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Abstract—Two techniques to further enhance the efficiency of
Evolutionary Algorithms (EAs), even those which have already
been accelerated by implementing surrogate evaluation models
or metamodels to overcome a great amount of costly evaluations,
are presented. Both rely upon the use of a Kernel Principal
Component Analysis (Kernel PCA or KPCA) of the design
space, as this reflects upon the offspring population in each
generation. The PCA determines a feature space where the
evolution operators should preferably be applied. In addition,
in Metamodel–Assisted EA (MAEAs), the PCA can reduce the
number of sensory units of metamodels. Due to the latter, the
metamodels yield better approximations to the objective function
value. This paper extends previous work by the authors which
was based on Linear PCA, used for the same purposes. In
the present paper, the superiority of using the Kernel (rather
than the Linear) PCA, especially in real–world applications, is
demonstrated. The proposed methods are assessed in single– and
two–objective mathematical optimization problems and, finally,
showcased in aerodynamic shape optimization problems with
computationally expensive evaluation software.

I. INTRODUCTION

During the last decades, EAs are widely used to solve
Single– and Multi–objective optimization problems (SOO or
MOO) with or without constraints, by accommodating any
ready–to–use evaluation tool. Though EAs are able to find
global optima, they require a great number of calls to the
problem–specific model (PSM). If the PSM is a computa-
tionally demanding software, then the optimization turnaround
time may become prohibitively large. Software pertinent to
Computational Fluid Dynamics (CFD), Computational Struc-
tural Analysis, Computational Electromagnetics etc. are typi-
cal examples of PSMs used in real–world applications.

Various methods capable of reducing the computational cost
of an EA–based optimization have been devised. In MAEAs
[1], [2], [3], [4], [5], [6], [7], surrogate evaluation models
(often referred to as ”metamodels”) can be used to replicate the
outcome of the PSM at negligible CPU cost, after being trained
on a set of already evaluated individuals. Nowadays, MAEAs
have become a standard tool in evolutionary optimization.
Response surface models (RSM), artificial neural networks
(ANNs) [8] and Gaussian processes [3] are among the most

widely used metamodels. In this work, without loss in gen-
erality, Radial Basis Function (RBF, [8]) networks, which are
three–layer ANNs, are used as metamodels. With the exception
of the few starting MAEA generations, all population members
are approximately evaluated on local metamodels trained on
the fly (on–line trained metamodels; to be explained in Section
II) and only the most promising among them undergo re–
evaluation on the PSM. The inexact pre–evaluation (IPE) of
the population members in each generation is a key feature of
our method, see [1], [3], [9]. This MAEA differs noticeably
from the majority of other MAEAs which rely upon a single
off–line metamodel trained during a pre–processing phase
based on Design of Experiment strategies [10].

On the other hand, real–world optimization problems may
have a great number of design variables. The so–called ”curse
of dimensionality” refers to both the performance degradation
of EAs or MAEAs in problems with a great number of design
variables and the fact that the prediction ability of metamodels
becomes questionable with many input units, for a reasonably
low number of training patterns.

Even without using metamodels (i.e. in standard EAs),
the search process becomes quite faster, if the objective
function f is separable. By definition, f is separable if there
exist functions f1, f2, . . . , fN , such that: f(x1, x2, . . . , xN ) =
f1(x1)f2(x2) . . . fN (xN ). In such a case, it suffices to min-
imize f1(x1) in terms of x1, f2(x2) in terms of x2 and so
on. Since EAs perform better in separable problems, it would
be beneficial to transform/map the design space to a new one,
usually referred to as the feature space, where the problem
becomes ”as separable as possible”. This mapping can be
carried out through the PCA of an appropriate data set.

Moreover, artificially reducing the number of design vari-
ables the metamodel ”sees” from N to N−NDR, using a di-
mensionality reduction technique, may improve its prediction
ability and even reduce the corresponding training cost. This
will be the case if the N−NDR design variables the metamodel
is trained on are those affecting mostly the objective function.
So, in each generation of a MAEA, during the IPE phase,
the PCA reduces the number of features the ANN sensory



units see. In other words, the metamodels are trained on
patterns having less components than the design variables’
array. Keeping only components having large variances, the
IPE phase of the MAEA becomes much more effective.

