencies as an important defensive mitigation to help
counter this threat [4], [5], [6], [7].

Network compartmentalization refers to the practice of
partitioning a network into sections or segments in which
communications between segments and between segments and
the Internet are controlled [8]. The purposes are to limit a
cyber attacker’s ability to move about the network, to make
it difficult for her to gain access to valuable resources, and to
increase the ability of the defender to monitor network com-
munications and detect and remediate cyber intrusions. While
it is clear that segmentation is a crucial defensive mitigation,
it is not clear how it can be properly applied to protect a given
network. For even small networks many different segmentation
architectures are possible and the number of possibilities grows
exponentially with network size. Current standards and best
practices, for example as given in [5], [9], offer only vague
guidance on how to apply compartmentalization. This forces
security practitioners to rely on judgment.

This paper examines the problem from a decision support
perspective: that is, how can an appropriate segmentation for

a given network environment be selected? We propose a novel
method for supporting such a decision that utilizes a compu-
tational intelligence approach. The method combines testbed
experimentation, hierarchical simulation modeling, statistical
analysis, and optimization techniques to search the space of
segmentation architectures and recommend an optimal/near-
optimal partitioning. We have implemented an initial prototype
of our method and illustrate its use via a case study on a
representative network environment.

The rest of this paper is organized as follows. Section II
gives a brief review of the current state of decision support
in the cyber security domain, Section III describes network
segmentation and its use as a defensive mitigation, Section IV
provides the details of the multi-component method to support
the segmentation decision problem, Section V discusses a case
study conducted to illustrate our method on a representative
network environment, and Section VI concludes.

II. THE CURRENT STATE OF CYBER SECURITY DECISION
SUPPORT

While there exists a large body of work in the area of
cyber situational awareness (for example see [10]), the field
of cyber security decision support is still developing. Current
literature in this field is largely scattershot, with individual
studies focused on specific cyber-related problems rather than
generalized cyber decision system approaches.

One recent study proposes a dynamic forecasting method-
ology that makes use of qualitative assessments by subject
matter experts to recommend contingency measures to combat
cyber threats [11]. Another study details a cyber infrastructure
to facilitate and secure individual-based decision making and
negotiation for Internet-of-Things devices with respect to
applications in health care [12]. In [13], a combination of
Bayesian Belief Network, cyber vulnerability assessment, and
expected loss computation are used to compute appropriate
premiums for cyber insurance products.

One study that does take a more generalized approach is
given in [14]. This study proposes a net-centric architecture to
execute a cyber OODA loop1 to support decisions that focus on
cyber survivability of Ballistic-Missile-Defense systems under

1An OODA loop is a cycle of observing, orienting, deciding, and act-
ing [15]. A cyber OODA loop executes this cycle in the cyber domain.



cyber attack. While the proposed architecture can indeed be
beneficial to decision makers, it only supports decisions by
enabling users to rapidly produce, consume, and share critical
information rather than recommending appropriate or optimal
decisions.

One relevant commercially-developed system is Netflix’s
FIDO [16], which stands for Fully Integrated Defense Op-
eration. The FIDO system is designed to ingest and process
detection alerts from various security products (e.g. firewalls
and anti-virus packages), prioritize/score these alerts, and exe-
cute simple remediation actions (e.g. ending a VPN session or
disabling a user account) or notify appropriate (human) parties.
While this system is able to act (semi)-autonomously, the
function it executes is quite similar to many commercial-off-
the-self intrusion detection systems and, thus, its applicability
is limited to this one type of problem.

This study differs from the current literature on cyber
decision support in two fundamental ways: (1) it proposes a
generalized cyber decision support methodology that is appli-
cable for a wide range of cyber-security decision problems and
(2) the proposed method can generate optimal/near-optimal
decisions automatically without requiring qualitative input
and/or judgment from human analysts. The main contributions
of this study are as follows.

• The study proposes a novel and generalized cyber de-
cision support methodology that generates appropriate
decisions automatically.

• A prototype of the proposed methodology is developed
and applied to a critical cyber-security decision problem,
specifically that of selecting an appropriate network seg-
mentation architecture.

