
Fuzzy Density Based Clustering
with Generalized Centroids

Christian Braune Member, IEEE
Institute for Intelligent Cooperating Systems

Department for Computer Science,
Otto von Guericke University Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany
Email: christian.braune@ovgu.de

Rudolf Kruse Fellow, IEEE
Institute for Intelligent Cooperating Systems

Department for Computer Science,
Otto von Guericke University Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany
Email: rudolf.kruse@ovgu.de

Abstract—Fuzzy density-based clustering has been a challenge.
Research has been focused on fuzzyfying the DBSCAN algorithm.
Different methods have been proposed that use a fuzzy definition
of core points within the DBSCAN algorithm. Our approach
adapts the membership degree calculation known from fuzzy c-
means by replacing the need for a distinguished centroid point
by a more general cluster skeleton. These skeletons represent
the clusters’ shapes more accurately than a single point. We
show how membership degrees can be calculated and that
the resulting partitioning matrices allow the selection of more
favorable parameters in the clustering process.

I. INTRODUCTION

A common task in data analysis is clustering [1]. It is the
process of grouping data points into a number of previously
unknown and possibly overlapping classes. Data points are
usually represented as vectors ~xi ∈ IRd in a d-dimensional
vector space. A data set X ⊆ IRd is a collection of data points.
A clustering of the data as the result of a clustering algorithm
is a partitioning of the data set X into a finite number k of
subsets Ci such that

⋃k
i=1 Ci = X . This is also called a crisp

clustering. For non-overlapping clusters we also require that
Ci ∩ Cj = ∅,∀i 6= j.

Clustering algorithms can be broadly distinguished into
three categories [2]: (a) hierarchical clustering, where each
point starts as a singleton cluster and clusters are merged
pairwise until only one cluster remains; (b) centroid or model-
based algorithms, which cover well-known algorithms such
as k-means [3] or fuzzy c-means [4]; (c) density-based
clustering such as DBSCAN [5]. The fundamental differences
between these classes are, how clusters are found and which
characteristics the resulting clusters may have. In the case of
hierarchical clustering a complete hierarchy of structures is
built depending on the chosen linkage criterion. Centroid-based
methods usually assign points to the cluster center that they are
closest to. Such algorithm tend to prefer spherical or globular
clusters (w.r.t. the chosen metric), while density-based methods
assign points to clusters by finding areas of similarly high
density.

All these methods mentioned so far have in common that a
point is always only assigned to exactly one cluster. DBSCAN
might be seen as the one exemption here, since it also might
assign points to no cluster at all, if they are considered noise.

Yet, from an implementation’s point of view these points are
all assigned to a noise cluster. So the argument might still hold.
However, if clusters are actually overlapping or the spatial
structure of the data does not justify an unambiguous cluster
assignment, we can use fuzzy clustering. Here the points are
not assigned to a single cluster but rather belong to every
cluster found at the same time but to a different degree. This
membership degree is in inverse proportion the the distance of
the clusters’ centers, i.e. if a point has a small distance to a
cluster center then it has a high degree of membership to that
cluster and vice versa.

For centroid-based clustering algorithms often fuzzy version
exist. The best-known algorithm of this family appears to
be the fuzzy c-means algorithm [4]. One advantage of fuzzy
clustering algorithms is, that they a more robust than their
crisp counterparts. They do not end in local minima of their
respective objective function as often because of the smoother
structure of this function.

Like its original, crisp version, the fuzzy c-means algorithm
tends to find globular cluster shapes for which the cluster
center acts as a natural representative. Because of that the
membership degree can be calculated easily. Density-based
clustering algorithms lack such a distinguished point. Fuzzifying
a density-based clustering algorithm therefore comes much less
naturally than in the centroid-based case. We try to solve this
problem with our approach.

We propose that for fuzzy clustering of such non-convex
clusters – as they may result from density-based clustering
algorithms – another kind of centroid should be used. Single
points cannot capture the shape of the clusters anymore once
they contain too many or too strong concavities. Instead we
want to generate a skeleton that represents the cluster structure
and that can be used to assign fuzzy membership degrees.

