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Abstract—In this work, we present an extension to the recently
developed Integer and Categorical Particle Swarm Optimization
(ICPSO), which we refer to as Markovian ICPSO (MICPSO).
MICPSO uses a Markov network to represent a particle’s
position, thus allowing each particle to incorporate information
about dependencies between solution variables. In this work,
we compare MICPSO to ICPSO, Integer PSO (IPSO), an
Estimation of Distribution Algorithm called Markovianity-Based
Optimization Algorithm (MOA), and a hillclimber on a set of
benchmark vertex coloring problems. We find that MICPSO
significantly outperforms all alternatives on all problems tested.

I. INTRODUCTION

Integer and Categorical Particle Swarm Optimization
(ICPSO) is a new discrete particle swarm optimization algo-
rithm that is designed to handle both integer and categorical
state variables [1]. This is achieved by representing the par-
ticle’s position as a set of probability distributions, one per
variable, over the possible solution values. Solution values are
produced by sampling from these distributions.

ICPSO has been shown to perform well compared to other
discrete PSO variants, particularly on problems where there
is no natural ordering to solution values. However, it is
limited by the fact that the algorithm assumes that variables
in the solution are independent of each other. This can cause
issues with some constrained optimization problems and many
real-world optimization problems where dependencies exist
between solution values. In such situations, the algorithm must
work around these dependencies, for example by “fixing” the
generated solutions or penalizing the fitness of infeasible solu-
tions. Fixing samples creates possible convergence problems
for ICPSO, as the fitness of the samples may not accurately
reflect the average fitness of the distributions that generated
them. Penalizing infeasible solutions is not always practical,
particularly if there are very few feasible solutions compared
to infeasible ones. In general, methods similar to ICPSO will
fail to converge when interactions between problem variables
are not accounted for [2]. This limits the class of optimization
problems to which ICPSO can be expected to perform well.

In this work, we present an extension to ICPSO that ad-
dresses this limitation. Rather than using separate distributions
for each state variable, as ICPSO does, our proposed algorithm
utilizes localized joint probabilities between pairs of state
variables to represent dependencies explicitly. This involves

encoding a probabilistic graphical model (in this case, a
Markov network) into the particle structure. Doing so allows
the algorithm to avoid the problems of fixing or penalizing
solutions by integrating knowledge of the dependencies and
constraints into the sampling process directly. We hypothesize
that this will be an improvement upon ICPSO’s performance
on constrained optimization problems.

II. BACKGROUND AND RELATED LITERATURE

In this section, we provide an overview of the related
literature, starting with Particle Swarm Optimization (PSO).
We then provide background on Markov networks and discuss
a subset of Estimation of Distribution Algorithms (EDAs) that
use Markov networks to model the population.

A. Particle Swarm Optimization

1) PSO: In the original PSO algorithm, a particle p’s
position in the search space, xp, directly represents a candidate
solution to the optimization problem [3]. The particle moves
through the search space according to its velocity vector
vp = {vp,1, vp,2, . . . , vp,N}. At each iteration, the fitness of
the current position is evaluated, and the velocity vector is
updated and added to the position vector in order to determine
the particle’s new position. In the simplest case, the velocity
and position updates are

vp = ωvp + U(0, φ1)⊗ (pBest− xp)

+ U(0, φ2)⊗ (gBest− xp)

xp = xp+vp

where each operator is performed component-wise over each
variable in the vector, and U(0, φ1) and U(0, φ2) are uniformly
distributed random numbers between 0 and φ1 and 0 and φ2.
The vectors pBest and gBest represent, respectively, the
best position in the search space this particle has ever seen,
and the best position in the search space any particle in the
swarm has ever seen. This simultaneously pulls the particle
in three directions: the direction it was previously going, the
direction of its personal best, and the direction of the global
best. By tuning ω, φ1, and φ2, the user can control the relative
effects of these three terms, known as inertia, the cognitive
component, and the social component, to tune the particle’s



behavior. After a termination criterion is reached, often a set
number of iterations, the global best is returned.

2) IPSO: Integer PSO (IPSO) is a simple extension to the
continuous PSO algorithm that allows it to solve problems
with integer-valued solution variables [3]. IPSO uses the same
position and velocity updates as the original PSO algorithm;
however, after the velocity is updated and added to the
position, each element of the position vector is rounded to
the nearest integer value.