• A case study is conducted illustrating the use of the
prototype system to automatically generate efficacious
segmentation architectures for a representative network
environment under cyber attack.

III. NETWORK SEGMENTATION FOR SECURITY

Network segmentation is a defensive mitigation that at-
tempts to thwart a cyber attacker’s ability to move within
a network. As described in Section I, it is concerned with
partitioning a network into segments and controlling commu-
nications between segments and between segments and the
Internet. The goal is to protect network resources by restricting
communications which, in turn, has several potentially bene-
ficial effects from the standpoint of security by: (i) reducing
the number of entry points into a network, (ii) limiting the
network access of an attacker who has penetrated the network,
(iii) hindering the lateral movement of attacker and her ability
to pivot to other network devices, and (iv) making monitoring
communications easier and increases the defender’s ability to
detect and remediate cyber intrusions [17].

Partitioning has been proposed in various forms by several
information security agencies such as Microsoft [6], SANS
Institute [7], and the Information Assurance Directorate (IAD)
of the National Security Agency (NSA) [5]. However, there is
no clear method proposed to determine a proper partitioning

architecture for a given network environment. Current best
practices and information security recommendations offer only
vague guidance.2

Two highly-visible versions of segmentation guidance are
proposed by IAD: (i) a coarse-grained version called Segregate
Networks and Functions (SNF) and (ii) a fine-grained ver-
sion coined Limit Workstation-to-Workstation Communication
(LWC).

SNF posits that different cyber assets (e.g., hosts, servers,
subnets) are used for different organizational functions (e.g.,
public-facing web services, financial transactions, human re-
source management, etc.) that have differing sensitivity levels
and security requirements [17]. This version of segmentation
recommends partitioning a network into groups of assets based
on the function that these assets are intended to carry out.
Partitioning at this level is usually implemented by firewalls,
network egress and ingress filters, application-level filters,
and/or physical (hardware) infrastructure [18].

LWC proposes a partitioning architecture that is more
restrictive and operates on the principle of least privilege [19]
which specifies that communication is allowed only when nec-
essary for task execution. Here, even devices within the same
functional unit may face communication restrictions. This level
of partitioning can be implemented by setting device-level
firewall rules (e.g., Windows Firewall rules), disabling remote
logon access to devices, and using private virtual LANs [19].

However, both of the IAD-recommended versions of seg-
mentation leave much to the judgment of a security practitioner
who still must determine how segments are interconnected, the
number and kind of communications allowed between these
segments, and which segments are allowed to communicate
with the Internet. The problem is further complicated by cost
considerations (i.e., finer-grained partitioning may be more
expensive and/or error prone) and the fact that some cyber
assets may be used for more than one function.

There does exist one example in industry of a well-specified
version of network partitioning implemented by Google,
namely BeyondCorp [20]. Here, the approach is to individually
authenticate each network user and device, regardless of the
user’s network location (on-site or external), and enforce
access control to enterprise applications that is customized to
each user/device. This can be considered an extreme version
of LWC where each device is an individual segment.

While Google’s approach is certainly not vague, there are
a number of potential pitfalls associated with it. First, the
cost of implementing this approach may be too high for
many organizations. This approach requires a rather complex
infrastructure that includes a complete device inventory and
access control that relies on inferred levels of trust based
on access-granting rules that change over time. The cost of
instantiating, maintaining, monitoring, and supporting such
an infrastructure may be beyond the reach of all but the
most resource-wealthy organizations. Customized device-level
access control for a large organization with many different

2For example, see the guidance offered in [9].



kinds of users and enterprise applications may also be prone
to mis-implementation. This can allow unintentional access
to network resources by insecure users/devices. Finally, even
ignoring cost and error concerns, it is not clear that device-
level segmentation always leads to better security posture. In a
sufficiently complex cyber system there may exist a labyrinth
of allowed communications for which overall system security
can not be readily determined.