The use of PCA for improving the performance of EAs
and/or MAEAs, in large scale problems with a great number of
design variables, has been proposed in [11]. The PCA assists
the application of evolution operators and the training of meta-
models. In the present work, the Kernel PCA is implemented
instead of the Linear PCA used in [11]. It will convincingly
be demonstrated that this boosts further the convergence of
the EAs or MAEAs.

The first part of the results section is dealing with some
widely used mathematical optimization problems. Due to their
low CPU cost, these can be solved several times, for different
random number generator (RNG) seeds and safe conclusions
can be drawn. The benefit in these mathematical problems
cannot be measured in CPU cost; it will necessarily be
measured in terms of the number of evaluations so as the
outcome of this study to correspond to the expected gain in
expensive real–world problems. In the second part, the PCA
variants of EA and MAEA are used to solve aerodynamic
shape optimization problems.

II. THE (µ, λ) EA & MAEA

Assume that EAs are used to solve the following optimiza-
tion problem with Mo objective functions and Mc constraints

minF⃗ (x⃗) = min{f1(x⃗), ..., fMo
(x⃗)}

subject to cj(x⃗) ≤ 0, j=1, . . . ,Mc (1)

where x⃗∈RN is the optimization (or design) variables’ array.
For all design variables, their lower and upper bounds are
known. For Mo>1, eq. 1 represents a MOO problem; and the
EA computes the (Pareto) front of non–dominated solutions.

A brief description of the background (µ, λ) EA used in this
paper follows. It handles three populations, namely the parent
(Sg

µ, with µ members), the offspring (Sg
λ, with λ members)

and the elite one (Sg
ϵ , with ϵ members at most), where g

is the generation counter. Sg
µ results from the application of

the parent selection operator to (Sg−1
λ ∪ Sg−1

ϵ ). Sg
λ results

from Sg
µ, via crossover and mutation, including elitism. In

MOO problems, the Pareto front is approximated by the Sϵ

of the last generation. Each offspring is given a scalar cost
by processing the fi values of the current population based
on dominance and sharing criteria such as those involved in
the SPEA and NSGA techniques, [12], [13]. In constrained
problems, individuals violating constraints are penalized with
an exponential penalty function. In SOO, the scalar cost is
nothing more than the objective function’s value. All the
already evaluated individuals, paired with the corresponding
objective function and constraint values, enter a database (DB)
which is dynamically updated during the evolution; duplicate
entries are not allowed.

In the MAEA, ANNs or any regressor may serve as meta-
models, undertaking the IPE of the newly formed offspring

in each generation [1], [14]. The IPE of the Sg
λ members

starts after a predefined minimum number (T IPE
DB ) of already

evaluated individuals is archived in the DB; up to this point,
a standard EA is used. This MAEA relies on on–line trained
metamodels; these are trained separately for each new popu-
lation member on its closest (in terms of Euclidean distances
in the normalized design space) already evaluated individuals
found in the DB, [9]. The selection of RBF centers and training
patterns is important since it affects the prediction ability of the
metamodel. At the end of the IPE phase, just a few (λe≪λ)
top population members, i.e. the most promising ones based
on the metamodel, undergo re–evaluation on the PSM.

III. PCA-DRIVEN EAS AND MAEAS

Principal Component Analysis (PCA) uses an orthogonal
transformation to convert a set (X) of observations x⃗ ∈ RN

of possibly correlated variables into a set of uncorrelated
variables called principal components. In our case, the data
set X must be formed by collecting M possible solutions
to the problem with some common characteristics. The PCA
does not need responses to be known (unsupervised learning).
In the (µ, λ) EA or MAEA we are dealing with, X can be
formed by either the offspring of the last generation (their
common characteristic being that they gradually tend towards
the optimal solution(s), at least after the first explorative gen-
erations) or the current elite set. The transformation based on
the outcome of the PCA correlates each principal component
with a variance of the observations; the first component is
in the direction of the largest variance, the second is in the
direction of the second largest variance and so forth.

