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Abstract—This paper presents Evolutionary Spatial Games
in dynamic environments. This game is a concept based on
Evolutionary Game Theory (EGT) and Evolutionary Algorithms
(EAs). The main goal is to study the implicit influence of dynamic
environments on the behavior of agents in EGT. The paper
considers three different types of populations which interact
using a modifiable and individualized payoff matrix for their
agents. As each agent of a certain type can have a different
payoff value than the rest of the population, the populations
evolve towards a diverse set of agents. In order to study the
diversity in each population, we propose a model based on EAs
and study the impact of dynamic environments on the populations
and their diversities. The main question to answer is that whether
diversity can help to obtain a stable strategy and if the dynamics
in a certain environment can influence the Spatial Game. The
experiments on three different environments show that the stable
strategies can contain a diverse set of agents particularly in
dynamic environments.

I. INTRODUCTION

Evolutionary Game Theory (EGT) has been used to analyze
the stability of a certain strategy (population of agents playing
a certain strategy) when interacting or playing against other
strategies co-existing in the same environment [1] [2]. In fact,
in this way we can analyze the behavior of individuals and
observe if a cooperative behavior can develop in a world of
several strategies [2]. In the field of spatial games the effects
of the spatial distribution of agents on the development of
cooperation has been studied [3].

The iterated prisoner’s dilemma (IPD) game has been very
often used to study the evolution of cooperative behaviors in
evolutionary computation [4], [5]. The major aspects consider
the payoff matrix, spatial relations among agents, representa-
tions and noisy games e.g., [6]–[9]. The choice of a represen-
tation scheme is known to be important. Ishibuchi et al. [8]
studied various representations and introduced heterogeneous
representation schemes in a single population in order to
examine the evolution of cooperative behavior. The goal of our
paper is to study the influence of the dynamic environments
and representations on the behaviors in EGT. For this purpose,
we combine the concepts of Evolutionary Algorithms (EAs)
and EGT. The individuals contain genes which can adapt to
the environments. From the other side they utilize a payoff
matrix for interactions. In this context, the effect of the payoff
has been studied in the literature e.g. in [6]. In our model
each agent uses a global payoff matrix as a basis for his
type of strategy for interaction purposes. However, the agent

modifies the values of the payoff matrix according to his
genes which are adapted to the environment over time. In
other words, we do not define any explicit behaviors. Let
us assume we have Hawks, Doves and Worms as agents.
The payoff matrix from EGT defines that Hawks win against
Doves. Nevertheless a Hawk located in a very poor area in the
environment with less nutrition is not as powerful as a Hawk
from a rich environment. This results in different behaviors of
Hawks interacting with Doves. The question arises if stability
is possible in the presented model and whether diverse sets of
agents can develop under the given dynamic environments.

The focus of this work is on stability between three popu-
lations of agents and on diversity of the gene pool in dynamic
environments. Instead of having an explicit fitness function
and selection method as in EAs, our concept is close to natural
selection. Every agent can accumulate or lose resources when
executing behaviors. Agents with low resources will perish,
while agents with many resources can reproduce. Thus, agents
which fit into their local environment have a higher probability
of passing their mutated genomes to the next generation. In
our model, the behaviors depend both on the agent’s local
environment and the behaviors of other individuals. The results
of the simulation indicate that diversity in one strategy can
help to obtain a stable state for the population with that certain
strategy. Furthermore we study the influence of the dynamic
environments with various changing properties. Our results
demonstrate the dynamics in the environment can help increase
the diversity in the populations. In addition, the stability can
be increased in environments with slow dynamics.

This paper is structured as follows. Section II includes
the background. The main contribution of the paper is be-
ing presented in Section III. Section IV is dedicated to the
experiments and Section V concludes the paper.