Here, we investigate the network segmentation problem
from a decision support point-of-view: how can we select
an appropriate segmentation architecture for a given network
environment? We will refer to an individual segment of a
partitioned network as an enclave, that is a group of network
devices with homogeneous reachability.

IV. NETWORK SEGMENTATION DECISION SUPPORT

We propose a cyber decision system to recommend suitable
segmentation architectures with respect to a network envi-
ronment. Here, network environment refers to a collection of
network users/devices, a cyber threat, a set of cyber defensive
measures, and a mission that the network is intended to sup-
port. We assert that the mission component of the environment
is critical. It is a trivial matter to construct a defensive policy
that maximizes security: simply disallow network communi-
cations to and from external sources.3 However, such a policy
can make mission operations difficult or impossible and effec-
tively render the network useless. Therefore the selection of
segmentation architecture must consider both network security
and mission performance.

Segmentation 
Architecture 

Network 
Environment Cyber Decision Engine 

Optimization 

Prediction 

Cyber Decision System 

Fig. 1. Generalized cyber decision system framework: an iterative loop
between logical constructs of optimization and prediction

To this end we propose a cyber decision support method
to search the space of possible partitioning architectures
and recommend an optimal/near-optimal segmentation. Our
method is based on a computational intelligence framework
developed for recommending optimal decisions in the supply
chain domain [21]. Fig. 1 depicts this generalized decision
system framework. As show in the figure, the system inputs
data specifying the network environment to be considered
and outputs a recommended segmentation architecture. The

3Note that this assumes a completely compromise-free network at the time
of policy enactment: if this is not the case, then even this will not ensure
perfect security.

system is made of two logical constructs, optimization and
prediction, that execute iteratively to search the decision space.
The former construct selects candidate cyber decisions and
feeds these to the prediction construct for evaluation. The latter
predicts the efficacy of candidate decisions and feeds evalu-
ations back to optimization. These evaluations are then used
by optimization to select new candidate decisions, which are
fed to prediction, and so on. The end result is a recommended
decision that has been optimized over multiple iterations of
the decision selection/evaluation loop.
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Fig. 2. Network segmentation decision method: testbed, simulation model,
statistical analysis, and heuristic search components execute in an iterative
loop.

Fig. 2 gives our multi-component decision method for the
network segmentation selection problem. In the figure, the
heuristic search component fulfills the duties of the optimiza-
tion construct while the testbed and hierarchical simulation
model components fulfill the duties of the prediction con-
struct. The heuristic search component selects a candidate
segmentation architecture to be modeled via a combination of
testbed experimentation and hierarchical simulation modeling
(introduced in our previous work [22] and summarized below).
Multiple simulation runs are executed on these components
and run outputs are piped to the statistical analysis component.
The statistical analysis component is used to quantify these
outputs into a single evaluation metric, which is then piped
to the search component to help guide its selection of new
candidate segmentations. Here, for simplicity, we assume that
all network entities (e.g. devices, users, etc.) are known. The
following provides the details of each component given in
Fig. 2.

A. Testbed environment

A proprietary testbed is used to capture a segmented net-
work at a coarse-grained level of abstraction [22]. It allows for
the instantiation of a partitioning architecture that divides the
network into enclaves and restricts communications between
enclaves and between enclaves and the Internet. The testbed
environment specifies communication channels by allowing
or disallowing software services between enclaves. The en-
vironment also includes the notion of enclave cleansing by
the defender: compromised enclaves are periodically cleansed
and restored to an uncompromised state. The testbed uses data



from real software vulnerabilities and corresponding exploits
to characterize the vulnerability level of individual enclaves
with respect to a given network segmentation architecture
and enclave cleansing rate. The environment measures the
probability that an enclave has been penetrated but does
not capture instances of actual device compromise within an
enclave.

Planned future work will focus on developing a simulation
model to replace the testbed environment so that more seg-
mentation scenarios can be easily examined as the resource
cost of executing scenarios on the testbed is relatively high.

