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Abstract—Endowing Decision Support Systems (DSSs) with a
risk-aware view of the environment they operate in is critical to
maintaining an acceptable level of Situational Awareness (SAW)
as well as helping decision makers arrive at more accurate and
timely conclusions. In particular, determining the situational
elements that are presently impacting the system behaviour –
and to what extent– leads to a refined SAW picture and ensures
valuable knowledge propagation to the upstream layers of the
underlying fusion/decision making process.

In this paper, we augment an existing Risk Management
Framework (RMF) with a set of atomic risk models capturing
different situational elements. Contextual information feeding the
DSS is employed to either activate one or more of these models or
tailor their internal risk assessment. We show how context-aware
dynamic risk management can be achieved in a DSS governed
by the proposed architecture. Two maritime scenarios (vessel
encountering active weather and vessel navigating in a piracy-
infested region) serve to illustrate the advantages of the proposed
context-aware methodology in terms of improved situational
understanding, system interpretability, support to other fusion
processes (e.g., threat assessment) and computational tractability.
To the best of our knowledge, this is the first time that contextual
information is used to drive the risk assessment module of a DSS.
The methodology is not exclusive to the maritime arena and can
be easily extrapolated to other domains.

I. INTRODUCTION

Surveying a region of interest in the Big Data era that we all
live in [1] brings about significant challenges in terms of data
collection, cleansing, mining and visualization. The ingestion
and processing of these massive datasets, characterized by
their volume, velocity and variety, is no longer a task humans
can undertake on their own. Instead, this responsibility is
often transferred to a Decision Support System (DSS) in order
to create and maintain a representative model of the region
under consideration in real time. DSSs [2] [3] are capable of
drawing relevant information from the tide of incoming data
and presenting it to the human operator in a more succint
and amenable fashion. Human experts then make operational
decisions by considering the DSS-generated information in
light of their own domain expertise.

Risk management is an integral component of the decision
making process as it enables the operator to identify and
evaluate risky units, situations and environments as well as
define, assess and select the most suitable courses of action to
mitigate the perceived risks in the system. Regrettably, most
of the modern DSSs still lack the integration of an end-to-

end perceptual view of the multiple risk sources affecting
the deployed environment. This is supported by little or no
mention of risk management in several DSS reviews [2] [4]
[3] or commercially available DSS products.

A solution to integrate risk into the core of any DSS
came about five years ago when the authors in [5] introduced
a Risk Management Framework (RMF). This multimodular
architecture is able to (i) extract a parallel risk stream from
the original stream fed by both hard and soft data sources
without requiring any complementary information; this is
accomplished by defining a set of risk features; (ii) assess
in real time the local risk of any system unit with respect
to a particular risk feature and its overall risk across all risk
features; (iii) visualize the system’s risk landscape at any point
in time via evolving clustering algorithms, which allows for
a more refined definition of the information granules behind
the set of risk features and a proactive identification of the
risky system units and (iv) the automatic generation of a set
of potential responses to mitigate the identified system risks.
Since its inception, the RMF has been continuously augmented
with more technical capabilities and use cases in different
application domains [6] [7] [8] [9].

In this paper, we expand the aforementioned RMF by
tackling two existing limitations: (i) the lack of a contextual
information1 engine and (ii) the ability to ascribe risk to well-
defined situational elements that are presently blended into
one monolithic risk evaluation. This means that, in its current
form, the RMF cannot deduce which situational elements have
a stronger impact on the overall risk of any system unit. Our
contributions are as follows: (i) we endow the RMF with a
Dynamic Risk Assessment Module (DRAM) that is fed by
contextual information and hosts a set of user-defined atomic
risk models; (ii) we show how the contextual information,
drawn from the Contextual Knowledge Base (CKB), is able
to activate one or more of these atomic risk models or tailor
their internal risk assessment; (iii) we illustrate our proposed
framework in presence of three atomic risk models, namely
piracy, open water and active weather, and two maritime sce-
narios (an act of piracy and the capsizing of a sailing vessel);
(iv) we highlight the advantages of the proposed context-aware
methodology in terms of improved situational understanding,

1Contextual information is any known information about the environment
or its entities, with static and/or dynamic features, that could be exploited to
improve the surveillance experience.



system interpretability, support to other fusion processes (e.g.,
threat assessment) and computational tractability. To the best
of our knowledge, this is the first time that context is used to
drive the risk assessment module of a DSS. The methodology
is not exclusive to the maritime environment and can be easily
extrapolated to other domains.