3) Veeramachaneni PSO: Veeramachaneni et al. developed
an extension to binary PSO that relaxes the need for a
binary representation of the problem, which we refer to as
Veeramachaneni PSO (VPSO) [4]. In VPSO, each variable
is allowed to assume M discrete values. After the velocity
has been updated, it is mapped into the [0,M − 1] interval
by first using a generalized version of the sigmoid function,
given as Si,j = M−1

1+exp(−vi,j) . Next, each particle’s position
is updated by generating a random number according to the
normal distribution xi,j = N (Si,j , σ×(M−1)) and rounding
the result. Then the piecewise function

xi,j =


M − 1 xi,j > M − 1

0 xi,j < 0

xi,j otherwise

is applied to ensure all values fall within [0,M − 1] [4].
4) ICPSO: ICPSO was developed to address a major pitfall

of PSO: the original PSO algorithm cannot handle discrete
problems, and the existing discrete PSO variants were not
appropriate for truly categorical problems because their update
equations semantically require a numerical relationship or
gradient between the states of the variables [1]. To overcome
this limitation, ICPSO represents a particle’s position not as a
solution itself, but as a set of probability distributions over
possible solution values. For a particle p, its position can
be represented as xp = [Dp,1,Dp,2, . . . ,Dp,n] where each
Dp,i denotes the probability distribution for variable xi. Each
entry in the particle’s position vector is itself comprised of
a set of distributions Dp,i = [dap,i, d

b
p,i, . . . , d

k
p,i], where djp,i

corresponds to the probability that variable xi takes on value j
for particle p. This allows the same velocity update equation
to be used as in traditional PSO, though the interpretation
changes: the update is now an adjustment to the particle’s
probability distributions.

With this representation, a particle’s fitness is evaluated
by sampling from this distribution and then calculating the
fitness of that sample. Multiple samples may be drawn at each
iteration to give a better idea of average fitness. When a sample
S is found that beats the local or global best, the best is updated
and the distribution is biased toward producing similar samples
in the future by updating the entries in the position vector as
follows:

djgB,i =


ε× djp,i if j 6= sp,i

djp,i +
∑

k∈V als(Xi)
∧k 6=j

(1− ε)× dkp,i if j = sp,i.

This has the effect of biasing the particle toward producing
samples similar to S in the future, while also automatically
maintaining a valid probability distribution. As with regular
PSO, the global best solution – in this case, the best sample,
which was generated by the distributions from the last gBest
particle found – is returned at the end of the optimization.

5) Pugh PSO: Another multi-valued PSO extension was
introduced by Pugh and Martinoli [5]. We refer to this variant
as Pugh PSO (PPSO). PPSO, like ICPSO, uses a probabilistic
interpretation of a particle and evaluates fitness stochastically
by generating a sample solution.

The position vector, however, does not represent a valid
probability distribution explicitly in PPSO. When generating
a sample, a sigmoid transformation is applied to each term
in each element of the position vector. Then, the probability
of the sample solution’s jth element taking on value k is the
kth term of the position vector’s jth element divided by the
weighted sum of all the elements in that term. This allows the
solution element to take on any value from 0 to a user-specified
n. An adjustment must also be applied after each modification
of the particle’s values so that all of the particles share a
common reference frame [5]. To achieve this adjustment, a
value cij is subtracted from each value of particle i, element
j’s vector of values. This cij is calculated such that all values
of the vector, when mapped to the sigmoid function, sum to
1. The resulting equation is solved for c via an approximate
root-finding method to produce an adjustment for each value
in each element of the position vector. To address the noisy
fitness evaluation, the algorithm reevaluates best particles at
each iteration, averaging fitness over particles’ lifetimes.

B. Markov Networks

Markov networks are probabilistic graphical models that
provide a method of representing complex joint distributions
compactly by modeling the local interactions between random
variables [6].

1) Interpretation: The nodes in a Markov network’s graph
represent the variables in the problem, and the edges, all
of which are undirected, represent probabilistic interaction
between variables [7]. More specifically, if two nodes are
connected by an edge, the corresponding variables interact
probabilistically in a way that is not mediated by any of the
other variables. This allows the network to encode a set of
conditional independence assumptions. In a Markov network,
the Markov blanket for a node consists of all of its neighbors
in the graph [8]. A node is conditionally independent of all
other nodes in the graph given its Markov blanket. As a
result, the Markov blanket of a node can be used to determine
the probabilities of the node variable’s possible instantiations
without needing to know the states of every other variable in
the network.

