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Abstract—Nowadays, in order to maintain their competitive-
ness, manufacturing companies must adapt their production
methods quickly, with minimum expenditure, to frequent vari-
ations on demand. With the shortage of the product life time,
flexibility, efficiency and reusability of industrial processes are
important factors, which may determine the survival of the
company. The ReBORN project is working around these ideas,
namely studying how can an old production equipment be re-
used into new contexts. The ReBORN Workbench is a simulation
tool for factory layout design, which generates solutions based
on the production requirements and facilities’ availability, cor-
responding Life Cycle Assessment, and associated location cost.
This paper is concerned with the ReBORN Workbench module
responsible to generate solutions for equipment location, gener-
ally know as Facility Layout Problems. A Genetic Algorithm was
implemented to solve these problems, which aims to minimize the
total material handling costs. The effectiveness of the proposed
approach is evaluated with a numerical example and compared
with other similar approaches. The results show that the proposed
approach is indeed effective to solve problems regarding facilities
layout.

I. INTRODUCTION

The ReBORN project [1] – Innovative Reuse of modular
knowledge Based devices and technologies for Old, Renewed
and New factories – is an ongoing project under the wing of
the 7th Framework Programme of the European Commission.
The vision is to demonstrate strategies and technologies that
support a new paradigm for re-use of production equipment in
old, renewed and new factories, by maximizing the efficiency
of this re-usage and making the factory design process straight-
forward, shortening ramp-up times and increasing production
efficiency and flexibility. This paradigm will give new life to
decommissioned production systems and equipment, making
it possible to be ‘reborn’ in new production lines. By doing
so, production equipment life cycle is extended, contributing
to economic and environmental sustainability of production
systems, without jeopardizing European machinery industry.

Due to ever decreasing product life cycles and high external
pressure to cut costs, the ramp-up of production lines must
be significantly shortened and simplified [2]. This is possible

only if the simulated production scenarios mirror accurately
the real conditions in terms of speed, performance, costs,
availability, reusability and reliability [3]. After the configu-
ration and building phases, the ramp-up of new production
lines needs adaptation efforts depending on how good the
simulated scenarios mirror the real production conditions on
site, which is currently not the case. The ability to predict and
even forecast the impact of modification within an existing
production environment will help during decision making
regarding the production methods, effecting effects the overall
efficiency of production and influencing main aspects of mass
production, such as time, cost and impact. The realization
of the ReBORN paradigm for factory layout design and
configuration resulted on the implementation of the ReBORN
Workbench tool. This simulation tool is meant to help the
end-user to configure the system, by aggregating modules
for Requirements, Marketplace, System Configurator, System
Assessment and Layout Planner.

This paper intends to give a detailed overview of the
methodologies used to tackle Facility Layout Planning prob-
lems (FLP), which arise from the need to organize facilities
in the shop-floor in the most efficient way possible. These
methodologies are implemented in the Layout Planner module,
which also includes the cmNavigo MES [4]. This manufactur-
ing execution system solution is used to display and edit the
facilities position in a shop floor layout map, according to the
results of the methodologies used. The main goal of a FLP
is to minimize total material handling cost inside a facility,
which has constrains, such as shop-floor area requirements
and location restrictions. This module is able to successfully
generate solutions for this type of problems using Genetic
Algorithms (GA).

The paper is organized in five more sections. Section II
details FLP problems, current approaches and related work.
In Section III it is explained in detail the methodology used
to formulate and resolve FLP problems, focusing on the
implemented GA approach. Section IV depicts all the tests
and results obtained, whereas in Section V these results are



discussed. Finally, Section VI concludes the document with
final remarks and further steps to be followed.

II. RELATED WORK

FLP problems are typically related to the location of fa-
cilities (e.g., machines, manufacturing cell or department) in
the plant area. These NP-Hard problems are known to have a
significant impact upon manufacturing costs, work in process,
lead times and productivity. The problem’s complexity in-
creases exponentially with the number of machinery location.
Tompkins et al. [5] stated that a good placement of facilities
contributes to the overall efficiency of operations and can
reduce up to 50% the total operating expenses. It may be one
of the oldest activities performed by industrial engineers and,
according to Aleisa & Lin [6], simulation tools are often used
to measure the benefits and performance of layouts. Drira et al.
[7] explain what are FLP problems, how they are influenced by
different shop-floor’s characteristics, and the main approaches
used to address it.