The remainder of the paper is structured as follows. Section
II briefly goes over several relevant works. The RMF aug-
mentation with the context-driven dynamic risk management
features is discussed in Section III. The three atomic risk
models and their associated contextual information as applied
to the maritime domain are described in Section IV. The
two case studies (maritime scenarios) used to showcase the
advantages of our proposal are outlined in Section V before
conclusions and future work are enunciated in Section VI.

II. RELATED WORK

This Section briefly discusses relevant published works on
risk analysis and contextual awareness in the maritime domain.

A. Maritime Risk Analysis
An important dimension of risk management for the mar-

itime domain is to provide the set of processes and tools
that support and enhance the operator’s situational awareness
picture (SAP). Several tools have been proposed in the liter-
ature to develop a system-level risk picture. Hidden Markov
Models [10][11] (HMMs) are recurrently used in this domain
to approximate the dynamics of the system-level risk picture.
While HMMs provide an effective method for modeling tacti-
cal risk, they can be unstable in a dynamic environment when
evaluating system-wide risks. The interdependence from one
model to another makes the system stability vulnerable when
reacting to unforeseen environment changes. Sustaining the
integrity of large systems composed of many interconnected
HMMs entails a steep cost. The same issue arises when relying
on other probabilistic models such as Bayesian Networks [12].

Falcon et. al. [6] perform a risk-based multi-criteria decision
analysis on a vessel in distress (VID) to automatically generate
a set of promising potential responses. The methodology
revolves around the RMF being augmented in this paper.
In [9], the authors convert the output of maritime anomaly
detectors into risk features and integrate them into the RMF
to detect potential VIDs.

An avenue for risk assessment methodologies in the military
realm stems from complex systems research, which includes
computational red teaming [13][14] and adversarial modelling
[15]. Among the existing risk-aware DSSs we can mention
Raytheon’s ATHENA Integrated Defense System [16], US
Coast Guard’s Maritime Automatic Super Track Enhanced Re-
porting (MASTER) and Comprehensive Maritime Awareness
(CMA) [17] vessel tracking systems and DARPA’s Predictive
Analysis for Naval Deployment Activities (PANDA) [18].

B. Contextual Awareness in the Maritime Domain
Razavi et. al. [19] employ Natural Language Processing

(NLP) techniques to extract risk spans from contextual infor-
mation in the form of maritime incident reports. The proposed

textual risk mining system applies a variety of sequence
classification algorithms to compare the risk classification
performance. Contextual data pertaining to real-world mar-
itime incident reports and synthetically generated response
descriptions, respectively, is brought in [8] and [20] into their
RMF to better characterize a vessel’s risk-driven SAP (Level
2 Fusion) and the set of potential responses to mitigate the
perceived risk (Level 3 Fusion).

Garcia et al. [21] designed a harbor surveillance system
combining ontology-based context representation, deductive
reasoning for anomaly detection and abductive reasoning
under uncertainty. They mixed key-value, ontology-based and
logic-based models and employed the Belief-based Argumen-
tation System to decide between two hypotheses (inaccu-
rate/unreliable observations vs. possible threatening behavior)
when a vessel cannot be classified by the “normal” classes.

In [22] the authors pinpoint several ways of modeling con-
textual information within the fusion process and elaborated
on three main research areas in context-dependent situations.

III. CONTEXT-DRIVEN DYNAMIC RISK MANAGEMENT

This Section elaborates on the extension of the RMF de-
scribed in [5] and [6] with the inclusion of context-driven
dynamic risk models.

A risk model RM is represented in the RMF by a tuple
〈DF,RF, γ, ρ, ρ∗〉 where DF and RF are the set of (raw)
data and risk features, respectively and γ : DF k → RF is
the mapping that transforms an arbitrary number k of data
features into a risk feature. The functions ρ : DF k×RF → IR
and ρ∗ : DF k × RFn → IR quantify the local risk captured
by a risk feature and the overall risk across all the n risk
features, respectively, for each system unit. The calculation
of the overall risk via ρ∗ is generally governed by a Fuzzy
Inference System (FIS) and its underlying fuzzy rule base, as
shown in [7], to obtain an interpretable inference process.