The Markov network framework captures affinities between
related variables by modeling their local interactions via a
factor φ, which is a function that maps a set of random
variables to R≥0. Using these functions, the joint probability



distribution can be factorized over the cliques C of the
network’s graph structure as

P (X) =
1

Z

∏
c∈C

φ(c)

where Z is a normalizing constant. This approach provides a
great degree of flexibility when representing the interactions
between variables. The strength of the interaction can be
adjusted by modifying φ. A Markov network’s structure can
be learned from data, or a known structure can be provided
by a domain expert.

2) Inference: Exact inference in probabilistic graphical
models is known to be NP-Hard [7]. Thus, for practical
applications, it is necessary to use an approximation algorithm
to generate samples. For an undirected model such as a
Markov network, a popular choice for this task is Gibbs
sampling. This sampling approach belongs to a category of al-
gorithms known as Markov chain Monte Carlo methods, which
generate a sequence of samples generated from distributions
that approximate the desired distribution better and better as
the sequence continues.

Gibbs sampling starts by generating an initial sample based
on an initial distribution, often uniform. Then, for a specified
number of iterations, the sampler re-samples each variable
based on the current sampled values for the other variables
in the network. Markov networks have a property known as
the local Markov property, which states that a variable is con-
ditionally independent of all other variables given its neighbors
in the graph. Thus, when re-sampling a variable X , it is only
necessary to calculate P (X|Neighbors(X)), which can be
done using the current sampled values for Neighbors(X). For
each possible value xi ∈ V als(X), the likelihood of X taking
on value xi is calculated using the values of the potential
function associated with the instantiation where X = xi and
Neighbors(x) have the values from the current sample. These
likelihoods are then normalized to create the distribution from
which X can be resampled.

C. Estimation of Distribution Algorithms

1) Introduction to EDAs: Estimation of Distribution Algo-
rithms are somewhat semantically related to ICPSO in that
they are based on the idea of building a probability distribution
to reflect desirable candidate solutions [2]. The general EDA
procedure begins by randomly generating an initial population
of solutions. Some subset of these solutions are selected based
on their fitness, similar to the selection procedure in a genetic
algorithm. Then, the algorithm constructs a probabilistic model
using these selected solutions. In some cases, this includes
structure as well as parameter learning; in others, the structure
is known beforehand and fixed. This model is then sampled to
create more candidate solutions, which replace some portion of
the previous generation’s population, and the process repeats.
Over multiple iterations, this should lead to a population with
increasing average fitness.

Often the probabilistic model used in an EDA is a Bayesian
network. However, Bayesian networks are restricted to be

directed acyclic graphs. In the case of a constrained optimiza-
tion problem, this can be a restriction on the representational
power of the model as constraints can be bidirectional and
cyclic in nature. Thus, we focus our review of literature on
the class of discrete EDAs that use an undirected model,
a Markov network, which permits cycles. Additionally, we
are interested primarily in EDAs that can represent higher-
order interactions between variables, rather than univariate or
bivariate EDAs. Univariate models assume problem variables
are independent, and bivariate models similarly restrict the
allowable number of interdependencies between variables,
limiting the representational power of the model. Given that
our algorithm does not place a restriction on the number of
interdependencies in the model, we chose to compare to EDAs
that had similar representational power.

2) Markov Network Factored Distribution Algorithm (MN-
FDA): MN-FDA is an EDA that uses a junction graph as
the underlying probabilistic model [9]. The algorithm uses
independence tests to learn a Markov network structure from
the population. The network structure can also be given as an
input, rather than being learned by the algorithm. This network
is then modified by incrementally deleting edges between
nodes that have degree larger than some specified maximum,
in order to decrease the density of the graph. This refinement is
necessary to manage the size of the resulting cliques; however,
it also has the potential to remove dependencies from the
graph beyond what is necessary. The algorithm then uses this
network to construct a junction graph from which additional
points are sampled.

While earlier EDAs based on undirected models generally
used a junction tree to represent factorizations, the use of a
junction graph allows cycles and thus extends the representa-
tional power of the model. This means that the junction graph
can more closely fit the underlying distribution [10].