B. Hierarchical simulation model

The simulation model seeks to capture device-level dynam-
ics not captured by the testbed environment. Specifically, the
goal is to capture dynamics of mission performance, infection
spreading, and cleansing within individual enclaves of the
network. The simulation model is built using a hierarchical
structure with two components: (i) the enclave model and
(ii) the network model. The former captures device-to-device
infection spreading and enclave cleansing dynamics within a
single enclave while the latter characterizes attack/defense dy-
namics and how these dynamics impact mission performance
at the full network scale.

  

Enclave		

  

Enclave		
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Ini+al	penetra+on	 Infec+on	spread	 Enclave	cleanse	

A4acker	 Defender	
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Fig. 3. Enclave model attack/defense dynamics. Red nodes represent infected
devices within an enclave.

Enclave model: We utilize the approach given in [23] to
model infection spreading within an enclave as:

I(t) = I(0)× eβ×N×t (1)

where t is time, I(0) is the infected number of devices at t = 0,
β is the infection propagation rate and N is the total number
of devices in a given enclave. I(t) gives us the total number of
infected devices for any given time t. An illustration of initial
penetration and infection spreading is shown in Fig. 3.

Our model specifies a random variable to capture the
probability that an enclave is in a vulnerable state (i.e., whether
or not it has been penetrated by the attacker). Assume that at
time t = t0, the enclave is vulnerable. As shown in Fig. 3,
the attacker penetrates the enclave by compromising a single
device (depicted by the red node in the left-most enclave state
of the figure) and then attempts to spread to other devices in
the enclave. At time t = tk, the attacker successfully spreads to
another device in the enclave (depicted in the middle enclave
state of the figure). At time t = tn, the defender cleanses
the enclave and dis-entrenches the attacker (depicted in the

right-most enclave state of the figure). When the attacker is
dis-entrenched, all enclave devices are restored to their original
(uninfected) state.

The enclave model was implemented in NetLogo [24].
Fig. 4 provides an example screenshot of the enclave model.4

Fig. 4. Screenshot of the enclave model (green nodes represent uncompro-
mised devices, red nodes represent compromised devices).

Network model: As discussed above, the network model
captures attack and defense dynamics at the full network
scale and how these dynamics impact mission operations. We
utilize agent-based simulation to capture attackers, defenders,
and mission actors interacting in a network environment. We
model a representative mission based on a military-style Air
Operations Center (AOC). The AOC mission is concerned with
gathering air tasking requests, processing these into a finalized
air tasking order that dictates what flights will occur, and
making this order available to the appropriate parties.
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Fig. 5. Abstracted Air Operations Center (AOC) mission concept.

Fig. 5 gives a graphical depiction of the AOC mission. From
the figure, the abstracted AOC mission model characterizes

4Parameter settings given in the figure are for illustrative purposes and do
not represent experimental settings used in this study.



three mission actors that make use of three mission servers to
complete their tasks. The first actor periodically collects air
tasking requests (ATRS) from an ATR repository, takes some
time to process these requests into a master air attack plan
(MAAP), and uploads the MAAP to the MAAP server, shown in
the center of Fig. 5. The second actor checks the MAAP server
for the MAAP and, upon seeing it, downloads and processes
this into an air tasking order (ATO) and sends this to a third
actor. The third actor then prepares the ATO for distribution
and uploads it to the ATO server, shown to the right of the
diagram, where it is now available for use.

Network model attack and defense dynamics are an abstrac-
tion of the attack and defense dynamics captured in the enclave
model but from a full network perspective where outcomes
vary depending on the micro-environment specified for indi-
vidual enclaves in the full network. Devices compromised by
the attacker incur downtime (i.e., become unavailable) until
they are restored and this downtime may impede mission
operations and cause mission delay. The model specifies a
random variable to capture the probability that a device in a
given network enclave is compromised. At simulation time
t = 0, this variable is used to determine which devices
in a given enclave are compromised and, for those that
are compromised, a second random variable determines the
duration of compromise. This initialization process is repeated
separately for each enclave of the network. As simulation time
progresses, compromised devices are cleansed and restored
when their compromise durations have completed. Network
model outputs measure overall security and mission impact at
the network scale.5

