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Abstract—In this paper, a combinatorial optimisation al-
gorithm inspired by the Physarum Polycephalum mould is
presented and applied to the optimal trajectory planning of
a multiple asteroid tour mission. The Automatic Incremental
Decision Making And Planning (AIDMAP) algorithm is capable
of solving complex discrete decision making problems with the
use of the growth and exploration of the decision network. The
stochastic AIDMAP algorithm has been tested on two discrete
astrodynamic decision making problems of increased complexity
and compared in terms of accuracy and computational cost to
its deterministic counterpart. The results obtained for a mission
to the Atira asteroids and to the Main Asteroid Belt show
that this non-deterministic algorithm is a good alternative to
the use of traditional deterministic combinatorial solvers, as
the computational cost scales better with the complexity of the
problem.

I. INTRODUCTION

Discrete decision making problems are common problems
within the field of engineering. For example, the design of
a network, the scheduling of operations and the planning of
a trajectory can be represented as combinatorial problems
[1][2][3]. As the complexity of such problems increases with
the growth of the set of decisions, it is favourable to develop
efficient strategies to solve these problems. The algorithms
that can solve these type of problems can be divided into two
categories: deterministic and non-deterministic algorithms. Ex-
amples of stochastic algorithms are ant colony optimisation,
genetic algorithm and particle swarms [2], while deterministic
algorithms are for example the branch-and-bound, tabu search
and pattern search algorithms [4][5][6].

In this paper, a non-deterministic algorithm inspired by the
Physarum Polycephalum mould is presented and applied to
two problems in the field of astrodynamics. For a comparison
between the Physarum algorithm, Branch and Cut and Genetic
Algorithms, on the solution of Multi Gravity Assist trajectory
problems, the interested reader can refer to [3][7].

Although various strategies based on this type of algorithm
were previously developed to solve among others the shortest

path problem and to obtain the trajectory for a multi-gravity
assist mission, these algorithms were either non-generic, or not
made public [3][8][9]. As such, it was decided to develop a
more general version of the algorithm that is capable of solv-
ing various complex discrete decision making problems. The
developed method has been named the Automatic Incremental
Decision Making And Planning (AIDMAP) algorithm and has
been integrated into the open-source SMART-O2C toolbox
developed by the Advanced Space Concepts Laboratory of
the University of Strathclyde. It is therefore freely available
under the MPL2.0 license on https://github.com/strath-ace/
smart-o2c.

The AIDMAP algorithm and its operators are first described
in Section II. In Section III, the developed algorithm is applied
to two case studies. These case studies include a mission to the
Atira asteroids and a mission to the Main Asteroid Belt. The
goal of the former case study is to compare AIDMAP against
a deterministic branch and prune strategy while the goal of the
latter case study is to apply AIDMAP to a decision making
problem with a large database of possible decisions. Section
IV describes the benchmarking of the algorithm to measure the
convergence speed versus the success rate. Finally, a number
of conclusions are drawn in Section V.

II. AUTOMATIC INCREMENTAL DECISION MAKING AND
PLANNING ALGORITHM

As mentioned in the introduction, the AIDMAP algorithm
takes its inspiration from the Physarum Polycephalum mould.
To simulate this mould, a number of virtual agents are used
to resemble nutrients inside veins that move through and
allow the incremental branching of new veins. Each of these
veins have a radius, length and an amount of flux going
through them, where the latter depends on the first two.
These characteristics are stored in so-called nodes that are
placed in between every two veins. Aside from the vein
characteristics, each node also contains the problem-specific
attributes. As each node resembles a certain decision, a set of



Fig. 1. The flowchart describing the AIDMAP algorithm

nodes connected by veins can resemble the set of consecu-
tive decisions present in the aforementioned discrete decision
making problems.

The pseudo-code of the algorithm is shown in Algorithm 1
and a flowchart of the algorithm can be seen in Figure 1. In
the following sections, the various steps and operators of the
algorithm are described in detail.