II. BACKGROUND

The field of EGT deals with the question how cooperation
can arise in populations of selfish individuals [1]. Its appli-
cations cover a wide range of topics in the various fields
such as sociology, economics and physics. The concept of
evolution into the Game Theory (GT) was introduced by
Maynard Smith and Price [1]. In their work ”The logic in
animal conflict” a repeated game with five fixed strategies is
used and Evolutionary Stable Strategy (ESS) is introduced as
one of the most important concepts in EGT. They analyzed



the strategies which remain stable in a population over time.
It means that if most members of a population adopt a certain
strategy, there will be no other so-called mutant strategy that
can give a higher payoff [1].

A more dynamic approach in ESS contains replicator dy-
namics [10], [11] which computes the mean fitness of a certain
strategy by taking the frequency of the strategies into consid-
eration. However, these equations require assumptions such as
an infinite size for the population, a well-mixed strategy and no
mutations. Considering a spatial component in EGT has been
studied in the field of spatial games and Cellular Automata
[12]. Nowak and May [3] experimented with a simple deter-
ministic spatial implementation of the non-repeated prisoner’s
dilemma, resulting in complex chaotic spatial patterns. They
concluded that ”a deterministically generated spatial structure
within populations may often be necessary for the evolution
of cooperation”.

A more complex model by Lindgren and Nordahl [13]
considers aspects such as repeated games, noise and genome
for the individuals which acts as a memory for the strategies in
repeated game. They found that even homogeneous environ-
ments can affect the evolutionary processes. Their extension
of the model has shown that given the dynamics of the spatial
model, diversity can be generated even in a homogeneous
environment [13]. The influence of age of the individuals
[14] and the spatial disorder with empty sites [15] have been
recently studied in EGT.

III. EVOLUTIONARY SPATIAL GAMES

In this section, we describe our proposed model called
Evolutionary Spatial Game. In the following we describe the
agents, theirs behaviors and the environment.

A. Agents and Their Genes

An agent is defined as a 4-tuple (~x, s, e, a). The vector ~x
represents the genotype (with n genes). One fixed strategy
denoted by s is assigned to every agent. We consider three
strategies (types of agents) such as Hawk, Dove and Worm.
The result from the interactions between two agents deter-
mines the received payoff for an agent and is added to the
accumulated payoff denoted by e. The age a of an agent is
being recorded in every time step. The maximum age is pre-
defined. The age limits the life-span and influences the agent’s
behavior. In conclusion an agent is defined by:

• ~x ∈ Rn: Genome;
• s ∈ {Hawk,Dove,Worm}: Strategy or Type;
• e ∈ R: Accumulated payoff;
• a ∈ N0: Age;
• f(~x) : Rn → B: Mapping genes to behaviors in B;
• fconsumption(~x) : Rn → R: Mapping genes to payoff.
Every agent has a set of certain behaviors. The quality

of these behaviors depends on the genes. The function f(~x)
maps a genotype to a behavior. An agent can receive a
payoff through the interaction behavior, which is based on
the concepts from EGT and considers a certain strategy for an
agent.

TABLE I: Payoff matrix

Payoff Hawk Dove Worm
Hawk -5 10 0
Dove -10 2 5
Worm 0 -5 2

The genome of an agent is considered to include the
following n = 9 genes: Move Threshold (x1), Exist Threshold
(x2), Death Modifier (x3), Reproduce Modifier (x4), Age
Modifier (x5), Attack Modifier (x6), Defense Modifier (x7),
Photo Efficiency (x8) and Feeding Efficiency (x9). Using real
numbers as genes and an appropriate mapping from genes to
behaviors, satisfies the condition of gradualism in the theory of
evolution. The behaviors can only be active, if the gene value
is greater than zero. Having such a mapping means that natural
selection can favor even slight improvements and the following
can hold: Agents with similar genotypes have a similar chance
of survival (given a similar local environment) and agents with
similar genotypes have similar behaviors (phenotypes).