Hierarchical integration of testbed and simulation model:
As depicted in Fig. 2, the testbed and simulation model are
connected in a hierarchical structure. Testbed experiments
are executed, results are aggregated, and then these results
are used to parameterize the next level of the hierarchy, the
enclave model. Finally, simulation runs are executed on the
enclave model, results aggregated, and used to parameterize
the top level of the hierarchy, the network model. Together, the
testbed, enclave, and network models capture the security and
mission performance dynamics inherent to a network environ-
ment under a given segmentation architecture. As mentioned
in Section IV, we first introduced this combination of testbed
experimentation and simulation modeling to examine network
segmentation in a previous work [22].

C. Statistical Analysis

We aim to build a decision support system that can rec-
ommend optimal/near-optimal segmentation architectures for
a given network environment. As discussed at the beginning
of this section, we wish to consider both security and mission
performance. A statistical analysis component (shown in Fig. 2
to the left) is used to measure a candidate architecture’s
effectiveness and computes the unified effectiveness metric

5The full network-scale attack and defense model is specified in [22]. Due
to space limitations, we do not provide a screenshot of the network model
here.

proposed in [25]. The unified metric, mg , incorporates two
sub-measures: (i) a security index (seci): specified as the
expected ratio of device availability time to total time, and
(ii) a mission delay measure (md): specified as the expected
mission delay.

The complete metric, mg , is defined as a measure to
characterize seci and md inherent to a simulated network en-
vironment captured via Monte Carlo experiments. The metric
incorporates effects of mean, median, and variance of results
from multiple simulation runs. The idea of the metric is to
quantify the gain in effectiveness due to a given segmentation
architecture relative to a baseline where no segmentation is
used (i.e., a flat network in which all devices have uniform
reachability). The metric is normalized to [0, 1] where higher
values mean greater overall effectiveness with 1 meaning
100% effectiveness (i.e. attacker threat is completely nullified,
mission performance is optimal) and 0 meaning 0% effective-
ness (i.e. no improvement relative to the baseline).

Algorithm 1 Simulated Annealing Search
1: PROCEDURE: Optimize-Network-Architecture (s0,
sbaseline, kmax) {s0: initial architecture, sbaseline:
baseline architecture, kmax: maximum no. of iterations}

2: s← s0 {Accept s0 as current solution}
3: k ← kmax
4: repeat
5: T ← k

kmax
{Set temperature T}

6: snew ← Generate-Neighbor-Architecture(s) {Pick
random neighbor of s}

7: E(snew, sbaseline) {Compute effectiveness E of snew
relative to sbaseline}

8: E(s, sbaseline) {Compute effectiveness E of s relative
to sbaseline}

9: if E(snew, s0) > E(s, s0) {snew more effective than
s} then

10: s← snew{Accept snew}
11: else
12: r ← random value ∈ [0, 1]

13: if r ≤ e
E(snew,sbaseline)−E(s,sbaseline)

T then
14: s← snew {Inferior snew is accepted}
15: end if
16: end if
17: k ← k − 1{Decrementing k reduces T}
18: until k = 0

Here, we summarize the metric’s computation.
1) We run a set of Monte Carlo simulation experiments

for two scenarios: (i) a network environment with a
given segmentation architecture facing a given cyber
attack threat and (ii) a baseline scenario in which no
segmentation is used facing the same attack threat.
Simulation outputs seci and md are collected for these
scenarios.

2) These outputs are histogrammed and then each is fitted
to the Normal distribution.

3) The area under each fitted curve is integrated and
then multiplied by the mean of each measure resulting



in two probability density functions, secig and mdg ,
representing the enhanced versions of the security index
and mission delay, respectively.

4) The final unified metric, mg , is computed as the average
of secig and mdg .