Assume that the simplest possible variant of PCA (Linear
PCA) is implemented on a set of observations. It is assumed
that the data set X has been post–processed so as to have zero
mean (E[X]=0) and unit standard deviation (E[X2]=1) along
all directions. Its covariance matrix is PN×N = 1

M XXT . This
matrix contains the observations’ correlation and is decom-
posed as PN×N =UΛUT where Λ is a diagonal matrix with
the eigenvalues of P and U is the matrix with the eigenvectors
of P as rows. These eigenvectors are the principal components
and the corresponding eigenvalues are their variances. Thus,
a feature space based on the principal components becomes
available.

Linear PCA performs well in problems with linearly cor-
related variables [11], [15]. However, in complex nonlinear
problems, Linear PCA may not perform well and Kernel PCA
(KPCA) [16] is, indeed, a viable alternative.

KPCA transforms the design space to the feature space
through a mapping function, ϕ :RN →RL. L can be arbitrarily
large. Also, as it will be shown below, there is no need to
explicitly define the mapping function ϕ. Given a data set X,
the covariance matrix PL×L (or just P hereafter) elements are

Pτσ=
1

M

M∑
i=1

ϕτ (x⃗
i)ϕσ(x⃗

i), τ, σ=1, . . . , L (2)

The corresponding eigenproblem is expressed by the fol-
lowing system of L equations



P v⃗r=Λrv⃗r, r=1, . . . , L (3)

where Λ is the (L×L) diagonal matrix with the corresponding
eigenvalues. Depending on the value of L, the solution of eqs.
3 may become prohibitively expensive. The so–called kernel
trick can help overcome this problem. Each eigenvector can
be written in the form

v⃗r=

M∑
τ=1

arτ ϕ⃗(x⃗
τ ), r=1, . . . , L (4)

or, after plugging eqs. 4 into 3,

L∑
j=1

Pij

M∑
τ=1

arτϕj(x⃗
τ ) = Λr

M∑
τ=1

arτϕi(x⃗
τ ), i = 1, . . . , L (5)

The inner product of eqs. 5 and ϕ⃗(x⃗q), q=1, . . . ,M , yields
a system of M equations,

L∑
i=1

L∑
j=1

M∑
τ=1

arτPijϕi(x⃗
q)ϕj(x⃗

τ ) =

Λr
L∑

i=1

M∑
τ=1

arτϕi(x⃗
τ )ϕi(x⃗

q), q = 1, . . . ,M (6)

Using eq. 2, eqs. 6 can be written as

L∑
i=1

L∑
j=1

M∑
τ=1

M∑
z=1

arτϕj(x⃗
z)ϕi(x⃗

z)ϕi(x⃗
q)ϕj(x⃗

τ ) =

MΛr
L∑

i=1

M∑
τ=1

arτϕi(x⃗
τ )ϕi(x⃗

q), q = 1, . . . ,M (7)

The (M×M) kernel matrix K is defined as

Kij = k(x⃗i, x⃗j) = ϕ⃗(x⃗i)ϕ⃗T (x⃗j) =

L∑
p=1

ϕp(x⃗
i)ϕp(x⃗

j) (8)

Among the most widely used kernels are the polynomial,
the radial basis function (RBF) and the sigmoid ones [16],
[17]. In this paper, the RBF kernel,

k(x⃗i, x⃗j) = exp

(
− ||x⃗i − x⃗j ||22

2σ2

)
(9)

where σ is the width constant, is exclusively used; comparing
different nonlinear kernels is beyond the scope of this paper.

Combining eqs. 7 and 8, the final system of equations to be
solved (instead of eq. 3) for each eigenvalue is

Ka⃗q = MΛqa⃗q, q = 1, . . . ,M (10)

where a⃗q is the corresponding eigenvector. The use of Kernel
PCA within an EA or MAEA includes the following steps:

1) Compute the kernel matrix (eq. 8) using the current
offspring population.

2) Compute the eigenvalues (Λ) and eigenvectors (a) via
the solution of eqs. 10.