A. Problem Formulation

The nature of manufacturing systems greatly influences
a FLP problem formulation, because it is very dependent
on specific factors and design issues, such as production
variety and volume, material handling systems, representation
of space, presence of pick-up and drop-off locations, presence
of backtracking and bypassing and layout evolution.

According to Dilworth [8], there are four types of layouts
according to the production variety and volume: 1) Fixed
product layout, where resources move around the product;
2) Process layout, where facilities with similar functions are
grouped in different places; 3) Product layout, where facilities
are organized in sequence of operations; and 4) Cellular layout,
where facilities are grouped into cells to process products
with similar characteristics. Regarding the representation of
the space available to place the facilities, according to Kim
& Kim [9], facilities and space may be regular, regarding
shapes and dimensions or they can be irregular [10]. Moreover,
horizontal space may be a limitation in some cases, which may
originate a need to use a vertical dimension of the shop floor.
Kochhar & Heragu [11] referred to these problems as multi-
floor layout problems.

There are several material handling systems, such as con-
veyors, AGVs, robot or even manual transportation, in order
to deliver materials to their destination. Since facility layout
impacts the selection of the handling devices and vice-versa,
these problems are solved sequentially. According to Yang et
al. [12], the layout arrangement types can be: 1) Single row
layout, where material flows along a line; 2) Multi-rows layout,
where material can flow along several lines; 3) Loop layout,
where material flow closes in a ring network; and 4) Open-field
layout, where there are no restrictions for material flow. These
layout arrangements and material handling systems depend
also on the locations for pick-up and drop-off materials, which
can be fixed or located at various places, and the presence
of backtracking [13] and bypassing [14] on the production

process. Layout evolution refers to the static or dynamic nature
of a layout. In a static layout, it is assumed that the production
flow will not suffer modifications for a long period of time.
The idea of a dynamic layout [15] is to take into account
possible changes in the material handling flow over multiple
periods.

There are several ways of formulating mathematically a FLP
problem, depending on the workshop characteristics and static
or dynamic issues. This problem’s formulation is commonly
seen as an optimization problem. Most formulations categorize
the problem in one of two categories: discrete and continuous
formulations. In the case of a discrete formulation, these
problems are sometimes addressed as Quadratic Assignment
Problems (QAP), where the plant site is divided into equal
rectangular blocks and each block is assigned to a facility
[16], ensuring that each location is assigned to only one
facility. This type of formulation is best suited for dynamic
problems. Continuous representation is more relevant when the
problem requires to represent the exact position of facilities
in the plant site, being more suitable when there are specific
constrains, such as orientation of facilities, pick-up and drop-
off points or clearance and non overlapping between facilities.
These problems are sometimes addressed with Mixed Integer
Programming (MIP).

The majority of researchers formulate their problem with
one main objective, which is to minimize a function related
to the total material handling costs. Some have considered
more objectives, which are combined into a single objective by
means of the Analytic Hierarchy Process [17] methodology or
linear combination of multiple objectives [18]. Others maintain
multiple functions for different objectives, using the Pareto
approach to generate a set of non-dominated solutions [19].

B. Resolution Approaches

Since they are by nature optimization problems, several
approaches exist to address different problem formulations,
namely exact methods, such as dynamic programming method
and the branch and bound algorithm, and approximated meth-
ods, such as heuristics and metaheuristics. Among metaheuris-
tics approaches, one can distinguish global search methods,
such as Tabu Search [20] and Simulated Annealing [21],
evolutionary methods, such as Ant Colony Optimization [22]
and the popular GA [23], and a hybridization of different
metaheuristics [24].