3) Markov Network Estimation of Distribution Algorithm
(MN-EDA): Santana proposed MN-EDA as a novel method
to approximate and sample probability distributions [11]. The
learning portion of MN-EDA is accomplished through the use
of a modified version of the Kikuchi approximation of energy
from statistical physics, and the sampling portion of the algo-
rithm relies on Gibbs sampling. The Kikuchi approximation
was chosen because it has a number of properties that are
particularly useful in an EDA context. When compared to
MN-FDA and its reliance on junction graphs, MN-EDA’s use
of the Kikuchi approximation covers a higher number of de-
pendencies, which can result in accuracy gains. Additionally,
these dependencies can be captured without adding new edges
to the underlying graph, making this a preferable choice to
procedures like triangulation algorithms.

Although MN-EDA and MN-FDA are related in that they
both use Markov networks, there are important differences
between the two methods, both in terms of approach and
performance. A primary difference between the two is that
MN-FDA is incapable of approximating probability distribu-
tions using “messy factorizations.” The MN-FDA approach
requires an ordered factorization, one in which there exists



an ordering of all maximal cliques such that at least one
variable in each clique does not belong to any of the prior
cliques in the ordering. MN-EDA has the ability to learn messy
factorizations, and this fact, combined with the advantages
gained through the use of the Kikuchi approximation, results
in a more robust EDA.

The evaluation of the MN-EDA approach shows that the
Kikuchi approximation is capable of encoding information
about the problem’s structure, and unlike some of the com-
peting EDA approaches, they have no problems handling
variables whose interactions form cycles. This makes MN-
EDA, Santana contends, a viable and attractive alternative to
Bayesian network based EDAs.

4) Distribution Estimation Using Markov Networks
(DEUM): DEUM is another class of Markov-network based
EDAs; however, what distinguishes DEUM from similar
approaches is its use of fitness modeling to estimate the
distribution [12]. Fitness modeling is a process that can
potentially improve the efficiency of evolutionary algorithms
by using a model of the fitness function, rather than the
function itself [13]. In situations where the fitness evaluation
is the primary bottleneck, the increased speed of evaluation
by sampling the model is worth the cost of building an
explicit model of fitness. DEUM, in particular, relies on the
Markov random field fitness model (MFM).

The DEUM algorithm proceeds much like other EDA
algorithms, with an added step: when building the probabilistic
model, DEUM first builds an MFM and then proceeds to fit it
to the set of selected solutions. In the full DEUM algorithm,
this step is also preceded by estimation of the structure of the
Markov network; however, DEUM can also take advantage
of preexisting knowledge of network structure. The authors
found that DEUM requires a very large population size to
converge to the global optimum when performing structure
learning. Like many other multivariate Markov-network-based
EDAs, DEUM uses Monte Carlo methods, specifically Gibbs
sampling, in order to sample from the model at each iteration.

5) Markovianity Based Optimization Algorithm (MOA):
MOA is unusual among EDAs in that it uses the local rather
than global Markov property in estimating and sampling from
the model [14]. In other words, rather than having to estimate
the parameters of the full joint distribution, the algorithm needs
only to estimate the conditional probabilities for each node and
its Markov blanket and sample from those. Because of this, the
algorithm does not need to rely on methods such as Kukuchi
approximations, and thus gives a more efficient optimization.

Like DEUM and similar methods, MOA uses Gibbs sam-
pling to sample from the Markov network. Specifically, a
linear temperature schedule is used for the sampling process,
where at each iteration the temperature is T = 1

iteration∗CR .
This temperature parameter controls the convergence of the
sampling process, where a higher temperature pushes the dis-
tribution closer to being uniform. The CR parameter is a user-
defined “cooling rate” between 0 and 1. By using this cooling
rate parameter in conjunction with the iteration to determine
the temperature, the convergence of the MOA algorithm may

Algorithm 1 MICPSO
1: INITIALIZESWARM()
2: repeat
3: for all p ∈ Swarm do
4: v = ωv + φ1r1 ⊗ (pB− p) + φ2r2 ⊗ (gB− p)
5: p ← p + v
6: p.EVALUATEFITNESS()
7: if f (pBest sample) > f (gBest sample) then
8: gBest sample ← pBest sample
9: gBest ← BIAS(p)

10: end if
11: end for
12: until stopping criterion is met return gBest sample

Algorithm 2 EvaluateFitness
1: for i = 1 to numSamples do
2: s ← GIBBSSAMPLE(p.MN)
3: if f (s) > f (pBest sample) then
4: pBest sample ← s
5: pBest ← BIAS(p)
6: end if
7: fitness ← fitness + f (s)
8: end for
9: fitness ← fitness / numSamples return fitness

be slowed down or sped up. The authors compared this version
of Gibbs sampling to temperature-less scheduling, and found
that this version was preferable for MOA due to its handling
of the exploration/exploitation tradeoff.