The strategy of an agent is not affected by the genes and
is important in terms of interaction. The interaction is based
on a payoff matrix denoted by C. If an agent interacts with
another agent, their strategies are used to perform a lookup
in the payoff matrix shown in Table I. The Hawks are the
predators, which ignore agents with the strategy Worm. The
Doves get hunted by the Hawks and cooperate with each
other. Doves hunt the Worms. The Worms cooperate with each
other, while Hawks do not cooperate with each other. A payoff
value is selected from the matrix by playing the column player
against the row player i.e., the payoff value for a Hawk playing
against a Dove (both shown in bold) is 10. We denote this by
C(si, sj) = 10. In our model, we use the payoff values for
reproductions: The interaction using the payoff matrix results
in either a positive or a negative payoff. If the accumulated
payoff is too low, the agent will die, and if it is high enough
it can reproduce. In each time step, we add a negative value
to the accumulated payoff values of the agents. This value is
called basic consumption and is calculated by using a weighted
sum of the genes:

fconsumption(~x) =

n∑
i=0

ωi ∗ x2i (1)

where the effective range of the genes is set to be [0, 1]
and the weights wi are positive values. The input vector for
fconsumption(~x) is clamped to [0,∞) so that it cannot return
negative values.

The accumulated payoff e for each agent depends on the
energy it gets from the environment (e.g., Photosynthesis
and feeding) denoted by fenergy, the energy gained through
interaction with other type of agents finteraction and the
consumption energy. The payoff value can be calculated as
follows:

e = fenergy + finteraction − fconsumption + e (2)



Fig. 1: Top - Property map for movement (white and black
colors indicate the area on which it is hard or easy to move).
Below - Worms (green) with the weakest movement genes,
Doves (blue) slightly better genes than worms, Hawks (red)
the strongest movement genes.

B. Environment

The environment, in which the agents live, is defined as a
discrete 2D lattice, using a torus topology, of the size N×M .
Each cell on this lattice has a coordinate of cx and cy and can
have two states, agent present or empty. The cell properties
are defined as vector ~p ∈ Rm which represents

• p1 (Movement): terrain difficulty which affects movement
and reproduction

• p2 (Light): resource, which agents can use to generate
energy

• p3 (Nutrient): similar to light, but here the resource is
consumed by agents

The cell properties can change over time and are dynamic.
For instance nutrient can disappear, if an agent is located
on the corresponding cell and consumes a portion of it. For
a dynamic environment a sequence of property maps over
a sequence of time-steps must be defined. Given these two
sequences, the property maps are interpolated between the
time-steps. An example for the property map for movement
(p1) is illustrated in Figure 1 for time-steps 500 to 2500 on the
top row. The bottom row shows the agents and their locations
on the environment. Worms are more distributed on the cells
which are easy to move (black areas), where Hawks can move
over the white cells indicating the hard area for moving.

Both the definition of agents and environment allow an
alternative view on the data. The agents can be represented as
vectors combining the agent properties and the cell property
vector. In this case, we have a set of multivariate data, which
is sampled on a discrete grid. This means that the data related
to each cell with coordinates of cx and cy , can be described
by env(cx, cy) = z ∈ Rm+n with m as the number of the cell
properties and n as the number of genes. Thus, including the
agents themselves as part of the environment definition. The
advantage of this definition is that the data can be seen like
in Figure 2, as a set of layered gray-scale textures. Here it
becomes evident that this model has a different concept than
the CA. Instead of having a finite set of states per cell, we
have a vector of real values at each cell.

Fig. 2: The top layer shows a set of agents with the default
color coding (red: Hawk, blue: Dove and green: Worm).
The three layers below represent the cell properties and the
following layers represent the genotype of the agents. On the
right an example for the cell with coordinates (5,1) is shown.

Fig. 3: An overview of the genotype to behavior mapping.

C. Behaviours

For each agent we define six different behaviors such as
Reproduction, Movement, Interaction, Death, Photosynthesis
and Feeding. Figure 3 gives an overview of a mapping between
genes and the behaviors (genotype-phenotype mapping). Some
of the behaviors need to perceive the neighboring cells accord-
ing to the Moore-Neighborhood. The behaviors are described
below:
Movement: Each agent decides to move to a neighboring cell
by considering two conditions:

1) if the cell is empty
2) if p1 at (cx, cy) is smaller or equal to Movement

Threshold of the agent x1

The agent selects a random neighboring cell fulfilling both of
the above conditions and then moves to that cell as shown in
an example in Figure 4.
Interaction: The interaction between the agents is based on
the payoff matrix C and the strategies (types) of the agents.
Each agent interacts with one of its neighbors, which it
selects randomly. In contrast to the classical EGT [1] or GT
approaches, we modify the values of the payoff matrix for
each agent in every iteration. This modification is based on
the genes of both involved agents. The value for modifying
the payoffs depends on the role of the agents during the
interaction. The agent who initiates the interaction is the
attacker (si), the other one is defending (sj). In this case the



Fig. 4: Movement behavior of a Hawk located in the middle
cell (left). Valid cells fulfilling the conditions are marked with
green (middle). Hawk moves to the right cell (right).

modifier value αi is:

αi =
1 + k1a

i + k2x
i
6 + k3x

i
1

1 + k1aj + k2x
j
7 + k3x

j
1

(3)

where i and j indicate the genes for attacker and defender
strategies si and sj . ki is a weight factor with

∑3
i=0 ki = 1

and weights three factors:
• the influence of the agents age a
• the influence of the Attack Modifier gene xi6 for attacker

with strategy si and Defense Modifier gene xj7 for de-
fender with strategy sj

• the influence of the Move Threshold gene x1 for both
attacker and defender

In interactions between predator and prey, the ability to attack
or defend determines the outcome. This concept is modeled
with the two genes related to the Attack Modifier gene x6 and
Defense Modifier gene x7. In such a situation the ability to
move influences the interaction, for instance prey that can run
faster than the predator is more likely to escape. Therefore,
we additionally consider the Move Threshold gene x1 of the
agents.

The maximum age for every agent is a global constant
(called default age) which is scaled by the gene x5. By
dividing the age of an agent by this maximum age, its
normalized age anormalized can be calculated. This value is
used for a lookup on a curve (Figure 5) to determine the
efficiency of interaction fage(anormalized). Figure 5 models
the concept, that individuals reach their maximum efficiency
at a young age and lose it when getting old. The agents start
with a value below 1 meaning that every agent has a short
phase of vulnerability after it spawns.

The agents of type si use a modified value for a payoff for
interacting with another agent of type sj :

finteraction(si) = C(si, sj) ∗ αi (4)

This modification indicates that a Dove can now attack a
Hawk. This case only occurs due to the lack of intelligent
decision making. Hence, the agents can be considered as
underdeveloped, such that prey will even attack its predators
for no reason. In addition the interaction between agents of
the same type is influenced, which has fortunate effects on
the genes selection pressure. For example a Hawk with a high
attack but small defense modifier will get a large payoffs on

Fig. 5: fage(anormalized): The agents reach their maximum
interaction efficiency at a young age.

interaction with Doves with a small values of defense modifier.
However, if the Hawks modifiers differs in a large extent, then
the Hawk will get a disadvantage on interaction with another
Hawk, because of the high ratio both will get a high negative
payoff. This also works the other way around. If a Dove has a
high defense modifier it will receive not as much negative
payoff when it interacts with a Hawk. However, the more
fortunate cooperative interaction with another Dove results in
a smaller payoff, if the attack modifier of the Dove is small.
Such a system does not favor a single superior solution, instead
it requires to be balanced among the population, like the payoff
matrix itself.
Reproduction and Death: Agents can accumulate or lose
energy through interactions. Depending on this energy value
which is the accumulated payoff e, agents can either reproduce
or perish. The reproduction behavior of an agent depends on
its Reproduction Threshold gene x4: The agent can reproduce
if eagent ≥ x4 ∗ GRepro. An agent initiates the reproduction
process if its energy exceeds the reproduction threshold, which
is scaled by the Gene-Reproduction-Modifier (GRepro).