Jo & Gero [25] explain how GA applied to FLP problems
overcome some limitations of conventional design approaches,
such as difficulties in problem formulation, generation and
evaluation, because of the complexity of the problem, the
combinatorial nature of the potential solutions, and the so-
phisticated control required. Tate & Smith [26] proposed a
GA approach for the QAP that performs better compared with
the solutions of the best previously reported heuristics. They
conclude that, first, removing solutions from the population is
very important for a fast and reliable convergence of the al-
gorithm and, second, the combinatorial size of most problems
makes it imperative that GA reproduction and mutation only



produce feasible encodings. Chan & Tansri [27] also used a
GA approach for the facility layout planning and analyze three
crossover operators, namely the Partially Matched Crossover
(PMX), Order Crossover (OX) and Cycle Crossover (CX).
Mak et al. [28] proposed an approach for GA applied to
the facility layout problem, considering various constraints,
such as restricted areas, reserved machinery locations and
irregularities of the shapes of manufacturing plants. Later,
El-Baz [29] compared the effectiveness of his GA solution
with Chan & Tansri’s [27] and Mak et al.’s solution [28] and
showed that, for the same tests, it performs better. Zouein et al.
[30] used GA to solve the site layout problem, characterized
by affinity weights and 2D geometric constraints between
facilities. Jang et al. [31] applied GA for multi-floor layout
problems, considering both horizontal and vertical material
handling. Also, Konak et al. [32] used GA for multi-objective
layout problems. They considered several objectives, such as
minimize cost, maximize performance, maximize reliability,
etc.

III. METHODOLOGY

As previously mentioned, our Layout Planner uses a GA
implementation to generate optimized solutions for facility
layout problems. Since the problems addressed are dynamic by
nature, the Layout Planner is prepared only to make discrete
representations of the problems (QAP). Also, the Layout
Planner is not optimized to formulate properly multi-floor
problem, neither irregular shop-floor nor facility shapes. The
constraints for the considered problems are: (i) shop-floor area
size, (ii) forbidden locations, where no facilities should be
placed (doors, pillars, clearances, etc.), (iii) facility size and
(iv) material flow between facilities. Fig. 1 represents the flow
chart of the implemented GA procedure.

The implemented GA starts with an initial set of random
solutions, which constitutes the population. The size of the
population P corresponds the number of generated solutions,
or also known as chromosomes. Each solution is evaluated
according to a predefined fitness function. For QAP, the fitness
function corresponds to the total material handling cost func-
tion. The chromosomes evolve through successive iterations,
known as generations. Each generation is represented by a new
population, most of the times different from the previous one.
These new populations are not randomly generated. Instead
the chromosomes that are part of the current population are
selected, merged and modified using genetic operators, such
as selection, crossover and mutation, to generate new ones.
The new population is known as the offspring. Only the
fitter chromosomes are chosen to populate the offspring, by
inhibiting the chromosomes that are less fit then the parents
to integrate the offspring. For this reason, future generations
will always be better then the previous ones. New populations
will be generated iteratively until a specific stopping criteria
is reached, such as a maximum number of generations G.

Fig. 1. GA Implementation Flow Chart.

A. String Representation

A coding scheme is necessary to represent the problem’s
parameters in the chromosome string. For a discrete problem
representation, the entire manufacturing plant is divided into N
cells and each cell corresponds to a location. These locations
are characterized by three parameters, namely the Coordinates,
State and Equipment. The Coordinates are a pair of values rep-
resenting a Cartesian coordinate system point (x,y), specifying
this way a unique point location in the shop floor area, which
corresponds to the central point of the considered location. The
State represents the state of a location, which can be Forbidden
(no facility can be placed in that location), Occupied (a facility
already was attributed to that location) or Free (the location
has no facilities attributed yet). The Equipment represents the
facility information, if there is one attributed to the considered
position. Facilities are characterized by their identification,
name, the type of facility (workstation, servo press, welding
module, conveyor, etc.) and their dimensions. Fig. 2 represents
an example of the problem parameters and the corresponding
encoding into a chromosome string representation.