III. MICPSO

Our approach, Markovian ICPSO (MICPSO), extends
ICPSO by using a Markov network, rather than a vector of dis-
tributions, to represent the particle’s position. This maintains
the probabilistic interpretation of the particle’s position, but
also allows explicit representation of dependency relationships
between solution variables. Algorithm 1 shows the basic
procedure of MICPSO, while Algorithm 2 provides additional
detail on the fitness evaluation procedure.

The algorithm begins, as do many swarm-based algorithms,
by creating a randomly-initialized population of solutions.
If the structure of the Markov network for the optimization
problem is known, this only involves randomly generating the
potentials on the edges of the network. Otherwise, however,
this must also include a structure learning step of some kind.
Then, the algorithm iterates through all particles in the swarm,
updating their position and velocity at each iteration. The
position and velocity update equations are identical to those in
regular ICPSO, except that they apply to the potentials in the
network, rather than entries in a probability distribution. Note
that r1, r2 ∼ U(0, 1). As in ICPSO, the fitness of a particle
is assessed by generating samples; however, in this case,
this requires performing inference on the particle’s Markov
network. We use Gibbs sampling for this step. The fitness
of the generated samples is averaged to obtain the particle’s



fitness. If at any point during sampling a particle is produced
that beats the global or local best, the best is updated and the
particle’s position vector is biased toward producing similar
samples in the future. MICPSO uses the same biasing method
as ICPSO, adjusting the position vector by increasing entries
corresponding to the best sample’s solution values and decreas-
ing the other entries. In MICPSO, the resulting distribution
does not need to be re-normalized after the biasing step, since
it does not encode an explicit probability distribution. Once the
algorithm terminates, the best sample generated by the global
best particle is returned as the solution.

The use of the probabilistic graphical model is the reason
our review of related literature focuses primarily on EDAs, as
we view this as playing a similar role to the Markov network
in our algorithm. Both our method and EDAs rely on building
a model of possible high-fitness solutions; however, the means
by which this is achieved differs significantly between EDAs
and MICPSO. An EDA builds this model from a population,
while our method centers on adjusting the parameters of the
Markov network directly in response to sample fitness.

IV. EXPERIMENTS

Testing the validity and effectiveness of the proposed
MICPSO approach necessitated selecting a categorical opti-
mization problem where the solution values are not indepen-
dent of each other. To that end, we chose to use the simplest
form of the graph coloring problem, vertex coloring. For a
vertex coloring problem, the goal is to color a graph G such
that no two vertices that share an edge are the same color.
The minimum number of colors required so that no adjacent
nodes in G share a color is known as the chromatic number of
the graph, often denoted χ(G). Finding the chromatic number
of a graph is NP-hard, so our goal in testing algorithms on
this problem is to see how closely they can approximate the
chromatic number of various graphs [15]. This provides us
with a simple and intuitive method of scoring the algorithms.

A. Methodology

The vertex coloring problems used in these experiments
were drawn from [16]. Instances were chosen to represent a
range of graph sizes and complexities, as reflected by the num-
ber of nodes and/or edges in the graphs, as well as treewidth.
As a result, these problems varied considerably in difficulty.
Table I lists the characteristics of each of the graphs used,
including the number of nodes and edges, the treewidth, and
the chromatic number of the graph. The treewidth corresponds
to the size of the largest subclique in the graph (minus 1)
after triangulating and gives an idea of the complexity of each
problem: higher treewidth indicates a more difficult coloring
problem. All graphs are non-planar, and all tree widths are
drawn from the results of [17], which demonstrated a Branch
and Bound algorithm called QuickBB for calculating upper
bounds on treewidth.

We chose to use the vertex coloring problem when testing
the performance of MICPSO because it is a well-researched
problem that extends to a number of real-world applications.