The remaining paper will be organized as follows: In
Section II we will briefly explain the DBSCAN algorithm and
in Section III how the k-means algorithm has been fuzzified.
Section IV will give an overview over existing techniques
for fuzzifying density-based clustering algorithms, mainly the
existing DBSCAN algorithm. In Section V we will present
our approach. We evaluate our approach in Section VI and
conclude in Section VII.978-1-4799-7560-0/15/$31 c©2016 IEEE



II. DBSCAN

DBSCAN is a well-known clustering algorithm [5] whose
properties have been extensively studies over the past years. It
is able to find nearly arbitrarily shaped clusters – as long as
the connection between two different clusters is weak enough.
Its main parameters are ε and minPts. The first is used to
describe the size of a hypersphere centered around each data
point while the second parameter is used as a threshold to
identify cluster cores. If the number of data points inside of
its neighborhood exceeeds this threshhold it becomes the core
of a cluster.

Points that both fulfill the core condition and are mutually
contained in each others neighborhoods are said to be directly
density reachable. Points are density reachable if they fulfill
the core condition and can be linked to each other by a series
of points that are each pairwise directly density reachable. At
last, two points are density connected if there exists a series of
points where the first and last point of the series are density
reachable and the two points in question are contained in the
first’s and second’s neighborhood respectively. A cluster is then
identified as a subseet of the dataset where each pair of points
is density connected.

DBSCAN is very sensitive to the choice of parameters.
Improper values might lead to either (almost) all points points
becoming core points or none at all [6]. This problem can, how-
ever, be overcome by trying to estimate the parameters [7] or a
completely unsupervised alternating optimization approach [8].

III. FUZZY CLUSTERING

Sometimes points cannot be unambiguously assigned to
one cluster alone [9]. In the case of the k-means algorithm
if a point is just halfway between two cluster centers, a race
condition occurs and the point usually is assigned to the cluster
center that is handled first by the algorithms implementation.
However, even in less strict cases where points lie roughly
in the middle between two clusters one could be hesitant to
assign a point to a single cluster. In such cases fuzzy clustering
becomes a proper tool to handle these situations.

In the fuzzy c-means algorithm the membership of a point
to a single cluster is 1.0 if and only if its distance to the cluster
center is 0. In all other cases the membership is inversely
proportional to the distance of the point to the cluster center.
It can be easily calculated by the formula

µ( ~xj , ~ci) =
d

2
1−ω

ij
c∑

k=1

d
2

1−ω

kj

=
1

c∑
k=1

(
dij

dkj

) 2
ω−1

(1)

where dij is the distance between the point ~xj and the cluster
center ~ci. ω is called fuzzifier and influences how crisp the
clustering around the centroids is. Higher values for ω produce
crisp clustering only in the closest vicinity of the clusters’
centroids, see Figure 1.

Fuzzy clustering can also be used when there is no
ambiguity since it tends to produce more robust results than
crisp clustering [11].

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
ω= 2

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
ω= 4

Fig. 1: Membership degrees for two cluster centers (one-
dimensional case). Left with lower, right with higher fuzzi-
fier [10].

IV. RELATED WORK

To obtain fuzzy results from a clustering algorithm’s result
one can use the crisp clustering algorithm and simply apply
a fuzzification formula to obtain membership degrees. This
works well in the case of centroid-based clustering algorithms
– the fuzzy c-means algorithm [4] as extension of the k-means
algorithm [3] is a prime example. In density-based clustering the
only cluster representatives available are the core points. This
is where most of the previous work aims at when fuzzifying
the clustering process.