Algorithm 1 AIDMAP Algorithm
1: initialise algorithm variables
2: for each generation do
3: for each virtual agent do
4: while end condition not reached do
5: create & evaluate decision paths (see Sec. II-B)
6: calculate probabilities (Eqs. 2, 3)
7: probabilistically choose next node
8: move agent to node
9: if end condition reached then

10: save agent’s path as a solution
11: end if
12: end while
13: dilate vein radii (Eq. 4)
14: end for
15: increase vein radii in best path so far (Eq. 5)
16: simulate evaporation (Eq. 6)
17: if vein radius outside of limits then
18: vein radius = limit
19: end if
20: if restart condition (see Sec. II-F) then
21: reset vein radii
22: update fluxes and probabilities
23: end if
24: end for

A. Virtual Agents

As can be seen on lines 1 to 3 in Algorithm 1, the algorithm
starts with an initialisation, after which the nested loop over
all generations and virtual agents is started. The amount of
generations and virtual agents is specified by the user.

During each generation the predefined number of virtual
agents are moved across nodes. As noted earlier, these virtual
agents resemble nutrients as they move through the veins and
encourage the growth and exploration of the decision network.

B. Decision Network Growth

When a virtual agent arrives at a node, it will first attempt
to create a predefined number of decision paths to nodes that
are not yet connected to the node the virtual agent is currently
evaluating.

To do so, a loop is used that constructs new nodes, checks
their validity and their potential to connect to the current node.
This process continues until no more possible nodes are found,
a maximum number of attempts Ffindmax have been made to
find new nodes or the specified number of ramification nodes
kram have been generated.

During the generation of new nodes, each node is assigned
a number of problem-specific attributes, a vein length, an
initial radius defined by the user and a flux, and its validity
is checked. The flux is calculated using a variation on the
equation proposed in various previous papers on the Physarum
Polycephalum and the classical Hagen-Poiseuille equation for
the volumetric flow rate through a cylindrical duct with a
certain length [10][11][12]. The equation used in the algorithm
can be seen in Equation 1:

Qij =
πr4ij
8µ

1

Lij
(1)

where rij is the radius of the vein from node i to node j,
µ is the fluid viscosity, Lij is the vein’s length and Qij is
the flux going through the vein. From this equation, one can
see that as the length and radius increase, the amount of flux
decreases and increases respectively. By defining a larger flux
as being more favourable, one can set the length of the vein
equal to the cost of the connection between the two nodes.
As the fluid viscosity µ and the initial radius upon creation
are defined by the user as well, and the vein length is found
using a cost function provided by the user, the flux through a
vein can now be found. The node’s problem-specific attributes
are determined using a second file specified by the user. This
generation of potential decision paths corresponds to line 5
in Algorithm 1. If the required number of valid ramification
nodes has been generated, no more possible nodes are found
or a maximum number of attempts to find a valid ramification
node Ffindmax have been made, the algorithm decides whether
to grow or further explore the decision network

C. Decision Network Exploration

In order to decide whether an agent moves to grow the
decision network or to explore it, the flux calculated using
Equation 1 is used.

First, as shown in line 6 of Algorithm 1, the probability of
the agent moving from node i to node j is calculated using
Equation 2:

Pij =
Qλcj

ij∑
j∈Ni

Qλcj

ij

(2)

In this equation, Pij is the probability of moving from node i
to node j, Qij is the flux flowing through the vein from node
i to node j, Ni is the total number of potential nodes that
agent can choose to move to, λ is the ramification coefficient



and cj is a constant that is 1 for nodes that are not yet linked
to the current node, and 0 otherwise.

Once the probability has been found, it is weighted using
Equation 3 to find the actual probability for an agent to move
to node j [13]:

pij =

{
Pij(1− pram) if node is linked
Pijpram if node is not linked

(3)

where pram is the probability of ramification as defined by
the user. Using this probability, a non-deterministic choice is
made by the agent when moving to the next node.

D. Vein Dilation

Once a virtual agent is no longer able to move or an end
condition has been reached, the radius of the veins it has
passed through is increased as shown in line 13 of Algorithm 1.
This simulates dilation caused by the nutrients flowing through
a vein. The dilation caused by agent k is modelled using
Equation 4 [13]:

∆r
(k)
ij

∣∣∣∣
dilation

= m
r
(k)
ij

L
(k)
tot

(4)

where m is the linear dilation coefficient and L
(k)
tot is the total

length of the veins traversed by agent k. It can be noted from
Equation 2 that as this radius increases, the chance of another
agent to move to the same vein increases. Once this dilation
has been processed, the algorithm continues iterating over the
agents that have not yet been moved.

E. cAMP Process & Vein Contraction

Once all the agents of a generation have moved, two
additional processes are taken into account, being an additional
vein dilation and contraction process. These correspond to
lines 15 and 16 in Algorithm 1 respectively.