TABLE I
CHARACTERISTICS OF EACH OF THE DIMACS GRAPH COLORING

INSTANCES TESTED IN THIS WORK.

Vertices Edges TW χ(G)

huck 74 301 10 11
myciel3 11 20 5 4
myciel4 23 71 10 5
myciel5 47 236 19 6
queen5-5 25 160 18 5

A valid graph coloring can be employed to represent solutions
to various versions of the scheduling problem, optimal register
allocation, and minimizing the number of frequencies required
to assign antennas in a wireless network [18], [19]. Addition-
ally, examples of graph coloring problems are plentiful and
solutions are easy to score. Importantly, this problem also
allows the algorithm to take advantage of known network
structure rather than incorporating a structure learning step.

Along with MICPSO and ICPSO, we also chose to test
IPSO and MOA on these problems. MOA was selected
because, of the Markov network-based EDAs surveyed, it
was the most semantically similar to MICPSO and thus
we felt it would provide the best comparison. Additionally,
we implemented a simple hillclimber to serve as a baseline
for comparison. Neither VPSO nor PPSO were included in
this comparison, as it has already been shown that they are
generally outperformed by ICPSO on categorical problems [1].

Each algorithm was run 20 times on each graph instance,
and results were averaged across all runs. Each algorithm’s
parameters were tuned individually prior to the comparison.
Both MICPSO and ICPSO performed best when the swarm
size was 10 and 3 samples were generated per fitness eval-
uation. MICPSO performed best with ε = 0.75, ω = 0.7,
and φ1 = φ2 = 1.4. ICPSO used ε = 0.95, ω = 0.7 and
φ1 = φ2 = 1.4. IPSO’s parameters were ω = 1.0, and
φ1 = φ2 = 1.4, with a swarm size of 10. Finally, MOA
performed best with a population of size 25, a cooling rate
of 0.1, and 50% of the population replaced at each iteration.
As in [14], we used truncation selection for MOA. However,
we did not incorporate MOA’s structure learning step, instead
allowing both MOA and MICPSO to make use of the known
network structure for graph coloring problems.

Algorithms were run until the best solution’s fitness failed
to change over 20 consecutive iterations, at which point the
global best was returned. We chose this stopping criterion,
rather than a number of fitness evaluations, based on the
results from [20]. Given that this is a constrained optimization
problem, we had to choose a way to handle the constraints in
the methods that did not incorporate them explicitly. Broadly
speaking, there are three ways this can be done. When an
invalid solution is generated, the algorithm can either (1)
fix the solution to make it valid, (2) discard that solution
and generate a new one, repeating until a valid solution is
produced, or (3) penalize the fitness of the invalid solution so
that, ideally, it will not be chosen as a best solution [21].



With a problem as tightly constrained as graph coloring, the
first two options could potentially be prohibitively computa-
tionally expensive. Employing an auxiliary algorithm to repair
an invalid solution could take a long time on the larger graphs,
and with highly connected graphs, it might be necessary to
generate thousands of solutions before a valid one is produced.
Furthermore, it is possible for ICPSO to produce a distribution
that is incapable of generating a valid sample at all; therefore,
the second option could potentially create an infinite loop.
For these reasons, we chose to utilize a penalty function to
reduce the fitness of invalid solutions. This penalty, however,
was not factored into the reported results for average fitness
per iteration or average fitness of the global best solution, as
this would have unfairly biased the results. With this penalty
in place, our fitness function for a vertex coloring C of graph
G is as follows:

f(C(G)) =

{
χ(G)− |C| if C is a valid coloring
(χ(G)− |C|)− 100 otherwise.

MOA presented an interesting problem in terms of con-
straint enforcement because, while it is Markov network-based
like MICPSO, the conditional probabilities of variables’ values
are computed from the population rather than the network’s
potential functions. At each iteration of the MOA Gibbs
sampler, the probability that variable Xi takes on value xi
is computed as follows:

p(xi|Ni) =
ep(xi,Ni)/T∑
x′
i
ep(x

′
i,Ni)/T

where T is the temperature variable and p(xi, Ni) and
p(x′i, Ni) are calculated from the population [14]. Due to the
use of the Boltzmann distribution, the numerator can never go
to zero; therefore, it is not possible to have a zero probability
even in the case where Xi = xi might violate a graph coloring
constraint given the assignment to the neighbors Ni. As such,
it was still possible to generate an invalid sample using MOA.
In order to mitigate the effects of this and allow for a more
fair comparison to MICPSO, we modified MOA to discard
invalid samples during the sampling process, re-sampling until
an adequate number of valid samples have been produced.