First attempts to creat fuzzy density-based algorithm have
been based on the DBSCAN algorithm in [12]–[14]. Here the
fuzziness is introduced into the core condition. Points that are
within the ε-neighborhood of a point contribute differently to
the cardinality of the neighborhood. Theoretically DBSCAN
does not differentiate between points that are close to the
center of the neighborhood and points that are close to its
border. Central points should however contribute more to the
centers qualification as cluster core. Thus the cardinality of the
neighborhood set is fuzzified. However, the cluster assignment
remains crisp in the end. Clusters

Another approach is described in [15]. In contrast to
the fuzzy neighborhood approach mentioned above, cluster
assignments can become fuzzy here. Core points are identified
in the same way as in the classical DBSCAN algorithm with
one distinction: There are two thresholds for minPts. If the
lower threshold is exceeded the point starts to become a cluster
core. The membership to being a cluster core rises linearly until
the upper threshold is exceeded. Here the point fully becomes
a core point. For non-core points the membership degree to the
respective cluster is simply the maximum of all the membership
degrees of those core points in whose neighborhoods the point
lies. This may however lead to membership assignments that
do not sum up to 1.0 if the point is part of several overlapping
neighborhoods from different clusters but not a core point
itself. Also, points that were (possibly incorrectly) identified
as noise do not receive any membership to any cluster at
all. Lastly, the clustering is not truly fuzzy: due to the linear
interpolation of membership degrees (a) only a discrete amount
of fuzzy membership values can be obtained, and (b) the
distance between a point and its associated core points does
not matter. The obtained membership degrees resemble more
or less the α-cuts of a fuzzy membership degree distribution
of a more general cluster representation. The advantage of this
approach however is, that clusters of varying density can be
found in a more robust way.

A completely different approach is given in [16] in which
DBSCAN is used to find an initialization for the fuzzy c-
means algorithm. By choosing the parameters ε and minPts



1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.5

0.0

0.5

1.0

cluster center

Fig. 2: Two non-convex clusters. The centroids are no proper
representatives for each cluster.

sufficiently small or high respectively, a lot of small and
very dense clusters are retrieved. These act as seeds for the
fuzzy c-means algorithm. Instead of euclidean distance the
authors use the Mahalanobis distance [17]. However, instead
of adjusting the centroid calculation accordingly, the authors
use the arithmetic mean (weighted by the membership degrees
of the associated points) thus using an inappropriate estimator
for the centroids given the distance metric used.

V. GENERALIZED CENTROIDS

Essentially the idea behind assigning fuzzy memberships
is sound and good as it is. It just cannot be easily applied
to density-based clustering. If we recall Equation 1 then we
see that the membership degree of a point to a cluster is
always calculated by its distance to the cluster’s centroid. In the
previous section we reviewed some ways that try to overcome
the need for this calculation by either introducing fuzziness
into the neighborhood definition or the core points themselves.

Our approach differs from these in a sense that we consider a
closer approach to the fuzzy c-means approach. Instead of trying
to find a way to assign fuzzy membership degrees to a data
point by changing the neighborhood or core point definitions of
DBSCAN we aim the centroid definition itself. From Figure 2
can be seen, that the centroids of density-based clusters do not
always lie in the set of points forming the clusters anymore.
Instead they are closer to the points of the other cluster.

Additionally our new algorithm allows to calculate inter-
pretable fuzzy membership degrees to arbitrary points inside
the data space. This may be useful if not all points are known
during the modeling phase or if we are interested in regions
where there is maximal ambiguity between the different clusters
(e.g. for an active learning approach, see Figure 6).

A better way to describe the clusters’ shape would be
cluster skeletons. There are several ways to calculate a cluster’s
skeleton. By first calculating the concave hull of each cluster
(see Figure 3 for a depiction of the generation process,
following [18]) we can obtain the medial axis [19] which we
use for simplicity here. Another way of obtaining the concave
hull would be by using α-shapes [20] or χ-shapes [21]. Our
proposed method has the slight advantage that the resulting
hulls are more stable over a broader parameter range than the
other methods. As such we do not need to put too much effort
into the parametrization of the skeletonization process.

u

v
el

u

v

pm

psplit

X1

X2

X1

X2

Fig. 3: Iteraritve refinement of a cluster’s hull. Starting from
the convex hull (top left) edges on the hull are replaced one
by one until the resulting hull fits the data points better [18].