When the risk model refers to a particular situational ele-
ment (e.g., congested traffic lane, piracy attack, vessel moored
at port, etc.), we refer to it as an atomic risk model. To
represent a situation, multiple atomic risk models might be
simultaneously at play.

Figure 1 depicts the architecture of the proposed Context-
Aware Risk Management Framework (CARMF) that builds
upon the blueprint in [8]. The most important element within
this diagram is the addition of the Contextual Knowledge
Base (CKB). The CKB contains information such as regional
weather reports, past incidents, operational procedures and
guidelines, organizational policies, history of successful re-
sponses to events, etc. By making contextual information
available to the system, we are able to provide more situation-
specific risk assessments and generate responses by integrating
that information with the hard and soft sources that are
already ingested. The CKB feeds into two modules in the
CARMF: the Dynamic Risk Assessment Module (DRAM) and
the Contextual Response Filter.

The Contextual Response Filter will allow the system to
remove potential solutions from further consideration based



Fig. 1. The RMF’s architectural blueprint showcasing modules in both the object and response spaces. Gray boxes indicate external RMF elements. Blue
boxes indicate context-related elements. Green boxes indicate Level 2 RMF capabilities and yellow boxes indicate Level 3 RMF capabilities.

on context-specific situational information, such as previous
responses to similar scenarios, availability of resources, current
conditions, etc. By reducing the number of possible alterna-
tives (i.e., potential responses), we cause the Multi-Criteria
Decision Analysis module to require less computational effort
as there are fewer candidate solutions for it to evaluate.

The DRAM enables the system to apply only contextually
relevant risk models to a given situation. Instead of creating a
holistic, static risk model that contains the information about
all relevant situational elements, the system will dynamically
build a composite model based on a set of local atomic
risk models, each corresponding to a situational element, to
accurately depict the scenario using only the information
needed at any point in time.

The DRAM is shown in more detail in Figure 2. Notice that
the contextual information is ingested by two sub-modules:
Risk Model Selection and Risk Model Adjustment. The former
determines which atomic risk models will be used to represent
the current situation given the current contextual knowledge.
The list of required atomic risk models is then passed on to the
hard and soft risk feature extractors, so that only the required
risk features for these risk models are extracted from the raw
data stream. The atomic risk models are also conveyed to the
Risk Model Adjustment sub-module, which employs contextual
information in order to tailor the internal risk assessment of
these models. For instance Section IV-B unveils an atomic risk
model for active weather scenarios. When we apply this risk
model, the risk assessment for most of the vessels will be
guided by the same set of conditions; however, sailing vessels
are more vulnerable to active weather than other vessels. In
this case, the risk assessment component of that atomic risk

model (and in turn, the fuzzy rules that make up its FIS) would
be adjusted to better reflect this. We separate these into two
different modules in order to reduce the overall number of risk
models and improve the ability for an end-user to properly
understand the composite risk models.

The remainder of the CARMF modules retain their original
functionality as described in [5], [6], and [8]. In the next
section, we illustrate how the DRAM ingests contextual in-
formation and exploits it to generate composite risk models
based on the list of available atomic risk models.

IV. CASE STUDY: MARITIME RISK ASSESSMENT

This Section illustrates the application of the DRAM inte-
grating contextual information within two maritime scenarios.

The DRAM uses a set of predefined atomic risk models in
order to determine whether or not a maritime vessel is at risk at
any point in time. These risk models need not be independent
of each other. We can potentially apply multiple risk models
to one situation in order to determine the overall risk based
on a combination of these models. In this case, it would make
sense to have an overall risk equation as follows:

if R1 is HIGH or R2 is HIGH or ... or Rn is HIGH
then Roverall is HIGH

(1)

where R1, R2, and Rn are risk models and Roverall is the
overall reported risk value.

The reason for this is that if we feel a situation warrants
more than one risk model (based on contextual risk model
activation), then we explicitly care if that model deems there
is risk; therefore, if any model indicates risk, the overall
model must also indicate risk. Other alternative formulations



Fig. 2. Architectural blueprint of the Dynamic Risk Assessment module. Green boxes indicate Level 2 RMF capabilities and blue boxes indicate context-related
elements.

describing the impact of the local risk models on the overall
risk of a system unit could be described via a fuzzy rule
base plugged into a well-known Fuzzy Inference System (e.g.,
Mamdani, Sugeno, etc). Below we introduce the three atomic
risk models considered in this work.