B. Results

The results of these experiments are shown in Table II.
Results were compared using Welch Two Sample t-tests. The
“NR” in the table indicates that the algorithm was unable to
produce any valid results on that graph, so no fitness values
may be calculated. “N/A” indicates that the algorithm ran out
of memory before producing any results on the graph. An entry
in the table is bolded if that algorithm statistically significantly
outperformed all other algorithms on that problem.

Table III reports the percentage of the vertex colorings
produced by each algorithm that were valid for each graph.
Again, an “N/A” entry indicates that no results were obtainable
in that case. The fitness curves for myciel3 and myciel4 – the
only graphs where fitness information was available for every
method – are shown in Figures 1a and 1b.

TABLE II
MEAN FITNESS VALUES FOR EACH OF THE GRAPHS TESTED.

HC IPSO ICPSO MICPSO MOA
huck -25.57 -32.43 -34.35 -0.24 N/A
myciel3 -4.50 -3.30 -3.95 0.00 -3.20
myciel4 -7.67 -10.8 -11.50 -0.80 -8.35
myciel5 -15.75 -26.14 -26.45 -2.40 N/A
queen5-5 NR -15.40 -14.90 -4.00 N/A

TABLE III
PERCENTAGE OF THE TIME EACH METHOD WAS ABLE TO FIND A VALID

SOLUTION FOR EACH GRAPH TESTED.

HC IPSO ICPSO MICPSO MOA
huck 35 35 100 100 N/A
myciel3 10 100 100 100 100
myciel4 15 100 100 100 100
myciel5 40 70 100 100 N/A
queen5-5 0 100 100 100 N/A

C. Analysis

MICPSO statistically significantly outperformed all other
algorithms on all problems tested. Especially as compared
to ICPSO, this reinforces the notion that MICPSO’s ability
to represent dependencies directly gives it an advantage on
problems where solution variables are dependent. Additionally,
while one might have expected ICPSO to outperform IPSO
given the categorical nature of the problem, their performance
was generally comparable. This suggests that, for vertex color-
ing, the constraints and dependencies matter more to solution
quality than the fact that it is a categorical problem.

MOA was only able to produce results for the two smallest
graphs, myciel3 and myciel4. It performed second-best on
myciel3, but actually came in third to the baseline hillclimber
on myciel4. However, it is worth noting that the hillclimber
was only able to produce a valid result in a small percentage
of cases, while the vertex colorings produced by MOA were
always valid. Despite also incorporating dependencies using
a Markov network, MOA was consistently outperformed by
MICPSO. We hypothesize that this is due in part to MICPSO’s
ability to incorporate the constraints of the problem explicitly.

Overall, all algorithms had relatively more difficulty with
graphs of larger treewidth. This is unsurprising, as treewidth is
an indicator of the complexity of the graph. Notably, myciel5
and queen5-5 had the largest treewidths of the graphs tested,
and MICPSO in particular had the most difficulty with those
two graphs. Huck also had the lowest average fitness for
all algorithms but MICPSO, suggesting the other methods
also had difficulty with large graphs even with a moderate
treewidth. Interestingly, on some problems, the hillclimb out-
performed IPSO and ICPSO in terms of mean solution fitness.
As previously mentioned, however, it was unable to find a valid
solution in the majority of cases.

MOA and MICPSO inherently always produce a valid
sample, when a sample is able to be produced at all. IPSO,
ICPSO, and the hillclimber were not constrained to always



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
−8

−6

−4

−2

0

Iterations

B
es

t
Fi

tn
es

s

Fitness vs Iterations for graph myciel3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
−20

−15

−10

−5

0

Iterations

B
es

t
Fi

tn
es

s

Fitness vs Iterations for graph myciel4

HC IPSO ICPSO MICPSO MOA

Fig. 1. Fitness curves for optimizing the number of colors used for graphs myciel3 and myciel4

produce a valid sample, and thus often a penalized solution
was returned as the best result. ICPSO was able to produce
valid solutions consistently on the graphs presented, but failed
on some even larger and more complex graphs during the
early stages of testing. Along with the hillclimber, IPSO had
significant difficulty producing valid solutions, particularly on
networks with a relatively large number of edges.