Firstly, it should be noted that the original Physarum algo-
rithm was adapted to include another term in the dilation pro-
cess that is based on the Dictyostelium Discoideum amoeba.
When this amoeba starves, it starts to emit cyclic Adsenosine
Monophosphate (cAMP) waves. As the other amoeba are
sensitive to this chemical in their aggregative and slug stages,
the result is that the amoeba start aggregating, thus showing
collective behaviour [14]. In the AIDMAP algorithm, this
starving amoeba is resembled by the agent with the best
objective function, and the call for aggregation is simulated
by a linear dilation of the vein radii of the best path. This can
be seen in Equation 5 [13]:

∆rijbest

∣∣∣∣
elasticity

= GFrijbest (5)

where GF is the growth factor that is defined by the user and
the subscript ijbest denotes all the veins of the best path.

Secondly, the evaporation is taken into account using Equa-
tion 6 [13]:

∆rij

∣∣∣∣
evaporation

= −ρrij (6)

One can see in this equation that once a generation has been
completed, all radii over the entire graph are reduced by a
factor ρ, being the evaporation coefficient. In combination with
Equation 5 and 4, the result of this is that veins that have not
been traversed by any agents have their radius, and thus their
probability, reduced.

As the vein dilation and contraction may lead to the radius
of certain veins to be reduced to zero or to become too large, a
check is performed to confirm whether the radius is outside of
the bounds defined by a minimum and maximum radius set by
the user. When this is the case, the radius is set to the minimum
or maximum radius respectively. If one were to not perform
this check, certain solutions could potentially be excluded or
one solution could overpower the decision network [13].

F. Restart Procedure

Before the next generation is evaluated, a last check is
performed. The reason for this is that, as every agent that
moves through a certain vein increases the probability of that
vein, there exists the risk of premature stagnation [13]. In order
to prevent this premature stagnation, a restart procedure was
implemented. This process works as follows: by comparing the
path that each agent has travelled in a generation, it is checked
whether two agents have at least ncom

min nodes in common.
If this is the case, the radii throughout the entire vein are
reset to their initial values and the corresponding fluxes and
probabilities are recalculated [13]:

rij = rini (7)

As shown in line 24 of Algorithm 1, the algorithm continues
to the next generation once this conditions has been checked,
thus closing the loop.

G. Algorithmic Complexity Considerations

Algorithm 1 shows that AIDMAP’s algorithmic complexity
is equivalent to a standard ACO. This is clear also from the
key mechanisms defined in Eqs. (1) to (6). Since AIDMAP
simultaneously grows and explores the tree of decisions, the
time complexity is not dependent on the number of nodes and
branches. On the other hand, all parts of the tree are preserved
in memory. Therefore, the memory allocation grows with the
number of function evaluations.

III. CASE STUDIES

In order to test the algorithm described in Section II, two
case studies have been evaluated. Both of the two case studies
are related to the field of astrodynamics and mission analysis,
and can be described as complex discrete decision making
problems.

A. Low-Thrust Constrained Mission to the Atira Asteroids

As a first case study, a mission to the Atira asteroids is
evaluated. This problem is based on the paper published by
Di Carlo et al. in 2015 [15].

The Atira asteroids are asteroids that can be characterised by
the fact that their orbit lies completely inside the heliocentric



TABLE I
OVERVIEW OF THE AIDMAP PARAMETERS AND THEIR VALUES

Linear Dilation Coefficient m 1e-3
Evaporation Coefficient ρ 1e-4
Growth Factor GF 5e-3
Number of Agents Nagents 20
Number of Generations Ngenerations 200
Ramification Probability pram 0.7
Ramification Weight λ 1
Initial Radius rini 2
Minimum Radius rmin 1e-3
Maximum Radius rmax 5
Fluid Viscosity µ 1
Ramification Nodes kram 5
Max. Child Finding Attempts Ffindmax 1e4
Restart Threshold ncom

min 4

Earth orbit. However, these asteroids are difficult to study due
to the limitations of the ground-based telescopes, as these
can only detect the asteroids when the Sun is not in the
field of view of the telescope. As these asteroids may form
a significant threat to our planet, a mission was proposed
to improve the knowledge of the Atira asteroids using a
spacecraft [15]. Therefore, the objective in this case study is
to visit as many Atira asteroids as possible, with the least
amount of required change in velocity ∆V. In order to prevent
the need to use costly manoeuvres to change the spacecraft’s
inclination, the nodal points of the considered asteroids are
targeted [16]. The result of this, is that the spacecraft should
arrive at the nodal point at the exact time that the asteroid is
at this point in its orbit as well.