A. Open Water Risk Model
This is the default model that applies to a vessel when

navigating. Its main purpose is to identify the risk of collision
with other static (oil rigs, sandbars, etc.) or dynamic (vessels)
maritime elements. This acts at the default model because
these are factors that can create risk for a vessel at any point in
time, not just when under special circumstances. Table I lists
the risk features associated with this atomic risk model. In the
last column, A, B, C and D refer to the parameters of the
trapezoidal membership functions that model the fuzzy sets.
These values have been determined using domain knowledge.

In order to capture certain risk scenarios within the risk
model, we implement composite risk features that are modeled
as weighted sums of the set of atomic risk features extracted
from the raw data. These weights represent the individual
contribution of each atomic risk feature to the composite risk
feature. Their values are determined after consultation with
the domain experts. The composite risk features pertaining to
the Open Water risk model are shown below:
Rcollision = 0.5Rproximity + 0.3Rseastate + 0.2Rspeed (2)

Raground = 0.4Rwreck + 0.3Rvisibility + 0.3Rspeed (3)

where Rcollision and Raground are the risk features repre-
senting the risk of colliding with another vessel and running
into a maritime landmark respectively.

Using the available risk features we create a set of rules to
determine the overall risk captured by a model. The fuzzy rule
base for the Open Water risk model is as follows:

if Rcollision is HIGH or Raground is HIGH
then Ropen is HIGH

(4)

where Ropen is the overall risk for the Open Water risk
model.

B. Active Weather Risk Model

This model would be applied using regional weather reports
to determine if a vessel is in an area where active weather is
taking place. This model is applied to take into account that in
these situations, vessels are more prone to actions that cannot
be controlled or predicted by its crew. This model aims to
identify risk of collision due to the challenges that arise from
navigating a vessel in an active weather situation.

The Active Weather risk model uses the same risk features
as the Open Water risk model, shown in Table I, and the
composite risk features seen in Equations (2) and (3). The
rule for this model is:

if (Rcollision is HIGH and Rseastate is HIGH)
or (Raground is HIGH and Rseastate is HIGH)

then Ractive is HIGH
(5)

where Ractive is the overall risk for the Active Weather risk
model.

This model can also be adjusted by the Risk Model Ad-
justment module. When the vessel being evaluated is a sailing
vessel we change the rule to be the following:

if (Rcollision is HIGH and Rseastate is HIGH)
or (Raground is HIGH and Rseastate is HIGH)

or Rseastate is HIGH
then Ractive is HIGH

(6)

This is added because sailing vessels are more likely to
capsize in rough waters. We update the risk model to account
for that. It could be argued that we could formulate an entire
risk model for this specific scenario, but the idea is to minimize
the number of risk models required as they can be difficult to
develop whereas adjusting an existing model is much simpler.

C. Piracy Risk Model

This model would be triggered when a vessel enters into an
area deemed to be at a risk of piracy. These areas could be
determined using the regional hostility metric that is described



TABLE I
RISK FEATURES FOR OPEN WATER RISK MODEL

Raw Feature Risk Feature Modelling Construct Parameters/Expression

Vessel Speed (kn) High Speed Risk([0;1]) Fuzzy set with L-function A = 5
B = 25

Distance to closest neighbour (m) High Collision Risk ([0;1]) Fuzzy set with R-function C = 50
D = 2000

Distance to maritime landmark (m) High Shipwreck Risk ([0;1]) Fuzzy set with R-function C = 250
D = 2500

Visibility (km) High Poor Visibility Risk ([0;1]) Fuzzy set with R-function C = 1
D = 10

Sea State (Douglas Sea Scale) High Sea State Risk([0;1]) Nominal Relationship

Calm: Risk = 0
Smooth: Risk = 0.1
Slight: Risk = 0.2
Moderate: Risk = 0.4
Rough: Risk = 0.6
Very Rough: Risk = 0.8
High: Risk = 0.9
Very High: Risk = 1.0

in [8]. The calculation of this metric relies on both hard (AIS
messages) and soft (maritime incident reports) data sources.
When this metric reaches a certain threshold for a vessel, this
risk model could be applied to it. The list of risk features for
this atomic risk model is found in Table II whereas its set of
composite risk features are given below:

Rboarding1 = 0.15Rspeed + 0.6Rproximity + 0.25Rswarming

(7)
Rboarding2 = 0.2Rspeed + 0.65Rproximity + 0.15Rvisibility

(8)
Note that the weighting of Rboarding1 contains Rswarming

whereas Rboarding2 contains Rvisibility. The reason for this
difference is that we may be concerned about a single vessel
approaching in a poor visibility situation when the detection
capability for the vessel at risk may be reduced. The rule used
for this model is:

if Rboarding1 is HIGH or Rboarding2 is HIGH
then Rpiracy is HIGH

(9)

V. EXPERIMENTAL EVALUATION

In this section we aim to contrast the previous RMF
behaviour (one all-encompassing risk model, no context-based
activation), which we refer to as the general risk model, with
the proposed extension, namely a set of atomic risk models
that are activated by context.

For these experiments, the general risk model will be an
application of all three atomic risk models detailed in Section
IV at all times. While not appropriate for every situation,
without the use of contextual information there is no way to
discriminate which atomic risk model(s) are better suited to
handle a particular situation. For the dynamic risk model we
use the Open Water risk model as the default one; this model
will always be applied. The other models may be applied as
necessary, which will be explicitly stated in the case studies
below. Additionally, in certain cases we can make adjustments
to specific risk modules, based on contextual information, in
order to make them more applicable to a given situation.
Any risk model adjustments that come into play will also be

mentioned as they become relevant. For the experiments, we
used a HIGH risk threshold of 0.85 and a mean of maximum
(MeOM) defuzzifier for our rules.

A. Data Sources

The two scenarios described in Sections V-B and V-C
originate from two real-world textual reports provided by two
reputable sources, namely the International Maritime Organi-
zation (IMO) and the Transportation Safety Board of Canada
(TSBC). The positional and weather data for the vessels and
the region under consideration are synthetically generated. The
piracy reports used in the calculation of the regional hostility
metric in Section V-B come from the International Maritime
Bureau (IMB)’s Piracy Reporting Centre2. The raw data that
emanates from these data sources are ingested, as shown in
Fig. 2, by the RMF’s hard and soft risk feature extractors.

B. Scenario 1: Act of Piracy

We simulate a piracy scenario using an actual piracy report
from the IMO3. The report describes a piracy event that
occurred to an underway cargo vessel in the Singapore Strait.
Upon passing to the east of Singapore, the cargo vessel is
set upon by a pirate vessel, boarded and robbed. By creating
a simulation based on this event, we aim to demonstrate the
usefulness of having not only a risk assessment being done on
the situation on the basis of a static risk model, but the added
benefit of having a dynamic, context-based risk assessment.

To this end we examine the track of a vessel moving into
a region of known piracy. We use a regional hostility metric
[8] to determine when the piracy risk model should be applied
(for the context-aware approach). The green points in Figure
3 indicate the locations at which we examine the risk models
being applied to the cargo vessel. The red points denote the
locations of previous piracy events that have taken place in the
region. The red point labelled “incident” denotes the location

2https://www.icc-ccs.org/piracy-reporting-centre/live-piracy-report
3http://www.imo.org/en/OurWork/Security/PiracyArmedRobbery/

Reports/Pages/Default.aspx



TABLE II
RISK FEATURES FOR PIRACY RISK MODEL

Raw Feature Risk Feature Modelling Construct Parameters/ Expression

Vessel Speed (kn) High ‘Speed Too Low’ (STL) Risk([0;1]) Fuzzy set with R-function C = 10
D = 20

Distance to closest neighbour (m) High Collision Risk ([0;1]) Fuzzy set with R-function C = 50
D = 3000

Vessels in Proximity (within 2km) High Swarming Risk ([0;1]) Fuzzy set with L-function A = 0
B = 1.6

Visibility (km) High Poor Visibility Risk ([0;1]) Fuzzy set with R-function C = 1
D = 10

Fig. 3. The path taken by the simulated vessel including the ten closest piracy
incidents to each point.

Fig. 4. The simulated cargo vessel being approached by a pirate vessel near
Point 3. Includes the ten closest recorded piracy incidents to Point 3.

of the actual piracy event used as the basis for this case study.
These piracy events are used to calculate the regional hostility
metric and trigger the piracy risk model. Point 1 indicates
a location where the vessel is only affected by the Open
Water risk model as there is no contextual information that
triggers a change in the risk models governing the vessel’s risk
assessment. Point 2 is where the vessel in question exceeds the
user-permissible regional hostility metric threshold –cautiously
set at a value of 0.65– and the Piracy risk model comes into
play from that point on. Point 3 indicates a moment shortly
before the occurrence of a piracy incident.