The reproduction itself is a single parent clonal operation,
which includes a mutation operator. The mutation operator
is implemented as follows: a vector of the same length as
the genotype is created, every entry is randomly generated
by using a Gaussian distribution with expected value of zero
and a small standard deviation. This vector is added to the
genotype vector. When an agent intends to spawn an offspring,
empty cells have to be present in the neighborhood. Similar
to the movement behavior these cells have to fulfill a second
condition, this time the cell property is checked against the
existence threshold x2. If the agent’s accumulated energy
drops below the death threshold it will die. This threshold
is scaled by the Death Modifier x3. A dead agent is removed
from the environment.
Photosynthesis and Feeding: The agents consume energy in
every simulation step. This leads to a fast death for agents
in sparsely populated locations of the environment due to the
lack of interaction. However, in nature individuals also use
resources from their physical environment to survive. This is
modeled by the two behaviors photosynthesis and feeding.

These two behaviors base their energy output on the cell



Fig. 6: Energy (flight or fnutrient) from the environment for
different values of eff vs. light (p2) or nutrient (p3)

property of the agent’s location. The output depends on both
of the resources light p2 and p3. Furthermore, it depends on
the corresponding genes for Photo Efficiency x8 and Feeding
Efficiency x9:

fenergy = flight + fnutrient (5)

flight = fage(anormalized) · (
x8 ∗ p2

x8 ∗ p2 − p2 + 1
) (6)

fnutrient = fage(anormalized) · (
x9 ∗ p3

x9 ∗ p3 − p3 + 1
)(7)

One possible mapping for flight and fnutrient is depicted in
Figure 6. The benefit of this function is the parameter eff (eff
indicates x8 and x9 for p2 and p3, respectively) which allows
a smooth control of the curves shape. We observe that with
a resource value of 1, even a poor efficiency value results in
maximum energy payoff. This models the fact that individuals
in fortunate spots with many resources do not have to put
the same effort in energy allocation like the same individual
in a less fortunate spot. This configuration forces selection
pressure on individuals with high efficiency genes in good
spots, because they are wasting energy in the resulting higher
basic consumption costs. In addition, the age of the agents has
an impact on the final value.

The difference between the photosynthesis and the feeding
behavior is that feeding consumes the local resource. This is
done by decreasing the nutrient cell property value by a global
consumption value, which is scaled by the efficiency value.

IV. EXPERIMENTS

The goal of our experiments is to analyze the behavior
of the agents in a dynamic environment. We measure both
stability and diversity as explained in the following. For
the experiments, we have selected three different scenarios
including various dynamic environments.

A. Metrics

For measuring the behavior of the agents, we record the
stability and diversity. Similar to the concepts in ESS, we
define a population to be stable if all the strategies (i. e. Hawk,

TABLE II: Parameters for the environments

parameters Scenario 1 Scenario 2 Scenario 3
N ×M 200× 200 200× 200 200× 200
Max. light 5 6 6
Max. nutrient 5 5 5.25
Reproduct. threshold 100 75 75
Death threshold -100 -50 -100
Default Age 200 200 250
Nutrient increase 0.05 0.06 0.06

Dove and Worm) survive to the last simulation step. Here we
ignore the ratio between the sub-populations.

The diversity of the agents is measured independent from
the pure strategies. Here, we aim to observe the diversity of
agents in terms of their genes. The goal is to evaluate if
diversity can develop or not. In order to measure the diversity
for a given time-step, we build clusters of similar genes. These
clusters are created independently from the spatial distribution
of the agents. Each genotype is interpreted as a location
in a nine-dimensional space. An agglomerative hierarchical
clustering algorithm with Euclidean distance and the centroid
method is used to receive a binary cluster tree from the data
[16]. A cutoff distance of 2.0 is applied to the tree to find
the final clusters which can be interpreted as species in the
population. It is worth noting, that this method is not intended
to receive data that states something about the quality of
diversity. Therefore, this high cutoff distance, with respect to
the mutations standard deviation of 0.01 for every gene, is
chosen. This means, if the number of clusters increases over
time, some agents have developed in a different direction than
the others. To decide if diversity was developed, a threshold
of 30 clusters is defined. Every experiment starts with 3 types
of agents (3 clusters), this means that ten times more species
have to develop than the start configuration, for a population
to be considered diverse. Using the number of clusters as
indicator for diversity hides the information about the long-
time development of genes. For example the fact that the
number of clusters both in an early stage and in an advanced
stage of the simulation is n does not mean that the gene pool
has not changed.