For a polygon (such as the concave hull) in the plane the
medial axis is defined as the set of all points which do not have
a unique nearest neighbor on the polygon. In the case of convex
polygons these points would all lie inside of the polygon. Since
we are only interested in the part of the medial axis which
spans the data set or cluster, we filter those parts of the medial
axis which are not contained inside the polygon. The resulting
skeleton undergoes an additional filtering step. For each edge of
the skeleton at least two of the three following conditions must
hold for it to be contained in the final, generalized centroid:

a) The edge must not end on the border polygon.
Necessarily this happens when calculating the medial axis,
but these parts of the axis can be seen as an overfitting
of the cluster’s skeleton to the data. This condition must
be always fulfilled.

b) The edge must be contained in the longest path along
the medial axis.
If we consider the data set shown in Figure 4 then the
medial axis will contain an elongated series of edges that
span a the complete cluster. Additionally several shorter
edges will be part of the medial axis that run from the
main axis towards indentations of the border polygon.

c) The edge must lie on any path that exists between
each pair of degree 3 or more.
These edges that run toward the indentations of the border
polygon branch off of the main axis (thus creating nodes
of degree 3 or possibly higher). In the case of the data set
shown in Figure 5 these edges bear additional information
about the clusters’ shapes, i.e. where clusters are broader
or where clusters deviate from a single axis structure.

By pruning the branches we can avoid overfitting of the skeleton
to the data while still getting a proper representation of the
cluster structure.

With these skeletons we are now able to calculate fuzzy
membership degrees in a very similar fashion to the fuzzy
c-means membership degree calculation. The membership
calculation (see Equation 1) requires the only the distance
from a point to the cluster’s centroid. By replacing the previous
centroid by the generalized centroid (or the cluster’s skeleton)
we need to calculate the distance from the point to the skeleton
instead.



Fig. 4: Cluster hulls (p = 0.2, according to [18], left) and the resulting generalized centroid for each cluster (right).

Fig. 5: Cluster hulls (p = 0.2, according to [18], left) with the original, unpruned skeleton (middle, all edges that belong to the
medial axis except those that run onto the border) and the resulting, pruned generalized centroid for each cluster (right).

Fig. 6: Two non-convex clusters. The centroids are no proper
representatives for each cluster.

Let H∗C be the concave hull of a cluster C. This can be
either the shape descriptor obtained by [18], the α-shape [20]
or χ-shape [21]. H∗C can be represented by a set of edges
eH = (xi, xj) between the points xi and xj on the border
polygon in counter-clockwise order (CCW). The points on the
border polygon are necessarily points of the data set X .

Let MAC = {p ∈ IRd|p has no unique nearest neighbor
on H∗C} be the cluster’s medial axis. This can be calculated
as the Voronoi diagram of the border polygon’s edges (not
the points, as one would do in k-means clustering). Since
our polygon has only straight line segments as border the
medial axis will also mostly consist of straight line segments

eMA = (pi, pj). Under certain circumstances the edges may be
arched. For simplicity in the following calculations we assume
direct connections between these edges’ points. Note that the
pi forming the edges now do not need to be actual points of
the data set. Let E(MAC) denote the set of edges (straight line
segments) that represent the medial axis.

Let SC = {e ∈ E(MAC)| the conditions a, b and c hold
for e} be the cluster’s skeleton. With this skeleton given we
are now able to compute the fuzzy membership of a data point
to any given cluster (see Figure 6):

µ( ~xj ,SC〉) =
d
S 2

1−ω

ij
c∑

k=1

d
S 2

1−ω

kj

=
1

c∑
k=1

(
dSij
dSkj

) 2
ω−1

(2)

The only thing that has changed in the calculation is that we
do not compute the membership to the centroid of the cluster
but to its skeleton. This – of course – changes how the dSij
are computed. Instead of simply taking the euclidean distance
between the points xj and ci we now have to deal with several
line segments. The distance between a point and a straight line

l(λ) = pi + λ(pj − pi) (3)

can be calculated by projecting the vector between the point
and the base point of the line onto the directional vector of
the line. By this we find the closest point on the line and can



calculate the length between this point and the point we are
examining.