B. Fitness Function

The fitness function is the objective function of the problem,
which in this type of problems corresponds to the total
handling material cost of a certain solution, represented by
Cost(S) in Equation (1). Each solution corresponds to the
location of M facilities in N (≥ M ) positions and is evaluated
by calculating its fitness value. Since the goal is to obtain



Fig. 2. GA String Representation.

the solution with maximum fitness, which corresponds to
the minimum cost, the fitness function is the inverse of the
objective function.

Cost(S) =

M∑
i

Q(i, S(i)) +

M∑
i

M∑
j

[F (i, j)×D(S(i), S(j))]

(1)
The total material handling cost of a given solution Cost(S)

is defined by two different terms. The fist one represents the
sum of all fixed costs Q() in the solution, which corresponds
e.g., to the rent of having the facility i in the location S(i). The
second term is the sum of all material handling costs between
facilities i and j, namely the product between the flow of
material F () between facilities i and j, and the distance D()
between the position of facilities i and j.

C. Genetic Operators

There are three basic genetic operators used to generate
a new population on each generation, namely the Selection,
Crossover and Mutation.

1) Selection: Selection corresponds to the process of sam-
pling solutions from the current population. It is represented
by a biased selection process, used to determine which solu-
tions should be included in the new population. The method
used in this implementation was the Biased Roulette Wheel,
represented in Fig. 3.

Fig. 3. GA Selection Operator.

The selection criteria of solutions, to integrate the next
generation, is based on the fitness value of each solution,

which is converted to a probability of being selected. Fittest
solutions have a higher probability of being chosen compared
with less fit solutions. The number of well-performed solutions
to be replicated into the next generation is represented by the
rate of replication R.

2) Crossover: The crossover operator is used to repro-
duce the offspring’s chromosomes by crossing two parents
chromosomes, as shown in Fig. 4. First, a random position
(cutting zone) is selected and aligned on both parents, which
divides the parent information to be included in the child. This
cutting position should guarantee that at least one Occupied
position exists on both parent’s partial information, otherwise
the offspring’s may lose facilities in the process and generate
invalid solutions. The child is produced by including partial
information of both parents, by attributing the State and Equip-
ment information to new positions, expect Forbidden ones.
This procedure occurs on each generation, with a probability
pc.

Fig. 4. GA Crossover Operator.

At this stage, the same facility may be attributed to more
than one position. Since duplicated facilities can not occur, a
backward replacement is needed. In these cases, one should
determine the position of the first occurrence of the duplicated
facility in the child, which corresponds to the partial infor-
mation of the second parent. This position is used to find a
different facility in the first parent. If this new facility already
exists in the child, the process is repeated until the chosen
facility does not exits in the child. Otherwise, the new facility
is included in the child. In case a duplicated facility can not
be avoided (no substitute facility is found), then the child is
excluded and the parent is included in the offspring.

3) Mutation: The mutation operator is used to introduce
randomness to a solution, preventing solutions from being
trapped in a local minimum. Fig. 5 represents the mutation
procedure.

Fig. 5. GA Mutation Operator.



Since Forbidden positions and facilities information must
remain fixed in every generation, the goal of this mutation
operator is to swap only the State and Equipment information
between two randomly picked positions (except on Forbidden
positions) on a chromosome. This procedure occurs on each
generation, with a probability pm.

IV. TESTS AND RESULTS

To evaluate the performance of the implemented GA, a
comparative analysis is made using a bench-mark numerical
example, taken from Chan & Tansri work [27]. This example
was already used to evaluate the performances of GA imple-
mentations in the work of Mak et al. [28] and El-Baz [29]. The
plant configuration layout is a 3x3 grid. The goal is to place 9
different machines on a layout with 9 positions available. The
number of trips between machines is represented on Table
I and Table II represent the material handling cost per trip
between machines. The flow of materials F () between two
machines is calculated by the product between the number of
trips and the cost per trip. The fixed cost of this example is
assumed to be zero.

TABLE I
FLOW OF MATERIALS BETWEEN MACHINES [27].