Algorithm 2 Generate Neighbor of Architecture s
1: PROCEDURE: Generate Neighbor of Architecture (s)
{s: architecture}

2: s← f{Add-Remove-Service(s),Merge-Split-Enclave(s)}
{f : function that randomly selects one of the two
architecture-generation procedures (Add-Remove-
Service, Merge-Split-Enclave) and executes it}

D. Heuristic Search

The final component in our decision system is tasked
with selecting new candidate segmentation architectures to
evaluate. This component utilizes evaluations received from
the statistical analysis component to choose promising, as-yet-
unexamined architectures. All components work together iter-
atively to examine promising segmentations and progressively
hone in on the optimal (i.e. the segmentation with maximum
effectiveness).

In our prototype system, we leverage the simulated anneal-
ing (SA) technique [26] which prescribes an iterative search
for the global optimum by examining neighboring solutions of
the currently accepted solution. For our application, we search
for the global maximum. Algorithms 1-4 specify our SA-based
heuristic search.

Algorithm 3 Add/Remove Services from s
1: PROCEDURE: Add-Remove-Service(s) {s: architec-

ture}
2: n ← random integer ∈ [1,max] {Select the number of

services to add/remove}
3: r ← random value ∈ [0, 1]
4: if r < 0.5 then
5: s is modified to randomly remove n services
6: else
7: s is modified to add n services in-between random

enclaves
8:
9: end if

Algorithm 1 requires two architectures as parameters, an
initial architecture, s0 (i.e., “solution 0”), that is the starting
point of the search and a baseline architecture, sbaseline (i.e.,
“solution baseline”) that is used as a reference from which
to compute the relative effectiveness of candidate architec-
tures. Candidate architectures are generated by constructing
“neighbors” of the currently accepted solution as given in
Algorithms 2-4. The effectiveness of candidate architectures
is computed via the unified metric described in Section IV-C.
Currently we explore two basic architecture-generating op-
erations: adding/removing services that allow communication
between enclaves (Algorithm 3) and merging/splitting enclaves
(Algorithm 4). Future work is planned to explore additional

operations such as group-based operations which take sub-
structures of an architecture (i.e. a group of enclaves and the
services that connect them) and modify and/or replace them
with new sub-structures.

Algorithm 4 Merge/Split Enclaves in s
1: PROCEDURE: Merge/Split Enclaves (s) {s: architec-

ture}
2: i ← random integer ∈ [1,max-iters] {Select the number

of iterations to execute merge/split}
3: n ← random integer ∈ [1,max-enclaves] {Select the

number of enclaves to be merged/split}
4: r ← random value ∈ [0, 1]
5: if r < 0.5 then
6: repeat
7: s is modified to randomly select n enclaves and

merge them into one one
8: i← i− 1
9: until i = 0

10: else
11: repeat
12: s is modified to randomly select n enclaves and split

each one into two
13: i← i− 1
14: until i = 0
15: end if

Due to the relatively high cost of executing testbed experi-
ments we are limited in the number of segmentation architec-
tures that can be considered with respect to a given network
environment. As mentioned in Section IV-A, we plan future
work to develop a simulation model to replace this testbed and
support faster experiment execution and the examination of a
greater number of segmentations. Once we are free to leverage
such a simulation model, we plan to explore population-based
heuristic search techniques such genetic algorithms or particle
swarm optimization [27], [28].

V. EXPERIMENTS

The proposed cyber decision system is implemented by a
combination of technologies including NetLogo [24] (for the
hierarchical simulation model), Python 2.7 (for the statistical
analysis and heuristic search components), and a suite of
proprietary cyber testbed hardware and software. We illustrate
the use of the system via a case study in which an optimized
segmentation architecture is generated for a representative
network environment. The goal of our experiment is to start
with a segmentation architecture based on best practices and
by multiple iterations through our decision system generate
an improved architecture with respect to security and mission
performance. Ideally, the system-recommended architecture
would more effectively inhibit a network intruder’s movement
within the network and, in turn, improve mission performance.