3) Each new individual x⃗ is projected, into the feature space
as follows

Cr(x⃗) = v⃗r · ϕ⃗(x⃗) =
M∑
i=1

ari k(x⃗
i, x⃗), r = 1, . . . ,M

(11)
In the present method, transforming the individuals back to

the design space is absolutely necessary. In Linear PCA this
is straightforward, which is not the case for the Kernel PCA
though. The reason is that a vector ϕ⃗(x⃗′) ∈ RL might not have
a unique representation in RN . Nevertheless, a vector z⃗∈RN

which approximately maps to ϕ⃗(x⃗′) can be found. The design
vector x⃗′∈RN maps to C⃗(x⃗′)∈RM as follows

Cr(x⃗
′) =

M∑
i=1

ari k(x⃗
i, x⃗′), r = 1, . . . ,M (12)

This representation ”compresses” the information of the fea-
ture space into M dimensions, while avoiding to compute the
mapping function ϕ⃗. A projection of C⃗(x⃗′) to the RL space
is defined as

p⃗(x⃗′) =

M∑
r=1

Cr(x⃗
′)v⃗r (13)

The minimization of the Euclidean distances between the
projection p⃗(x⃗′) and ϕ⃗(z⃗) leads to the computation of

z⃗ = argmin||p⃗(x⃗′)− ϕ⃗(z⃗))|| (14)

If the RBF kernel, eq. 9 is used, problem (14) can be solved
via the following fixed point iterative algorithm, [17],

z⃗new =

∑M
i=1

∑M
j=1 Ci(x⃗

′)aijexp(−
||x⃗j−z⃗old||22

2σ2 )x⃗j∑M
i=1

∑M
j=1 Ci(x⃗′)aijexp(−

||x⃗j−z⃗old||22
2σ2 )

(15)

Having presented the PCA method, its integration in EA–
based optimization follows. The PCA can be used during the
evolution, to reduce the turnaround time of the optimization,
by transforming the non–separable problem to an ”almost
separable” one. This transformation can also be used during
the IPE phase, by training metamodels with less input units.

A. EA with PCA–driven evolution operators

In an EA assisted by the PCA, the role of the latter is
to identify the principal component directions and map the
design space to a new feature space, in which the problem
becomes ”more separable”. For the first gPCA generations,
the PCA is not applied. In all subsequent generations, the
current offspring population is considered to be the set of M
training patterns. The offspring population is used due to its
diversity (in the course of generations, it becomes populated
by members which, or the majority of which at least, are
close to the optimal solutions) and because it includes vital



information for the sought optimal solutions. Once the design
space is mapped to the feature space via eq. 12, the evolution
operators are applied. The principal components are computed
using the current offspring population (prior to the application
of the evolution operators), stored and used at the beginning
and the end of the generation.

Regarding mutation, an increased mutation probability
along the directions with small variances should preferably
be used in order to re–enforce the exploration in this direc-
tion. The mutation probability for each principal component
(superscript i=1, . . . ,M ) is given by, [15],

pimut = αpmut + (1− α)Mpmut
yi∑M
i=1 yi

(16)

where pmut is a constant, user–defined, mutation probability,
α ∈ [0, 1] (preferably kept below 0.5 to lay emphasis on the
second term in eq. 16) and yi is computed as

yi =
Vmax − Vi

Vmax − Vmin
(17)

where Vi are the variances of the current offspring popula-
tion, after being mapped to the feature space and Vmax =
max{V1, ..., VM}, Vmin=min{V1, ..., VM}.

After the application of the crossover and mutation op-
erators, the population is transformed back to the design
space using eq. 15. An EA or MAEA in which the evolution
operators are assisted by the Linear PCA will be referred to
as an EA(L) or MAEA(L). In contrast, EA(K) or MAEA(K)
denote the use of Kernel PCA, for the same purpose.

B. EAs with PCA–Truncated Metamodels

The computational cost of the metamodel training and its
prediction accuracy are affected by the problem size. Since
λ metamodels should be trained per generation, the training
cost should be negligible compared to the cost of a single
evaluation on the PSM. Here, dimensionality reduction means
to train the metamodels with patterns with less components
than the number of design variables. This noticeably improves
the prediction accuracy of metamodels.

As mentioned before, the eigenvectors computed by the
PCA are associated with the corresponding eigenvalues, which
represent the variances. The variances indicate the directions
of the feature space along which the members of the cur-
rent generation are less or more scattered (a high variance
indicates that the available data are adequately scattered in
this direction). The directions of the feature space with low
variances are ignored, since all members are so clustered
around the same value in this direction, thus the corresponding
components of the training patterns are not expected to affect
the prediction ability of the metamodel. The number (NDR)
of design variables to be cut–off is user–defined. Thus, the
metamodel is trained on data of lower dimension.