From/To 2 3 4 5 6 7 8 9

1 100 3 0 6 35 190 14 12
2 - 6 8 109 78 1 1 104
3 - - 0 0 17 100 1 31
4 - - - 100 1 247 178 1
5 - - - - 1 10 2 79
6 - - - - - 0 1 0
7 - - - - - - 0 0
8 - - - - - - - 12

TABLE II
MATERIALS HANDLING COST BETWEEN MACHINES [27].

From/To 2 3 4 5 6 7 8 9

1 1 2 3 3 4 2 6 7
2 - 12 4 7 5 8 6 5
3 - - 5 9 1 1 1 1
4 - - - 1 1 1 4 6
5 - - - - 1 1 1 1
6 - - - - - 1 4 6
7 - - - - - - 7 1
8 - - - - - - - 1

Since this example uses 9 machines, there are 365,880
(9!) possible solutions. By applying an exhaustive search to
determine the global optimal solution, Mak et al. calculated
eight optimal solutions, which correspond to a minimum cost
of $4818. The obtained optimal solutions by Mak et al. are
shown in Fig. 6.

The performed test consisted on a set of 19 experiments to
determine an appropriate combination of the population size
P and the stop condition G, which is the maximum number
of generations. Besides P and G, the GA implementation
uses other input parameters, such as R, pc and pm. In theory,

Fig. 6. Optimal Facility Layout solutions of the bench-mark example [28].

an increase of P and G can produce better solutions, since
the number of sampling solutions from the solution space is
enlarged. However, the computational effort in searching the
space will also increase, which is contradictory to the original
objective of using GA. For this reason, Chan & Tansri set
the total number of evaluations in each experiment to be less
then 3% of the total number of solutions in the solution space
(10,886). Table III compares the experimental results of the
tests performed between the proposed GA approach, Chan &
Tansri [27], Mak et al. [28] and El-Baz [29].

Each of the 19 experiments is run 10 times. The experimen-
tal results are expressed in terms of: 1) Best - the total material
handling cost of the best solution among the 10 runs; 2) Avg.
- The average of the best material handling costs among the
10 runs; 3) # - The number of runs that obtained one of the
eight optimal solution for this problem. Finally, each one of
the GA implementations used different input parameters R, pc
and pm, which the authors reported to work well. The results
presented regarding Chan & Tansri’s work are from the PMX
operator, since they reported that this operator did provide the
best results, compared with OX and CX. Both Chan & Tansri,
and Mak et al. used R = 5%, pc = 0.6 and pm = 0.001.
On the other side, El-Baz used pc = 0.9, pm = 0.1 and R
is represented by a 1.5 times the average fitness cut-off limit
on each generation. The approach proposed uses pc = 1, pm
= 1 and replication is based on the Biased Roulette Wheel,
which revealed better results. Fig. 7 represents GA evolution
of one run from the 19 experiments. For viewing purposes, the
maximum number of generations shown is 180 instead of 500,
since, from all the 19 experiments, the implemented algorithm
converged to a solution before reaching the generation number
180.

The test results presented in Table III show that the proposed
approach is more efficient than the three other approaches.
The proposed approach produces 115 successful runs, which
is better compared with the 81 (El-Baz), 37 (Mak et al.) and 23
(Chan & Tansri) successful hits on the other approaches. Also,
regarding the total of 10 trials at each experiment of the 19
performed, the current approach succeeded to obtain at least
one optimal solution out of ten on every experiment. This was
not the case with the other approaches. In fact, by analyzing
the average of the total material handling average cost on
each experiment, one concludes that the proposed approach
performs better, since this value is normally smaller then the



TABLE III
EXPERIMENTAL RESULTS OF THE CONSIDERED BENCH-MARK EXAMPLE.