For line segments however the closest point on the line
carrying the line segment may lie outside of the segment itself.
In this case we need to know whether the point lies before the
line segment’s start or behind its end point. In that case the
smallest distance between a point and the line segment would
be the distance between the point and the starting or ending
point respectively.

~v = ~b− ~a (4)
~w = x− ~a (5)
c1 = ~v · ~w (6)
c2 = ~v · ~v (7)

d(~xj , e) =


d(~xj ,~a) if c1 < 0

d(~xj ,~b) if c2 < c1

d(~xj , l(c1/c2))

, (8)

with e = (~a,~b).

~v is the directional vector of the carrier line, ~w the vector
between the base point and the point for which we want to
calculate the distance. c1 gives us the value for λ such that the
vector from l(λ) towards x is minimal. If c1 is smaller than 0
then the point lies before the starting point of the line segment
and we need to calculate the distance between x and pi. If it
is larger than c2 then x lies behind the end point of the line
segment and we need to calculate the distance between x and
pj . In all other cases we calculate the projection of ~w onto ~v
to get the point closest to x and calculate their distance.

If now we want to calculate the distance between a point x
and a cluster’s skeleton SCi , we calculate the distance between
x and every line segment building SCi . The minimum over all
these distances is the distance between x and SCi :

dSij = min
e∈SCi

d(xj , e) (9)

Because of the possibly non-convex structure of the skeleton
and the varying lengths of the segments it is necessary to
actually check every line segment. Heuristics proposing which
edges are better candidates may fail even for the simplest
skeletons.

VI. EVALUATION

Internal validation measures allow to compare two different
clusterings of the same data set and choose the better clustering.
This can be either used to find the most appropriate number
of clusters in a data set (if used with centroid or model-based
methods) or to choose proper parameters for a density based
clustering algorithm (cf. [8]). Here we will show that our
algorithm yields appropriate partitioning matrices that can be
used to evaluate clustering results obtained by density based
algorithms.

Fig. 7: Aggregation data set. With clusters found by
DBSCAN (ε = 2,minPts = 10) and cluster skeletons.

Fig. 8: Compound data set. With clusters found by DBSCAN
(ε = 1.4,minPts = 10) and cluster skeletons. Black points
indicate noise.

TABLE I: Data sets

Name # points # clusters

aggregation 788 7

compound 399 5

r15 600 15

t4.8k 8000 6

The data sets we use for evaluation show several interesting
properties. In Figure 2 we already see intersecting convex hulls,
which leads to common centroids not being representative
anymore. Figure 7 shows the aggregation data set [22].
Clusters in this data set are not properly seperated (lower left)
or connected by short bridges. Figure 8 shows the compound
data set [23]. Clusters in this data set vary in density or are
completely contained in each others convex hulls (lower left).
Figure 9 shows the r15 data set [24]. Clusters are very close to
each other in the data set’s central region. Figure 10 shows the
t4.8k data set [25]. Clusters in this data set are overlapping
and connected by a thin bridge of points following a sinusoidal
curve. This data set contains – in addition – a high amount of
noise.

To choose whether to use one specific partitioning of the
data or another internal cluster validaten measures can be
used. In contrast to external validation measures that rely on
knowledge about the ground truth of the data (or can be used
to calculate to which extent two different clusterings agree),
internal validation measures are solely based on the clustering



Fig. 9: r15 data set. With clusters found by DBSCAN
(ε = 1.4,minPts = 10) and cluster skeletons. Black points
indicate noise.

Fig. 10: t4.8k data set. With clusters found by DBSCAN
(ε = 10,minPts = 20) and cluster skeletons. Black points
indicate noise.

result and maybe some information about the data’s structure.

The partition coefficition (PC, see Equation 10) [26] and
the partition entropy (PE, see Equation 11) [27] can be used
to compute scores solely based on the fuzzy partition matrix
itself. While the PE should be minimized, the optimal value
for the PC is 1.0. Both optima are actually reached for a crisp
clustering where all membership degrees are either 1.0 or 0.0.