In the aforementioned paper, the final solution is obtained by
first determining the optimal sequence of asteroids, departure
times and arrival times using a branch-and-prune deterministic
algorithm developed for discrete problems, called LambTAN
(Lambert to Target Asteroids at Nodal points). The solution is
found by using the patched conic approximation and modelling
the transfer orbits as Lambert arcs [16]. Once the optimal
sequence has been found, it is passed into a second algorithm
that optimises the trajectory for the low-thrust spacecraft. In
this case study, only sequence-finding will be considered.

To do so, each vein will represent the transfer from one
celestial body to the next, while the nodes between two
veins will contain the information on these transfers and the
respective celestial bodies. Using this definition, the length
shown in Equation 1 represents the ∆V needed for the transfer.
As such, when the required ∆V is lower, the amount of flux
increases, thus in turn increasing the probability of the nutrient
moving along the vein with a lower ∆V.

1) Algorithm and Problem Settings: As can be noted from
Section II, the algorithm requires the user to define a number
of parameters. An overview of these parameters and the values
used to solve this case study can be seen in Table I. The values
shown in this table were obtained through the use of literature,
testing and tuning [3][7].

As mentioned in Section II-B, the algorithm checks the
validity of potential child nodes during the decision network
growth process. To perform this check, a number of problem-

specific boundaries are tested. If either of these boundaries
is not upheld, the potential child node is considered invalid
and the algorithm will perform another attempt at finding a
potential child node.

Firstly, it is tested whether the departure date required to
arrive at the asteroid at the specified epoch with the chosen
time of flight does not lie in the past. This check is equivalent
to confirming that the required departure date does not lie
before the arrival date of the previous arc:

Tdeparck
≥ Tarrarck−1

(8)

Secondly, the feasibility of translating the impulsive Lambert
transfer to a low-thrust trajectory is tested. This is done using
the following two constraints [15]:

ToFarckϵ ≥ C∆Varck (9)

ToFarckϵ ≥
√
V 2
0 − 2VfV0cos

(π
2
∆i

)
+ V 2

f (10)

where ToFarck is the time of flight of the Lambert arc, ϵ is
the acceleration of the spacecraft’s low-thrust engine, C is an
empirical coefficient, ∆Varck is the required ∆V found for the
Lambert trajectory, ∆i is the change in inclination, V0 is the
spacecraft’s velocity when it passes the previous asteroid and
Vf is the velocity at the end of the Lambert arc. The latter of
these two equations is the so-called Edelbaum condition and
it should be noted that in this equation, ∆i can be set to zero
due to the fact that only the nodal points of the asteroids are
targeted [17].

As a fourth constraint, the minimum perihelion distance of
0.31 Astronomical Units (AU) discussed in the aforementioned
paper is considered. Using Equation 11, this condition is
checked [15]:

a(1− e) ≥ rpmin
(11)

in which a is the semi-major axis of the spacecraft’s orbit,
e is its eccentricity and rpmin is the predefined minimum
perihelion distance [17].

In order to encourage the algorithm to find more solutions
with a larger number of asteroids, a limit was set on the time
between the spacecraft passing an asteroid and the starting
time of the next Lambert arc. This time is defined as the
waiting time Twait and its boundaries are checked using
Equation 12:

Twait ≤ Twaitmax (12)

Furthermore, for the algorithm to find manoeuvres that can be
done using the spacecraft, a limit was also set on the departure
∆V:

∆Vdep ≤ Vmaxarck
(13)

Lastly, as the spacecraft will only have a limited amount
of fuel, an upper limit for the total ∆V required for the full
trajectory was set:

∆Vtot ≤ ∆Vmax (14)

An overview of the used parameters and their values for these
equations can be found in Table II [15]. In this table, T0



TABLE II
PROBLEM PARAMETERS FOR THE MISSION TO THE ATIRA ASTEROIDS

T0 01/01/2020
Tend 01/01/2030
ToFmin 35 days
ToFstep 10 days
ToFmax 365 days
Twaitmax 730 days
∆Vmaxarck