Exp. P G
Proposed approach El-Baz [2004] Mak et al. [1998] Chan & Tansri [1994]

Best Avg. # Best Avg. # Best Avg. # Best Avg. #

1 20 10 4818 5050.5 1 5039 5310.1 0 5233 5504.4 0 4938 5434.8 0
2 40 10 4818 5069.8 1 4818 5331.9 1 5040 5286.7 0 5039 5263.8 0
3 100 10 4818 5007.8 2 4818 4961 2 4818 5024.7 1 4938 5164.9 0
4 200 10 4818 4883.8 3 4818 4895.9 5 4818 4891.4 2 4818 4966.8 2
5 500 10 4818 4860.7 5 4818 4822 9 4818 4833.2 7 4818 4892.3 5
6 20 20 4818 4992.5 1 4872 5172.9 0 5225 5481.2 0 4938 5402.1 0
7 40 20 4818 4956.4 2 4818 5052 1 4927 5174.6 0 4992 5184.6 0
8 100 20 4818 4850.4 6 4818 4855.2 4 4818 4889.1 4 4818 4991.7 2
9 200 20 4818 4832.7 7 4818 4842.1 6 4818 4846.5 5 4818 4919.8 2
10 20 40 4818 4902.3 3 4818 5074.1 2 5225 5462.2 0 4938 5402.1 0
11 40 40 4818 4838.2 7 4818 4979.5 2 4927 5163.8 0 4992 5180.7 0
12 100 40 4818 4818 10 4818 4842.8 7 4818 4871.4 4 4818 4919.5 3
13 200 40 4818 4818 10 4818 4842.1 6 4818 8440 5 4818 4887.9 4
14 20 100 4818 4818 10 4818 4940.9 5 5225 5453 0 4938 5337 0
15 40 100 4818 4828 10 4818 4862.7 6 4818 5141.6 1 4927 5122.4 0
16 100 100 4818 4818 10 4818 4826.8 8 4818 4866 5 4818 4863.9 4
17 20 200 4818 4827.2 8 4818 4893.6 6 4818 5303.9 1 4938 5224.6 0
18 40 200 4818 4818 10 4818 4858.3 7 4818 5141.4 1 4862 5088.4 0
19 10 500 4818 4822.6 9 4818 4983.7 4 4818 5184.3 1 4818 5166.1 1

Total 115 Total 81 Total 37 Total 23
Biased Roulette Wheel,

pc = 1, pm = 1
R = 1.5 x Avg.,

pc = 0.9, pm = 0.1 R = 5%, pc = 0.6, pm = 0.001

Fig. 7. Proposed Approach Evolution on the 19 Different Experiments.

one from the other approaches. In order to analyze and better
comparing the four different approaches, Fig. 8 presents in a
graphical form the comparison of the total material handling
average cost (C()) of each solution on every experiment.

In general, when the P and G increase, C() tends to
decrease. All approaches are very sensitive to the variations of
P , although both approaches from Chan & Tansri and Mak et
al. are a lot more sensitive then the others, since the difference
between the C() obtained with a high and low P is significant.
Regarding the overall performance off all approaches, despite
P and G variations, the C() in practically every experience of
the proposed approach is lower then the rest of the approaches
(excluding experience 3 and 5).

V. DISCUSSION

Besides the algorithm input parameters, the GA perfor-
mance and, consequently, the solution quality are also effected

by genetic operators implemented. Mak et al. pointed out
that, in order to ensure fairness, the same input parameters
should be used to evaluate the performance of each approach,
which is not entirely true. The best parameter values are
very problem specific, depending greatly on the nature and
implementation of the algorithm. Different approaches require
different exploration and exploitation abilities. In the case of
GA, the exploration (searching in the solution space) can be
adjusted by the pm and the exploitation (concentrating on one
solution) can be adjusted by the pc. Consequently, while the
crossover operator tries to converge to a specific solution, the
mutation operator tries to avoid convergence and explore more
areas.

According to this, a desirable system behavior is preferable
to explore much more in the beginning and, at the end,
converge to a optimum solution. This is very difficult to do
and, regarding GA, a proper balance between exploration and
exploitation should be accomplish. Normally, if pm is too
high, the probability of searching more solutions in the search
space increases, however, it prevents population to converge
to an optimal solution. On the other side, a pm too small may
result on premature convergence, falling to a local optimal
solution instead of a global one. Regarding R, this replication
rate defines a fitness limit, which is used to select the fittest
members of the current population to be included in the
new population. These selected members may be modified by
crossover and mutation operators, but they can also integrate
the new population untouched, mostly on an elitist strategy.
By doing so, this strategy guarantees that the best individuals
are always present in the next generation.