This truncation applies only during the IPE phase of
MAEAs and after TPCA

DB individuals have been archived in
the DB. In particular, for each population member, a ”person-
alized” metamodel is built by selecting the necessary training
patterns as described in [9]. The training patterns are mapped

to the feature space and their principal components associated
with the lower eigenvalues (smaller variances) are truncated. A
MAEA in which the PCA is employed during the training of
the metamodels will be referred to as M(L)AEA or M(K)AEA
depending on whether the Linear or Kernel PCA is used. It is
evident that M(K)AEA(K) denotes a MAEA with a dual use
of Kernel PCA.

IV. APPLICATIONS TO MATHEMATICAL CASES

A first demonstration of the proposed methods in four math-
ematical problems, each of which with different characteristics
follows. The optimization platform EASY [18], developed by
the group of authors, was used to implement the PCA-based
variants of the (µ, λ) EA and MAEA.

Three of them are SOO problems while the last one has two
objectives. In all cases, the number of optimization variables
x⃗=(x1, . . . , xN ) is N=50 and o⃗∈RN is the optimal solution
(known beforehand, in all of them). Let z⃗= x⃗− o⃗. The values
of o⃗ and the x⃗ bounds are differently specified in each of the
following cases.

1) Ellipsoid Problem :

min f(x⃗) =

N∑
i=1

z2i (18)

where −1006xi6100 and oi= i/N2. This function is
unimodal and separable.

2) Weierstrass Problem :

min f(x⃗) =

N∑
i=1

(

20∑
k=0

[akcos(2πbk(zi + 0.5))])

−N

20∑
k=0

[akcos(πbk)] (19)

where a = 0.5, b = 3,−0.5 6 xi 6 0.5 and oi = i/N .
This function has several local optima with a single
global optimum though. It is continuous over the whole
search space but differentiable only over a subset of it.
Moreover, it is non–separable, which makes it a nice
test–bed for assessing the PCA variants of EA.

3) Rosenbrock Problem :

min f(x⃗) =

N−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2) (20)

where −0.5 6 xi 6 0.5 and oi = i/N . This function
is non–separable, having a very narrow valley (in the
search space) separating local and global optima.



4) Two−Objective Problem :

min f1(x⃗) =

N−1∑
i=1

(100(z2i − zi+1)
2 + (zi − 1)2) (21)

min f2(x⃗) =

N∑
i=1

(

20∑
k=0

[akcos(2πbk(wi + 0.5))])

−N

20∑
k=0

[akcos(2πbk · 0.5)] (22)

where a = 0.5, b = 3, −0.5 6 xi 6 0.5, z⃗ = x⃗ − o⃗1,
w⃗= x⃗− o⃗2 and o1i = i/N, o2i = i/N2.

In general, each mathematical case was optimized with
all variants of EA, namely EA, EA(L), EA(K), MAEA,
MAEA(K), M(K)AEA(K). Each optimization was repeated
20 times with different RNG seeds, so as to reduce their
effect upon the optimization procedure. The convergence plots
present the averaged performance of the evolution in the
course of evaluations on the PSM of the 20 runs. For each
run, a stopping criterion of 50000 evaluations was imposed.
A (10, 20) EA or MAEA was used in all cases. In the MAEA
variants, T IPE

DB =100 and λe=3. In the runs assisted by the
PCA, gPCA=2 and, when metamodels are used, TPCA

DB =100,
NDR=40.

Comparison of the convergence histories of all variants are
presented in figs. 1 to 4. For the two–objective problem, the
hypervolume indicator measures the quality of the fronts of
non–dominated solutions. This practically quantifies the area
dominated by the front of non–dominated individuals up to
a user–defined nadir point; higher values correspond to better
fronts, i.e. those being closer to the Pareto front.

All PCA variants lead to faster convergence compared to
the corresponding EA and MAEA (the EA is compared to
EA(L), (K) and the MAEA to MAEA(K) and M(K)AEA(K)).
The Kernel PCA constantly outperforms the Linear one.
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V. AERODYNAMIC SHAPE OPTIMIZATION PROBLEMS

In this section, the aforementioned variants of EA and
MAEA are used to optimize the shapes of an isolated airfoil
and a car, based on aerodynamic performance criteria.