3 km/s from Earth
1.5 km/s from transfer orbits

∆Vmax 4 km/s
rpmin 0.31 AU
ϵ 10−4 m/s2
C 2

TABLE III
THE OPTIMAL SOLUTION FOUND USING THE AIDMAP ALGORITHM

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

2013JX28 2020/09/29 205 2021/04/22 0.87
2006WE4 2022/05/14 215 2022/12/15 0.86
2004JG6 2023/06/04 245 2024/02/04 0.65
2012VE46 2024/09/21 255 2025/06/03 0.39
2004XZ130 2026/09/15 205 2027/04/08 0.74
2008UL90 2028/07/31 195 2029/02/11 0.30
Total: 3.81

is the mission starting time, Tend is the mission end time
and ToFmin, ToFstep and ToFmax denote the minimum and
maximum time of flight for the Lambert arc as well as the time
step at which the time of flight is evaluated. While these values
were obtained from the paper by Di Carlo et al., it should be
noted that the minimum time of flight is different. The reason
for this, is that the algorithm used in the paper by Di Carlo
et al. to find the optimum time of flight, evaluates the time-
frame in a backward motion from 365 days to 30 days, while
using a time step of 10 days. Because of this, the minimum
time of flight evaluated by this algorithm was 35 days [15]. As
the program written for this case study evaluates the possible
time of flights in an increasing fashion, the minimum time of
flight has to be set to 35 days to be able to obtain the solution
presented in the paper when the time step of 10 days is used.

2) Results: Using the settings shown in Tables I and II,
the solution shown in Table III is obtained. In this table,
Tdeparc

and Tarrarc denote the departure and arrival times of
the Lambert arc, and ToFarc is the time of flight for this arc.
For ease of reference, the results obtained by Di Carlo et al. are
shown in Table IV. Interesting to note from this table, is that
the trajectory uses the same sequence of asteroids and dates for

TABLE IV
THE OPTIMAL SOLUTION FOUND BY DI CARLO ET AL. [15]

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

2013JX28 2020/09/29 205 2021/04/22 0.87
2006WE4 2022/05/14 215 2022/12/15 0.86
2004JG6 2023/06/14 235 2024/02/04 0.61
2012VE46 2024/09/11 265 2025/06/03 0.36
2004XZ130 2026/09/15 205 2027/04/08 0.73
2008UL90 2028/07/31 195 2029/02/11 0.34
Total: 3.77

TABLE V
THE ORBITAL ELEMENTS OF THE FOUR ADDITIONAL ATIRA ASTEROID

Asteroid: 2013TQ5 2014FO47 2015DR215 2015ME131
a [AU] 0.7737 0.7522 0.6664 0.8049
e [-] 0.1556 0.2711 0.4716 0.1989
i [deg] 16.3986 19.1980 4.0903 28.8765
Ω [deg] 286.7789 358.6600 314.9819 314.3638
ω [deg] 247.3049 347.4558 42.2604 164.0285
M0 [deg] 232.5338 52.1090 50.8887 189.7431
t0 [MJD2000] 6055.5 6055.5 6055.5 5652.5

TABLE VI
THE OPTIMAL SOLUTION FOUND BY THE AIDMAP ALGORITHM WHEN

THE NEWLY DISCOVERED ATIRA ASTEROIDS ARE ADDED TO THE
DATABASE

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

2015ME131 2020/01/10 195 2020/07/23 0.61
2014FO47 2021/04/15 285 2022/01/25 0.54
2008UL90 2022/03/19 195 2022/09/30 0.27
2004JG6 2023/03/16 325 2024/02/04 0.65
2013JX28 2024/04/12 275 2025/01/12 0.62
2012VE46 2025/01/19 135 2025/06/03 0.35
2010XB11 2026/11/24 195 2027/06/07 0.77
2006WE4 2028/07/16 245 2029/03/18 0.18
Total: 3.99

the arrival times as found by Di Carlo et al., and that the time
of flight of the Lambert arcs is similar to those presented in
the paper for all but the 3rd and 4th arc, causing the required
∆V to be 0.04 km/s higher. However, as the 3rd arc is 10 days
more than the one presented in the paper and the 4th arc is
10 days less, this difference cancels itself out with respect to
the departure times, thus resulting in the departure times also
being similar for all but these arcs. It should be mentioned
that for the 5th and 6th arcs, while the departure dates, time
of flights and arrival dates are equal to those presented in the
paper, the ∆V needed for these manoeuvres was found to be
0.01 km/s larger and 0.04 km/s smaller than the ones shown
in the paper by Di Carlo et al. The cause of this, is a minor
difference in the initial starting position. This small difference
propagates through the solution, slightly changing the required
orbit, in turn causing the Lambert arcs to change as well.