El-Baz’s approach proved to be better then the one from
Mak et al., possibly because of the introduced elitism strategy.
On every generation, chromosomes with a cost lower then 1.5



Fig. 8. Total Material Handling Average Cost Comparison.

times the average cost of the entire population are chosen to be
included in the next generation. The rest of the chromosomes
are deleted. Then, parent chromosomes are randomly chosen
from the current population to be transformed, using crossover
and mutation operators. The solution from the offspring are
generated and included in the new population, stopping when
the fixed size of the population is reached.

The proposed approach performs better then El-Baz’s ap-
proach, mainly because an improved elitism strategy is im-
plemented. Although the number of untouched chromosomes
that will be included in the next generation’s population is
dynamic (instead of a fixed rate), the proposed approach
uses a more selective elitism, a mix of elitism and natural
selection. The resulting offspring, regarding the application of
the crossover and mutation operators, is carefully evaluated
before its chromosomes integrate the new generation’s pop-
ulation. Every chromosome of the offspring is compared to
the corresponding parents in the previous generation. Only the
fittest chromosome between parent and child will integrate the
population of the new generation. Before applying again the
crossover and mutation operators, the entire new population
will be reproduced, using a biased roulette wheel strategy.
Since the fittest chromosome of the new population has a
bigger probability of being replicated, unfit solutions will also
have a bigger probability of being removed.

With this approach, not only the best chromosomes will
integrate a new population untouched, but also the same chro-
mosomes are chosen as parents for the crossover and mutation
operators. On each generation, only the fittest chromosomes
are chosen to be part of an elite of champions. This selective
elitism works well when both exploration and exploitation
rates are very high, since the algorithm can search the full
space of solutions and still converge to a optimal solution.
This is achieved by performing always crossover and mutation
on each chromosome of each generation, using pc = 1 and
pm = 1. Despite the high variety in solutions generated and
based on the analysis of the tests’ results, the conversion to
an optimal solution is true, since the elite of champions only
includes at least equal or better solution in comparison to

previous ones. In practice, the algorithm generates as most
children as possible and, the children are kept only if they are
better then the parents. It was verified that the usage of lower
pc and pm worsen the algorithms performance. The previous
experiments were repeated with different combinations of the
input parameters, represented in Fig. 9.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a GA approach as a methodology
to solve discrete representations of FLP problems, which
use QAP to formulate the problem. The proposed approach
considers several aspects, such as constraints of forbidden
positions and the main goal is to minimize the total material
handling cost. The effectiveness of the proposed approach has
been studied by using the benchmark problem taken from
the work of Chan & Tansri [27] and compared with other
approaches that used the same benchmark problem, namely
Mak et al. [28] and El-Baz [29]. The results have shown
that the proposed approach is worthy, because it scored better
results to those obtained by others.

Regarding future steps, the proposed approach can be im-
proved by extending the scope of FLP problems, considering
scenarios of multi-floor layouts, and adapting the formulation
to more constraints, such as performance objectives regarding
machine task execution. Moreover, a continual formulation
of the problem is important to consider constraints such as
exact facilities’ position and orientation. The integration of
the implemented methodology and the cmNavigo MES needs
additional work. Then, current real scenarios would be used
to validate the proposed approach, the Layout Planner and the
ReBORN Workbench.
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Fig. 9. Total Material Handling Average Cost of the Current Approach, with Different Input Parameters.

REFERENCES

[1] Steinbeis-Europa-Zentrum. (2016) ReBORN - Innovative Reuse.
http://www.reborn-eu-project.org/.

[2] R. Pinto, J. Reis, R. Silva, M. Peschl, and G. Gonçalves, “Smart sensing
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