A. Experimental Setup

For our representative environment, we examine a class-
C-sized network with N = 250 devices. We model the AOC
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Fig. 6. The impact of infection rate per unit time, β (Eq. 1), on the spreading progress for a vulnerable network with N = 250 and I(0) = 1.

mission (described in Section IV-B) where a full mission takes
three simulated days to complete if uninterrupted and each of
the three mission actors requires one day to complete his/her
mission task. Forty missions are executed in parallel during
a single simulation run in which forty mission actor groups
(MAGs), consisting of three actors each, interact with a single
set of (three) mission servers. A simulated day is divided into
time units where 1, 000 time units = 1 day. For each iteration
of the decision system (Fig. 2), we execute 1, 500 simulation
runs on the simulation model component where each run is
terminated upon completion of all missions or when simulation
time reaches a maximum of 30 simulated days.

Internet	 Network	
(no	par..oning)	

10 total services 

Fig. 7. Baseline architecture sbaseline that includes no partitioning.

For our experiments, we examine three threat regimes
with respect to infection spreading. These regimes represent
differing severities of threat: (i) less aggressive spreading
(low threat), (ii) aggressive spreading (medium threat), and
(iii) highly aggressive spreading (high threat). As shown in
Fig. 6, the infection spread rate, β (from Eq. 1), is varied to
model these different severities. To account for the uncertainty
inherent to the spreading dynamic, we sweep a range of
β values within each regime. Less aggressive spreading is
given by β = {2.6 × 10−4, 2.8 × 10−4, 3.0 × 10−4} which
captures an attacker that can infect less than 40% of class
C network in 60 days. Aggressive spreading is given by
β = {3.2 × 10−4, 3.4 × 10−4, 3.6 × 10−4} and captures
an attacker that can infect up to 80% of the network in

60 days. Finally, highly aggressive spreading is given by
β = {3.8 × 10−4, 4.5 × 10−4, 5.5 × 10−4} and models an
attacker who can infect the entire network in less than 30
days.
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Fig. 8. Initial architecture s0 that segregates mission and non-mission
functions.

As discussed in Section IV-D, the system requires two
segmentation architectures as input: a baseline architecture,
sbaseline, used to gauge the effectiveness of candidate ar-
chitectures and an initial architecture, s0, that serves as the
starting point of the search. Figs. 7 and 8 give these two input
architectures.

Fig. 7 depicts sbaseline, a “flat” network with no partitioning
that allows direct communication with the Internet via 10
software services. Note that sbaseline represents a network in
which all devices are contained in a single enclave.

Fig. 8 gives s0, a segmented network in which mission and
non-mission functions are separated from each other. In s0,
the network is partitioned into 44 total enclaves: three non-
mission enclaves each allowing direct communication with the
Internet via a total of 10 services evenly split between them,
40 MAG enclaves each consisting of a single MAG that is
allowed direct communication with the mission server enclave
and one of the three non-mission enclaves, and finally a single
mission server enclave consisting of the three mission servers
that is allowed to directly communicate with each of the MAG
enclaves. This segmentation is meant to represent a version of
the SNF architecture recommended by IAD and described in
Section III.
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Fig. 9. System-generated segmentation architectures: (a) s1, (b) s2, and (c) s3.

B. Results

As mentioned in Section IV-A, executing experiments on
the testbed environment is quite resource intensive. Thus,
for this study we execute just 7 iterations of our decision
system, due to resource limitations. We report an intermediate
solution generated by the system only when that solution is
accepted by heuristic search component as the current solution
as specified by Algorithm IV-C. For our experiments besides
the initial segmentation architecture s0 (Fig. 8), three new
solution architectures, namely s1, s2, and s3, were generated
by the system and accepted as the current solution. We discuss
results for architectures sbaseline and s0-s3 below.
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Fig. 10. System simulation component output for security index, seci, for
(red squares show the respective mean for each architecture).

Fig. 9 depicts the system-generated architectures s1, s2, and
s3, respectively. As can be seen in the figures, the progression

of generated architectures show merging of several enclaves
from s0 into the final, fairly simple segmentation given by
s3. It is important to note that a candidate architecture was
generated in an iteration after s3 that merged enclaves again
resulting in an even more simplified architecture. However,
this architecture was not accepted by the system due to its
inferior measured effectiveness.
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Fig. 11. System simulation component output for mission delay, md, (the
red squares show the respective mean for each architecture).