Partition Coefficient [26]

PC =
1

n

n∑
i=1

c∑
j=1

u2ij (10)

Partition Entropy [27]

PE =
1

n

n∑
i=1

c∑
j=1

uij · log uij (11)

An index that also uses structural information about the
data set is the Xie-Beni-Index (XBω, see Equation 12) [28].
It is based on the Fukuyama-Index [29] and differs from this
only by the term for the clusters’ separation. The separation is
usually calculated as the minimal distance between two clusters’
centers. Here we applied the same logic and calculated the
minimal distance between all pairs of line segments forming
either clusters’ skeletons. In the case of the compound data
set this leads to an intersection of the two skeletons. In this

TABLE II: Comparison of index results for good clustering
and bad clusterings.
∗Fukuyama-Index used, since skeletons were intersecting in the lower left.

data set good clustering bad clustering

PC PE XB2 PC PE XB2

aggregation 0.838 0.363 0.083 0.748 0.588 0.500

compound 0.766 0.466 4.779* 0.711 0.610 4.574*

r15 0.892 0.296 0.082 0.965 0.109 0.844

t4.8k 0.890 0.246 0.206 0.778 0.550 0.659

case we fall back to the Fukuyama-Index to prevent division
by zero (cf. Figure 8, lower left).

XBω =

n∑
i=1

c∑
j=1

uωijd
S
ij

n · min
Cj 6=Ck

d(SCj ,SCk)
(12)

Table II shows the results for the test cases chosen for this
evaluation. Compared to bad clusterings (i.e. low agreement
with the ground truth) of the data set, our algorithm always
yields the better or similar results. In the case of the r15 data
set the worse clustering is produced by choosing the parameters
in a way that the eight central clusters are placed under the same
cluster label (i.e. only eight clusters in total were generated).
This central structure seems to yield a better partitioning (w.r.t.
the chosen validation indices) than the ground truth of the data
set.

VII. CONCLUSION

In this paper we have presented a novel fuzzy density-based
clustering algorithm. Our approach takes the crisp clustering
result and calculates a cluster skeleton based on the concave
hull of the cluster. The fuzzy membership degrees are then
calculated in a way similar to the well-known fuzzy c-means
algorithm. The distance calculations needed are not performed
against the arithmetic mean of all points belonging to the
cluster but instead against the cluster’s skeleton which acts as a
new, generalized centroid. Problems can occur if one cluster is
completely contained in another. This may lead to intersections
between the skeletons (and the skeletons are – again – not
suitable as representations for the clusters). Another problem
that might occur is overfitting. If the hulls representing the
clusters are to serrated, the resulting skeleton may become too
dendritic and adapt to the data too well.

However, experimental results based on artificial data sets
and selected, internal evaluation measures show, that our
algorithm yields membership degrees that can be used to choose
the a better set of parameters w.r.t. a fuzzy cluster definition
given implicitly by the used validation index. This can be
used to automatically determine the set of optimal parameters
and perform fuzzy density-based clustering with only a cluster
definition and no explicit parametrization of the density-based
clustering algorithm itself.



TABLE III: Data sets

Name ε minPts

aggregation 2 20

compound 1 10

r15 2.75 30

t4.8k 10 30

APPENDIX

Table III shows the parameters used to obtain the bad cluster-
ings for the evaluation. We used the DBSCAN implementation
from [30]. The data sets were obtained from
https://cs.joensuu.fi/sipu/datasets/ .

REFERENCES

[1] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher,
Computational intelligence: a methodological introduction. Springer
London, 2016.

[2] M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn, Guide to
intelligent data analysis: how to intelligently make sense of real data.
Springer Science & Business Media, 2010.

[3] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA., 1967, pp. 281–297.

[4] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp.
191–203, 1984.

[5] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[6] C. Braune, S. Besecke, and R. Kruse, “Density based clustering:
Alternatives to dbscan,” in Partitional Clustering Algorithms. Springer,
2015, pp. 193–213.