In an attempt to further evaluate the mission’s potential, four
additional Atira asteroids that have been discovered since the
paper was published were added to the database as well. The
osculating orbital elements of these four Atira asteroids can be
seen in Table V [18]. The optimal solution found when these
four additional Atira asteroids have been added to the database
can be seen in Table VI. As expected, the adding of additional
target asteroids for the spacecraft to move to increases the total
number of asteroids that can be visited within the mission time.
However, while this solution is capable of visiting 2 additional
asteroids, the required ∆V is also 0.18 km/s higher.

B. Low-Thrust Constrained Mission to the Main Asteroid Belt

The second case study consists of the preliminary identi-
fication of an optimal sequence of flyby’s of the asteroids
in the Main Asteroid Belt, with a constraint on the possible
realisation of the trajectory with a low-thrust engine. In this



TABLE VII
OVERVIEW OF THE AIDMAP PARAMETERS AND THEIR VALUES USED FOR

THE MISSION TO THE MAIN ASTEROID BELT

Linear Dilation Coefficient m 5e-3
Evaporation Coefficient ρ 1e-3
Growth Factor GF 5e-3
Number of Agents Nagents 10
Number of Generations Ngenerations 40
Ramification Probability pram 0.7
Ramification Weight λ 1
Initial Radius rini 2
Minimum Radius rmin 1e-3
Maximum Radius rmax 5
Fluid Viscosity µ 1
Ramification Nodes kram 5
Max. Child Finding Attempts Ffindmax 2e4
Restart Threshold ncom

min 5

TABLE VIII
RANGE OF ORBITAL ELEMENTS FOR THE SPACECRAFT’S INITIAL ORBIT

USED FOR THE COMPUTATION OF THE MOID WITH THE ASTEROIDS

rp [AU] ra [AU] i [deg] Ω [deg] ω [deg]
1 [2.36, 3.20] [0, 35] 0 [0, 360]

case, the objective is also to visit as many asteroids as possible
within the time frame, with the least amount of ∆V. The
problem assumes the same acceleration as used in the mission
to the Atira asteroids, being 10−4 m/s2. The time-frame for
the mission starts at 02/01/2029 and ends on 02/01/2049.

1) Algorithm and Problem Settings: The settings shown
in Table I were adapted through testing, in order to cope
with the increased complexity of the problem while having
access to the same computational resources. The values used
instead for this case study are shown in Table VII. Moreover,
other mission related parameters need to be defined before
AIDMAP can be applied to the problem. In particular, the
initial orbit and the various boundaries on time and ∆V need
to be set. The definition of the initial orbit for the mission
to the Main Asteroid Belt is based on the concept of the
Minimum Orbital Intersection Distance (MOID) between the
spacecraft’s orbit and the asteroids’ orbits [19]. The MOID
is computed for a time period of 20 years. The database of
asteroids in the Main Belt with diameter greater than 10 km
and different possible initial orbits is considered. The possible
orbital elements considered for the initial spacecraft orbit are
given in Table VIII.

For each possible initial orbit of the spacecraft, the aster-
oids with MOID < 0.01 AU with respect to this orbit are
sought. For the combinations of initial orbits and asteroids that
satisfy this condition, the relative phasing is also considered,
propagating the orbits of both spacecraft and asteroids. This
process allows one to identify an initial orbit with close
encounters (MOID < 0.01) to many asteroids in the database.
In particular the orbit characterised by orbital elements rp =
1 AU, ra = 3.1066 AU, i = 0 deg, Ω = 0 deg, ω = 150 and
M0 = 101 deg on 01/01/2030 has both MOID < 0.01 and the
condition on orbital phasing satisfied for the encounter with
37 asteroids in the database. This orbit is therefore the chosen

initial orbit for use in the AIDMAP algorithm.
As for the problem boundaries, the same boundary parame-

ters need to be defined as done for the first case study. In this
case, the maximum ∆V for an individual transfer arc was set to
be 0.75 km/s, the maximum total ∆V was set to 5 km/s and the
empirical coefficient C was assumed to be 2. For the minimum
and maximum time of flight, the boundaries were set to be 4
days and 730 days, using a time step of 10 days. These limits
were found from the results obtained by the computation of
the closest encounters between the spacecraft and asteroids. In
particular the minimum and maximum total time between two
encounters was found to be 4 days and 1064 days respectively.
By setting the maximum time of flight and waiting time to both
be equal to 730 days, one allows for the total time between
encounters to be 1064 days plus an additional margin for the
transfer orbit. The latter is needed due to the fact that the
initial orbit defined above does not necessarily get sufficiently
close to the asteroid, since it only guarantees that the MOID
is lower than 0.01 AU. The AIDMAP algorithm on the on the
other hand will attempt to intersect the orbit with the asteroid’s
centre, hence requiring a margin for the total transfer time.