A. Isolated Airfoil Shape Optimization

The first real–world optimization case deals with a two–
objective problem in which the shape of an airfoil is optimized
for minimum drag (CD) and maximum lift (CL) coefficients.
The flow conditions are: freestream Mach number M∞=0.19,
flow angle a∞=5o and Reynolds number based on the chord
Rec=1.3 · 107.

The airfoil shape and the mesh deformations are controlled
by a morphing technique based on harmonic coordinates. This
is a generalization of barycentric coordinates and was initially
proposed in [19] for character articulation. A topologically
flexible structure called ”cage” is used to control deformations.
Herein, this concept is extended to CFD applications where,
apart from performing the shape morphing, it is important to
simultaneously deform/displace the CFD mesh accordingly. To
avoid mesh quality degradation due to huge distortions at the
boundaries of the cage, a two–cage structure is adopted instead
(fig. 5). Each cage is filled with a coarse unstructured mesh,
which is of course much coarser than the CFD mesh. The
harmonic coordinates of the vertices of the inner cage are
computed on the coarse mesh by solving as many Laplace
equations as the number of the inner cage boundary vertices,
with appropriate boundary conditions. The so–computed har-
monic coordinates are, then, interpolated from the cage coarse
mesh to the CFD mesh nodes. A harmonic deformation of
the CFD mesh can, then, be explicitly defined by the cage
boundary vertices displacements. The inner cage controls the
shape deformation and mesh morphing while the outer cage
limits the effect of morphing; in fact, the outer cage vertices
remain still and the Laplace equations don’t need to be solved
for them.

In this case, 16 vertices were used to define the inner cage
(fig. 5). Two of them coincide with the leading and trailing
edge of the airfoil and remain still so as to keep the airfoil
chord constant. The remaining vertices were allowed to vary
along both directions, leading to 28 design variables in total.
The coarse cage mesh is formed by triangles generated by the
advancing front method. The CFD evaluation is carried out
on the GPU–enabled in–house Navier–Stokes equations solver
for compressible fluid flows [20], [21]. The CFD mesh is fully
unstructured with approximately 64 ·103 nodes. An averaged
cost per evaluation of a single individual on a single NVIDIA
K20 GPU is about 3min. This wall clock time includes the cost
of mesh deformation. The optimization was carried out using
a (20, 40) EA, EA(K), MAEA, MAEA(K) and M(K)AEA(K).
In the MAEA variants, T IPE

DB = 80 and λe = 2. In the
runs employing the PCA, gPCA = 2 and, if metamodels are
used, TPCA

DB = 80, NDR = 18. A stopping criterion of 500
evaluations on the CFD model was imposed.

A comparison of the convergence histories of the EA’s
variants is presented in fig. 6. The integration of KPCA in EAs
can compute a better front of non–dominated solutions with
the same computational budget. The ”optimal” front of non–
dominated solutions from all the optimizations (computed by
M(K)AEA(K)) is presented in fig. 7 along with three indicative

airfoil shapes.

Fig. 5. Shape Optimization of an Isolated Airfoil: The two–cage structure
used for shape parameterization and mesh deformation. The coordinates of
the vectices of the inner cage (red), excluding those of the leading and trailing
edge, stand for the design variables of the problem. The outer cage (blue) is
not allowed to change. The (much finer) CFD mesh is not shown.
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Fig. 6. Shape Optimization of an Isolated Airfoil: Comparison of the
convergence history of the optimizations performed in terms of the number
of CFD evaluations which is proportional to the CPU cost.

B. Shape Optimization of the DrivAer Car

The last case is concerned with the optimization of the shape
of the fastback configuration of the DrivAer car model. Air
flows in the axial direction with 11 m/s, while the road and the
car’s wheels remain static. The aim is to redesign the car for
minimum drag coefficientz (CD). The car shape parameteriza-
tion was based on the volumetric NURBS method, [21], which
additionally undertakes the mesh deformation according to the
changing geometry of the rear part of the car. In particular, a
7 × 7 × 7 NURBS control box was used to parameterize the
volume around the car’s boat tail and rear underbody, fig. 9.
The three internal rows of control points in each direction
were allowed to vary along all three Cartesian directions.