Generally speaking, the Markov network-based approaches
were the slowest to produce results. MOA in particular was
computationally expensive compared to the other methods,
as evidenced by the fact that it often failed altogether to
find a solution before running out of memory. The use of
Gibbs sampling also caused MICPSO to be slower than the
simpler methods; however, even on the larger graphs, the
computational time required was not so slow as to be unusable,
and the algorithm always returned a solution on all five graphs.

Analysis of the fitness curves shows that MICPSO consis-
tently produces the fittest solutions, and it does so within a rel-
atively small number of iterations. In fact, on average, even the
solutions produced by MICPSO in the first few iterations are
better than the other methods’ solutions. MICPSO generally
reached decreasing returns within 12 iterations, suggesting that
our termination criterion was possibly more conservative than
necessary. Given the computational cost incurred by Gibbs
sampling, it seems desirable in light of these results to give

MICPSO a tighter termination criterion, as that would lead to
fewer iterations overall while still preserving solution quality.
The other algorithms tested tended to reach decreasing returns
even sooner than MICPSO, but on average the solutions
reached had lower fitness.

IPSO had an extremely steep initial fitness gain, but then
essentially leveled out within a single-digit number of iter-
ations. The hillclimber had similar results, but with a less
dramatic initial increase. On the other hand, both ICPSO and
MOA tended to remain fairly stagnant in terms of best solution
fitness. In MOA’s case, this suggests an inability to introduce
or maintain diversity in the population throughout the course
of optimization. We hypothesize this could be due to MOA’s
use of truncation selection, which can cause a loss of diversity
compared to other selection methods [22]. However, it could
also be due to the fact that the parameters of the Markov
network are learned from the population. While the use of the
Boltzmann distribution may help to mitigate this effect, it is
still likely that the algorithm will be unable to escape local
optima due to its reliance on the distribution of the population
at the previous step.

V. CONCLUSION

In this paper, we introduced an extension to ICPSO,
MICPSO, which utilizes a Markov network to represent the
particle’s position. By doing so, a particle can represent



dependencies between state variables explicitly and incor-
porate some types of constraints. This allows the algorithm
to avoid fixing, discarding or penalizing infeasible solutions,
and also is shown to increase solution quality. We compared
MICPSO to ICPSO, IPSO, MOA, and a hillclimber on a set of
benchmark vertex coloring problems and found that MICPSO
consistently outperformed the other algorithms. This suggests
that MICPSO successfully incorporates dependencies into the
underlying discrete PSO in a way that is applicable to a well-
known problem from the discrete optimization literature.

In future work, it will be important to test MICPSO’s
performance on a variety of other problems. The results on
vertex coloring are promising, but that represents only one
of many potential benchmark discrete problems to which it
could be applied. Additionally, while vertex coloring presents
an interesting first application, the presence of constraints
in the optimization problem limits its use in this context
beyond basic proof of concept. While MICPSO can explicitly
incorporate constraints of the type present in vertex coloring
by simply clamping certain values of the potential functions
to zero, we expect that a traditional constraint solver would
still outperform MICPSO on this problem.

A second, related area of future work would be incor-
porating a structure learning step into MICPSO. While we
already demonstrated that the algorithm can be effective for
applications where the Markov network has a known structure,
it will be important to test the algorithm’s performance when
the structure must be learned from data, as is the case in many
applications of discrete optimization. Even disregarding real-
world problems, many classic theoretical computer science
problems, for example, the job shop scheduling problem
and activity selection, lack an immediately obvious Markov
network structure. Learning the network structure for a target
problem will allow MICPSO to move away from applications
like vertex coloring, which are better suited to constraint solver
algorithms, and into areas where evolutionary and population-
based approaches can be expected to outshine other methods.

Another possibility would be developing a factored version
of MICPSO. Factored evolutionary algorithms (FEA) have
already been shown to be a promising area of research for
evolutionary algorithms, including swarm-based methods [23].
The inclusion of the Markov network in MICPSO particles
may make the algorithm a strong candidate for a factored
approach to optimization.

Finally, it would be interesting to compare MICPSO to
other optimization methods that had been modified to better
represent underlying joint probability distributions. As demon-
strated by MOA, using a Markov network to encode depen-
dency information is not limited to particle-based methods, and
could potentially extend to other probability-based methods.
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