It should be noted that for this case study, Equation 9 was
slightly altered. Namely, Equation 15 is used instead:

(ToFarck + Twaitk − Tmeas)ϵ ≥ C∆Varck (15)

In this equation, it may be noticed that two additional terms
have been added. Firstly, the waiting time was included due
to the fact that low-thrust engine could also provide thrust
during the waiting time, thus slightly relaxing the constraint.
However, another term Tmeas was introduced to ensure that
the low-thrust engine does not need to be turned on during
the time that measurements are performed near the asteroid.
In this problem, Tmeas was set to be 20 days.

Aside from that, the boundary shown in Equation 10 is
ignored in this case study, as the Edelbaum shown here is
only valid for near-circular orbits [17]. As the initial orbit
used in this case study is significantly eccentric, as opposed
to the orbit used in the first case study, this boundary is not
taken into account.

2) Results: The solution obtained using the parameters
stated in Tables I and II can be found in Table IX. In this table,
Tdeparc

, Tarrarc and ToFarc denote the departure time, arrival
time and time of flight of the Lambert arc respectively. It can
be seen in this table that the resulting trajectory is capable
of visiting 11 out of the 37 considered asteroids, and that the
total ∆V is 2.94 km/s.

The effectiveness of preprocessing the database and se-
lecting only a subset of asteroids is tested by comparing
the solution shown in Table IX with the solution obtained
when the full database of asteroids larger than 10 km is used.
This database contains the osculating orbital elements of 1977
objects [18]. It was predicted that, as the amount of agents and
generations is kept the same, and the database is larger, the
chance of selecting the more favourable asteroids and arrival
times decreases. This in turn may have a negative impact on
the final solution found. The solution can be seen in Table X.



TABLE IX
THE TRAJECTORY FOUND FOR THE MISSION TO THE MAIN ASTEROID

BELT

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

1906VP 2029/02/20 724 2031/02/14 0.20
Klytia 2032/07/03 634 2034/03/29 0.10
1939TA 2034/04/25 644 2036/01/29 0.23
1935OB 2036/05/20 404 2037/06/28 0.70
1905PS 2037/11/09 364 2038/11/08 0.08
1925TD 2038/11/15 334 2039/10/15 0.47
1902LK 2040/04/25 484 2041/08/22 0.38
Kassandra 2041/09/28 384 2042/10/17 0.15
1978QP1 2043/10/20 364 2044/10/18 0.25
1935MG 2046/04/19 374 2047/04/28 0.14
1973FF1 2047/06/04 364 2048/06/02 0.23
Total: 2.94

TABLE X
THE TRAJECTORY FOUND WHEN THE FULL ASTEROID DATABASE IS USED

AS INPUT

Asteroid Tdeparc
ToFarc [d] Tarrarc ∆V [km/s]

1992UU 2029/09/28 684 2031/08/13 0.17
1908DH 2032/07/18 574 2034/02/12 0.38
1905QD 2035/02/21 274 2035/11/22 0.20
1905PS 2037/01/03 674 2038/11/08 0.58
1902LK 2040/04/05 504 2041/08/22 0.24
Asia 2041/11/18 534 2043/05/06 0.40
1978QP1 2043/10/30 354 2044/10/18 0.24
1892N 2044/11/26 514 2046/04/24 0.04
1924QL 2046/08/02 384 2047/08/21 0.33
1906TP 2047/08/25 234 2048/04/15 0.75
Total: 3.33

From this table, it can be observed that the best solution is
capable of visiting 10 asteroids using a ∆V of 3.33 km/s. By
comparing this solution with the one shown in Table IX, it
can be concluded that using the database of the 37 asteroids
as input for the algorithm, as opposed to the full database of
1977 asteroids, is indeed effective when the settings shown in
Table VII are used. In order to be able to cope with the larger
dataset, a larger number of agents and generations are needed
to sufficiently explore the search space.