Fig. 7. Shape Optimization of an Isolated Airfoil: The front of non–dominated
solutions computed by the M(K)AEA(K).

Fig. 8. Shape Optimization of an Isolated Airfoil: Iso–pressure coefficient
areas around the airfoil with Cl = 1.082, Cd = 0.0845 from the front of
non–dominated solution of fig. 7.

All other control points were kept fixed, in order to ensure
smooth transition between deformable and non–deformable
areas, leading to 81 design variables in total. Due to symmetry,
only half of the car is modeled. Each candidate solution was
evaluated with the incompressible fluid flow variant of the
same GPU–enabled Navier–Stokes solver [20]; a steady flow
solver was used; depending on the geometry of the rear part of
the car, mild flow unsteadiness might appear, in which case the
time–averaged drag of the last iterations is used as objective
function. The Spalart–Allmaras [22] turbulence model is used.
The computational mesh consists of approximately 1.4 · 106
nodes and each evaluation takes about 40min on an NVIDIA
K20 GPU, including the morphing process.

The optimization was carried out using a (10, 20) EA,
EA(K), MAEA, MAEA(K) and M(K)AEA(K). The stopping
criterion was 200 evaluations on the CFD model. In the MAEA
variants, T IPE

DB =20 and λe=3. In the runs supported by the
PCA, gPCA=2 and, when metamodels are used, TPCA

DB =20,
NDR=71.

A comparison of the convergence histories of the above

Fig. 9. Shape Optimization of the fastback DrivAer Car: NURBS morphing
box. Only the rear part of the car which is encapsulated into the morphing
box is allowed to change during the optimization loop.

EA variants can be found in fig. 10. It is clear that, using the
Kernel PCA to assist both metamodels and evolution operators,
enables the optimization algorithm to perform better, that is
to find better solutions with the same computational budget.
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Fig. 10. Shape Optimization of the fastback DrivAer Car: Comparison of the
convergence history of the optimizations performed in terms of the number
of CFD evaluations which is practically proportional to the CPU cost.

A comparison between the pressure fields on the optimal
and baseline shapes of the car is shown in fig. 11.

Fig. 11. Shape Optimization of the fastback DrivAer Car: Comparison of the
pressure field on the optimal (right) and the baseline (left) shape of the car.
The rear part of the car exhibits higher pressure and this reduces the drag.



VI. CONCLUSION

Two methods capable of improving the efficiency of EAs
and MAEAs, when applied to high-dimensional (engineering)
optimization problems, were demonstrated. They rely on the
KPCA which is performed anew in each generation using the
current offspring population. The KPCA can (a) assist the
evolution operators by mapping the populations to a feature
space, in which the problem appears to be ”more separable”
and (b) reduce the number of design variables with which the
metamodels are trained. The Kernel PCA has the ability to
process the design variables more efficiently than the Linear
PCA, thus, the evolution operators perform better in the
KPCA’s feature space. This can lead to a better performing
EA–based optimization, as shown in the presented problems.
In MAEAs, the number of design variables used to train the
metamodels can be significantly reduced, leading to more
accurate predictions. The latter can be seen by comparing
the metamodel’s relative prediction error between MAEA and
M(K)AEA; see for instance fig. 12 for the Weierstrass problem
of section IV. The EA variants supported by the KPCA
outperform not only the conventional EAs but those assisted
by the Linear PCA too, as it becomes clear from the results of
the mathematical problems. In real–world applications, such as
the optimization of aerodynamic shapes, usually with a great
number of design variables and costly evaluations, the EA or
MAEA which make use of the KPCA can be proved abso-
lutely necessary for these problems to be solved at affordable
computational cost. Note that, in this kind of problems which
involve expensive CFD software, the computational cost for
additionally implementing the KPCA is negligible compared
to the cost of a single evaluation.

Fig. 12. Comparison of the relative prediction error (f−f̂)/f (averaged over
the entire offspring population in each generation; f̂ is the approximation to
the objective function f , based on the metamodel) of the metamodels with and
without the use of the KPCA. Computed by off–line processing the MAEA
and M(K)AEA results of the Weierstrass problem.
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