B. Parameter Settings and Scenarios

To evaluate the described model, three different scenarios
are selected. Each scenario consists of a unique environment
with corresponding parameter sets shown in Table II. The
values are selected from a large set of preliminary experiments
we have performed. The setup was measured for 30000 time-
steps. Each experiment is run for 10 times and the average
number of agent and diversities are calculated. For measuring
the diversity of the populations, the mean value of clusters and
the standard error are calculated. The weights for the modifier
of the payoff matrix are selected to be: k1 = 0.35, k2 = 0.35
and k3 = 0.3. Here symmetric payoff matrices are chosen. If
a Dove loses energy in the interaction with a Hawk, the Hawk
cannot receive more energy than the Dove was losing. Tables I
and III show the selected payoff matrix and the parameters for



TABLE III: Agent initial configuration

Agents Hawk Dove Worm wi

Number 1000 1000 1000 -
x1 0.8 0.55 0.4 1.25
x2 0.8 0.55 0.4 0.5
x3 1 1 1 0.25
x4 0.6 0.8 1 0
x5 2 2 5 0
x6 0.75 0.5 0 1.25
x7 0.25 0.4 0.1 1.25
x8 0 0 0.8 1.5
x9 0.0 0.7 0 1

Fig. 7: Scenario 2 - Dynamic environment with slow changing
cell properties in terms of movement, light and nutrient

the three populations. The size of the environment is selected
to be 200× 200 resulting in a maximum of 40.000 agents.
Scenario 1: The first scenario is designed to measure the
behavior of the agents in a simple homogeneous environment.
The goal of these experiments is to replicate the simple con-
ditions of spatial games and to observe if stability can occur
and especially if diversity can develop in such an environment.
Therefore, the property of each cell in the environment is set
to be 0.5.
Scenario 2: The goal of the this scenario is to evaluate and
analyze the behavior of the agents in dynamic environments
with slow changes. We select gradual changing values for the
environment as shown in Figure 7.
Scenario 3: In the third scenario, we select a simple but a fast
changing environment as shown in Figure 8. The environment
is one pattern which rotates over time.

C. Results

Figures 9 and 10 show the results related to the diver-
sity and stability (Average count of each population) for
the three scenarios. We observe that while in the dynamic
environments, the populations contain very diverse sets of
individuals, in the static environment there is no diversity. By
observing the average count of the individuals, we conclude
that no population could be able to survive in Scenario 1. One
reason for this phenomenon is the parameter settings for the
environment and the agents initial values. This will be studied
further into details later in this section. Comparing the rate of
dynamics in the environments, we conclude that in Scenario 2
with slow changes, we have a very diverse set of populations.

Fig. 8: Scenario 3 - Dynamic environment with fast changing
cell properties in terms of movement, light and nutrient

Fig. 9: Diversity for Scenario 1 (top), Scenario 2 (middle),
Scenario 3 (bottom)

Considering the average number of agents in the populations,
the agents with restricted movement values in their genes,
were the most stable ones for both dynamic environments.
We observe that even in the fast dynamic environment the
Hawks could not increase their number when comparing them
to Doves and Worms. The figure show a small number of
agents in the Hawk population, but this small value stays
stable.

In all our experiments we observe that the interaction
between individuals has a heavy and unpredictable influence
on the resulting gene-pool and diversity. Figure 11 shows
screenshots of the simulation on Scenario 2. We notice that



Fig. 10: Average count for Scenario 1 (top), Scenario 2
(middle), Scenario 3 (bottom)

the genes adapt quickly to the given environment, both to
the cell properties and the other agents. This adaptation can
be observed in gradual changing environments, since the
mutation range is very small, even small changes increase the
reproduction probability, so that a gene evolves in a certain
direction. We observe that the white areas (difficult to move
terrain) separates the agents into two sub-populations. These
two populations require time to develop the ability to pass this
difficult terrain. At the time-step 7500, there are two locations
where the agents start to interact with each other, as at this time
step due to the dynamics in the environment the difficult area
turned to get simpler for movements. After this step the doves
fully invade the worm population. Nevertheless, the doves
evolve very diverse genes as shown by the color mapping.