IV. BENCHMARKING

To evaluate the efficiency of the AIDMAP algorithm, the
original algorithm used in the paper by Di Carlo et al. was
compared to the algorithm discussed in this paper.

LambTAN is a deterministic algorithm that takes inspira-
tion from a combination of the branch-and-prune algorithm
and the incremental pruning discussed in [20] and [21]. In
essence, LambTAN branches out through the search space and
constructs and assesses transfers arcs one after another. If a
solution is found to be non-feasible, the branch is pruned [15].

The comparison is done by evaluating the number of func-
tion evaluations and the success rate of AIDMAP assuming
that the solution provided by LambTAN is the reference. This
is reasonable as the solution generated by LambTAN was
obtained with a nearly exhaustive deterministic search.

The use of AIDMAP is considered successful if the final
solution has the same sequence as the one found by the Lamb-
TAN algorithm and if the ∆V found is at most 5, 10 or 15
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Fig. 2. The success rate of the AIDMAP algorithm as a function of the
number of generations when the settings shown in Tables I and II are used
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Fig. 3. The number of function evaluations performed by the AIDMAP
algorithm when a set number of generations is evaluated and the settings
shown in Tables I and II are used

percent larger than the one found by the LambTAN algorithm.
The trends of success rate versus number of generations can
be found in Figure 2. To obtain this graph, the values shown
in Tables I and II were used as inputs, and a dataset of 40
runs was used for each data point.

From this graph, it can clearly be seen that the success rate
increases as the number of generations increases. However, it
can also be noted that with a boundary of 5 percent, the success
rate at 100 and 160 generations is lower than one would expect
from observing the trend. The cause of this is likely to be the
limited size of the dataset. Nonetheless, the trend observed
here is similar to the one of other Physarum-based algorithms
[3]. As for how the amount of function evaluations changes
with the amount of generations, this can be seen in Figure 3.
In this figure, a function evaluation is defined as a call to the
cost function.

Interesting to note here is that the number of function
evaluations performed when a certain amount of generations is
selected, often overlaps with an amount of function evaluations



performed when a lower or higher number of generations is
used. The cause of this, is the non-deterministic nature of the
algorithm; the number of function evaluations performed when
a certain number of agents and generations is selected is not
a set value.

To compare these statistics with LambTAN’s, it should be
mentioned that LambTAN performs 6.9·107 function evalua-
tions to obtain the solution. It can be noted that this is more
than a factor 30 larger than the amount of function evaluations
performed by the AIDMAP algorithm when 20 agents, 200
generations and the settings shown in Tables I and II are used.

While LambTAN is guaranteed to succeed due to the fact
that it is evaluating all available trajectories, it becomes highly
inefficient to use LambTAN when the dataset of possible
asteroids increases significantly. Due to this disadvantage of
LambTAN and the increasing need for algorithms that can
efficiently solve large and complex combinatorial problems,
the AIDMAP algorithm can certainly be considered a valuable
alternative.

V. CONCLUSION

In this paper, the bio-inspired Automatic Incremental De-
cision Making And Planning (AIDMAP) algorithm has been
presented and its operators have been described. The proposed
algorithm has furthermore been applied to two discrete deci-
sion making problems in the field of astrodynamics.

In the first case study, it has been shown that the AIDMAP
algorithm is capable of accurately reproducing the optimal
trajectory to six Atira asteroids found using an alternative
deterministic algorithm, and that the AIDMAP algorithm is
capable of finding a new optimal solution when the database
is updated with a set of newly discovered Atira asteroids.

In the second case study, a mission to the Main Asteroid
Belt, it has been demonstrated that, by first using the Minimum
Orbital Intersection Distance to find the optimal starting orbit
and potential set of visitable asteroids, the AIDMAP algorithm
can effectively find an optimal solution for a discrete decision
making problem with an increased level of complexity.

To benchmark the AIDMAP algorithm, the number of
generations used by the AIDMAP algorithm in the first case
study was varied and the number of function evaluations
and success rate was compared to those of the deterministic
LambTAN algorithm. It has been shown that, while LambTAN
always succeeds in finding the optimal solution, the number
of function evaluations it requires is more than a factor 30
larger than the amount of function evaluations performed by
the AIDMAP algorithm in the test presented in this paper. Due
to the increasing need for algorithms that can efficiently handle
large scale combinatorial problems, it can be concluded that
the AIDMAP algorithm provides, at comparable accuracy of
the solutions found, a more efficient alternative to the currently
existing deterministic algorithms.
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