Figs. 10 and 11 present plots6 of outputs from the system’s
simulation component (described in Section IV-B) for architec-
tures sbaseline and s0-s3. Fig. 10 gives simulation component
output from Monte Carlo simulation runs for security index
seci while Fig. 11 gives the same for mission delay md (seci
and md are described in Section IV-C).

6Boxplots are shown with median represented by the mid-line of a plot and
mean represented by a red square.



Architecture secig mdg mg

s0 0.037 0.657 0.34
s1 0.185 0.951 0.56
s2 0.285 0.91 0.61
s3 0.29 0.999 0.65

TABLE I
SYSTEM EVALUATION VIA COMPUTED METRIC mg INCLUDING

COMPONENT SUB-MEASURES secig AND mdg FOR EACH ARCHITECTURE.

As shown in Fig. 10, system-generated architectures s1-s3
yield marked improvements to the security relative to sbaseline
and s0 with progressively higher mean and median seci and
significantly lower variances of seci outputs. Interestingly,
initial architecture s0, which is based on SNF best practice
recommendations (discussed in Section III), has somewhat
lower mean and median seci relative to sbaseline. s0 does,
however, yield greatly reduced variance in seci outputs relative
to sbaseline.
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Fig. 12. System evaluation (via the unified effectiveness metric, mg ,
computed by the statistical analysis component) for each architecture.

From Fig. 11, architectures s1-s3 yield marked improvement
in mission performance in the form of reduced mission delay
relative to sbaseline and s0. As seen in the figure, mean and
median md outputs of system-generated architectures are less
than the baseline and initial architectures and variance is also
markedly reduced.

Fig. 12 provides the system’s quantitative evaluation of
each architecture (s0-s3). As discussed in Section IV-C, the
system’s statistical analysis component computes a unified
effectiveness metric mg that is used to measure the effec-
tiveness of a candidate segmentation relative to the baseline
architecture sbaseline. This metric measures effectiveness with
respect to two aspects, security and mission performance, and
can be viewed by security practitioners as a measure of the
gain in effectiveness at the network scale due to the protection
provided by the candidate architecture [25], [22]. Fig. 12 plots
the computed mg metric for all architectures. Note that the
computed metric for sbaseline (mg = 0.0) is also provided for
reference.

As displayed in Fig. 12, system-generated architectures
progressively improve overall effectiveness with respect to

security and mission performance relative to the initial archi-
tecture s0. The first system-generated solution s1 provides a
rather large jump in effectiveness relative to s0, from 34% to
56%, while successive solutions s2 and s3 build upon this gain
to provide additional incremental improvements.

Table I breaks down the computed mg metric into its
component sub-metrics, secig and mdg , representing aspects
of security and mission performance, respectively, for each
architecture. From the table, both security and mission per-
formance are significantly improved by the system-generated
architectures with the mission performance sub-metric in-
dicating near-optimal effectiveness for final system solution
architecture s3.

These results indicate that optimal/near-optimal segmenta-
tion architectures for a given network environment and cyber
threat can be automatically generated and highlight the efficacy
of our computational-intelligence-based approach.

VI. CONCLUSION

This paper examines the cyber decision problem of how
to select an appropriate network segmentation architecture
with respect to security and mission performance for a given
network environment. A novel cyber decision support system
is built to recommend appropriate segmentation architectures.
The system utilizes a computational intelligence approach
that combines testbed experimentation, hierarchical simulation
modeling, statistical analysis, and optimization techniques. A
case study is performed using the prototype system to generate
optimal/near-optimal architectures for a representative network
environment under cyber attack.

Future work is focused on developing a simulation model
to replace the testbed environment so that more partitioning
scenarios can be examined as the resource cost of executing
scenarios on the testbed is relatively high. In the current
version of the prototype system, system components are not
fully integrated and some manual action is required to start
component executions. For the next version we plan to fully
integrate all system components. Finally, we plan to investi-
gate population-based techniques such as genetic algorithms,
particle swarm, or grammatical evolution to improve the
performance of the system’s search for efficacious candidate
architectures.
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