[7] R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, “A framework for
semi-supervised and unsupervised optimal extraction of clusters from
hierarchies,” Data Mining and Knowledge Discovery, vol. 27, no. 3, pp.
344–371, 2013.

[8] A. Dockhorn, C. Braune, and R. Kruse, “An alternating optimization
approach based on hierarchical adaptations of dbscan,” in Computational
Intelligence, 2015 IEEE Symposium Series on. IEEE, 2015, pp. 749–
755.

[9] P. Held and R. Kruse, “Online Fuzzy Community Detection by Using
Nearest Hubs,” in Int. Conf. Inf. Process. Manag. Uncertain. Knowledge-
Based Syst. Eindhoven: Springer, 2016, pp. 678–689.

[10] R. Winkler, “Prototype based clustering in high-dimensional feature
spaces,” Ph.D. dissertation, Otto von Guericke University Magdeburg,
June 2015.

[11] F. Klawonn, “Fuzzy clustering: insights and a new approach,” Mathware
& soft computing. 2004 Vol. 11 Núm. 3, 2004.

[12] E. N. Nasibov and G. Ulutagay, “Robustness of density-based clustering
methods with various neighborhood relations,” Fuzzy Sets and Systems,
vol. 160, no. 24, pp. 3601–3615, 2009.

[13] J. K. Parker, L. O. Hall, and A. Kandel, “Scalable fuzzy neighborhood
dbscan,” in Fuzzy Systems (FUZZ), 2010 IEEE International Conference
on. IEEE, 2010, pp. 1–8.

[14] H. L. S. O. M. Kurihara and H. Sato, “A fast density-based clustering al-
gorithm using fuzzy neighborhood functions,” 75th National Convention
of the Information Processing Society, vol. 1, p. 9, 2013.

[15] G. Bordogna and D. Ienco, “Fuzzy core dbscan clustering algorithm,” in
International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems. Springer, 2014, pp. 100–109.

[16] A. Smiti and Z. Eloudi, “Soft dbscan: Improving dbscan clustering
method using fuzzy set theory,” in 2013 6th International Conference
on Human System Interactions (HSI). IEEE, 2013, pp. 380–385.

[17] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-
ings of the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55,
1936.

[18] C. Braune and R. Kruse, “Obtaining shape descriptors from a concave
hull-based clustering algorithm,” in Advances in Intelligent Data Analysis
XV. Springer, 2016.

[19] H. Blum, “A Transformation for Extracting New Descriptors of Shape,”
in Models for the Perception of Speech and Visual Form. Cambridge:
MIT Press, 1967, pp. 362–380.

[20] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” IEEE Transactions on information theory,
vol. 29, no. 4, pp. 551–559, 1983.

[21] M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient generation
of simple polygons for characterizing the shape of a set of points in the
plane,” Pattern Recognition, vol. 41, no. 10, pp. 3224–3236, 2008.

[22] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1,
p. 4, 2007.

[23] C. T. Zahn, “Graph-theoretical methods for detecting and describing
gestalt clusters,” IEEE Transactions on computers, vol. 100, no. 1, pp.
68–86, 1971.

[24] C. J. Veenman, M. J. T. Reinders, and E. Backer, “A maximum variance
cluster algorithm,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 9, pp. 1273–1280, 2002.

[25] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical
clustering using dynamic modeling,” Computer, vol. 32, no. 8, pp.
68–75, 1999.

[26] J. C. Bezdek, “Cluster Validity with Fuzzy Sets,” Journal of Cybernetics,
vol. 3, no. 3, 1973.

[27] ——, “Mathematical models for systematics and taxonomy,” in Proceed-
ings of Eigth International Conference on Numerical Taxonomy, San
Francisco, 1975, pp. 143–66.

[28] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 13, no. 8,
pp. 841–847, 1991.

[29] Y. Fukuyama and M. Sugeno, “A new method of choosing the number
of clusters for the fuzzy c-means method,” in Proc. 5th Fuzzy Syst. Symp,
vol. 247, 1989, pp. 247–250.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.