As for evaluating the stability, we calculate the number
of different types of agents over the simulations. Figure 10
show the results for the three scenarios. We could record one
run out of 30 in which all three strategy can survive. This
raises the question about the robustness of our proposed model.
Furthermore, only considering the number of agents of each
type for analyzing the stability seems not to be applicable for
our model, as we have very high diverse genes in one type of
agents. Therefore, it seems that the separation of genes and
the strategies is not very useful. In our model, a Hawk can
develop the same genes as a Worm of the start configuration.
It remains for future works to experiment with an appropriate
mapping from genes to strategies.

Fig. 11: Scenario 2 - Populations over time in a dynamic
environment

TABLE IV: Scenario 1 - Agent new initial configuration

Agents Hawk Dove Worm Weights
Number 1000 1500 15000 -
x1 0.7 0.55 0.55 1.25
x2 0.7 0.55 0.55 0.5
x3 1 1 1 0.25
x4 1 1 1 0
x5 1.5 1.75 3 0
x6 0.75 0.5 0 1
x7 0.25 0.4 0.1 1
x8 0 0 0.8 1
x9 0.2 0.7 0 1

As the results from Scenario 1 illustrate a non-stable be-
havior, we change the parameters for the environment and the
agents as in Table IV. As the results for the two other scenarios
remain unchanged (we do not observe drastic changes), we
only report the results for Scenario 1 as in Figure 12. We
observe that for a homogeneous environment, we are in
fact able to obtain a high diversity among the genes. After
104 time-steps, we achieve 100 clusters, where in dynamic
environments this value can be smaller. We conclude that this
can only be achieved by certain parameter setting, while the
behavior in dynamic environments is not so sensitive to the
parameter settings.

From the experiments we can conclude that it is very
difficult to define an environment in which a well-balanced and
stable population can develop. Evolving advanced behaviors
in environments with dynamically changing local resources
adds to the difficulty of balancing the strategies. Furthermore,
we observe that the most valuable resource for the agents is
an empty space in the environment rather than the resources.
Figure 13 illustrates a set of screenshots from Scenario 1,
taken from simulation-step 1 to 4500. The first and second
row from above show the initial collapse of the population
and the following populations. This event happens, due to
the difficulty of finding a well-balanced start configuration.
The third row shows how the nearly extinct Hawks benefit
from the vast number of Doves. They increase very quickly
in numbers, killing most of the Doves resulting in an increase
in the number of Worms, shown in the fourth row. The last



Fig. 12: Diversity and average number of agents for Scenario
1 with parameters from Table IV

Fig. 13: Evolution of three populations over time in Scenario
1. Green, red and blue represent Worms, Hawks and Doves.

row shows a state of equilibrium between the three strategies,
which was stable until 30.000 simulation steps.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced and analyzed a new model
called Evolutionary Spatial Games in dynamic environments.
One of the major contributions of this work is that the agent
can modify the values of the payoff matrix depending on the

factors from the dynamic environment. Additionally, the genes
of the agents can help them to change their strategies in the
payoff matrix. We have tested our model in three different
scenarios on populations of three different agents (strategies).
We measure the number of agents and the their diversity in
terms of their evolved genes. The results show that in very
especial situations, the stability between three strategies can
remain. Diversity can be developed in dynamic environments,
particularly in environments with slow changes. It was ob-
served that agents made full use of the given environment
opportunities, by evolving into appropriate forms.

The results from this paper concern strategies in games with
populations of agents co-existing in dynamic environments.
Nevertheless, the findings can be interpreted in other contexts
such as finance, economics, social and other complex simula-
tions. Our approach has still room for improvements in future.
There must be more experiments with different payoff values
and other number of species. In addition we can improve the
interactions between the agents by adding a decision making
capability. For instance, the ability to interact can be included
in the genes of the agents. More work need to be done in the
evaluations of the results.
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