Figure 4 illustrates the beginning of the piracy event that
will take place at the red indicator labelled “incident”. Here
we show the position of the cargo vessel and the pirate vessel

TABLE III
RISK FEATURE VALUES FOR THE PIRACY SCENARIO

Risk Feature Point 1 Point 2 Point 3
High “Speed Too Low” Risk 0.500 0.800 0.900
High Speed Risk 0.286 0.200 0.171
High Proximity Risk 0 0 0.763
High Wreck Risk 0 0 0
High Swarming Risk 0 0 0.625
High Poor Visibility Risk 0 0 0
High Sea State Risk 0 0 0
High Collision Composite Risk 0.057 0.04 0.355
High Aground Composite Risk 0.086 0.06 0.051
High Boarding 1 Composite Risk 0.075 0.120 0.749
High Boarding 2 Composite Risk 0.1 0.160 0.676

that will attack it. We can also see more closely the location
of the previous piracy events that are used to determine the
value of the regional hostility metric for Point 3.

TABLE IV
OVERALL RISK VALUES FOR THE PIRACY SCENARIO

Risk Model Point 1 Point 2 Point 3
Open Water 0.5425 0.53 0.6775
Active Weather 0 0 0
Piracy 0.55 0.58 0.875
Overall (General) 0.55 0.58 0.875
Overall (Dynamic) 0.5425 0.58 0.875

Tables III and IV respectively display the local and overall
risk assessment for the atomic risk models in the piracy
scenario. At Point 1 the dynamic risk model reports a smaller
risk value than the general model. This is because at that point
in time the Open Water risk model is the only contextually
appropriate model for the dynamic model whereas the general
model always includes all models and due to the vessel’s low
speed the Piracy risk model is evaluated at 0.55, which is an
inappropriate level of risk given the vessel‘s situation at that
point in time. At Points 2 and 3, the Piracy risk model is
included in the dynamic model, thus causing both the general
and dynamic models to arrive at the same overall risk value.
It is worth noting that the general model must also calculate
the value of the Active Weather risk model even though there
are clear seas and skies. The dynamic model provides the
advantage of only evaluating models that are contextually
relevant, thus reducing the number of rules that need to be
evaluated as well as the number of inputs and data required.



Fig. 5. The path taken by the simulated sailing vessel. The white area
represents an area affected by active weather.

C. Scenario 2: Sailing Vessel Capsizing

In this scenario, we examine a sailing vessel moving through
an area of active weather. This scenario is inspired by a TSBC
report detailing the capsizing of a 57.5m Barbados sailing
training yacht off the coast of Brazil4. In this scenario, the
vessel moves into an area of active weather and triggers the
Active Weather risk model. This model is triggered using
information extracted from soft data sources, i.e. weather
reports, to determine which geographical areas are currently
experiencing active weather patterns, such as: a thunderstorm,
hurricane, typhoon, heavy rains, fog, etc. If an area is deemed
to be under the effects of an active weather pattern, then
the Active Weather risk model will be applied to any vessel
entering that area until the phenomemon has subsided.

In Figure 5, we illustrate the synthetic scenario used to test
our risk models. Point 1 is located in open water, free of any
active weather patterns. At Point 2 the vessel has entered an
area of active weather and the Active Weather risk model is
triggered. Since the vessel in question is a sailing vessel, we
will apply the adjustment to the Active Weather risk model
shown in Section IV-B. Finally at Point 3 the vessel is dealing
with the effects of active weather. The red point indicates
where the actual capsizing event occurred. In addition to the
comparison of the general risk model and the dynamic risk
models, we also examine the results of the general model that
does not incorporate the risk model adjustment module.

Tables V and VI respectively list the local and overall risk
values attained by each atomic risk model in the active weather
scenario. In this case study, there is a similar effect on Point 1
as in the previous case study. Here we see that the Piracy
risk model is expressing some amount of risk due to low
speed, but in this instance lower speeds can even be expected
as the vessel in question is a sailing vessel. At Point 2, the
Active Weather risk model is triggered by information from
weather reports and applied to the dynamic model. In this
instance the Active Weather risk model also undergoes an
adjustment as described in Section IV-B. At that point the

4http://www.tsb.gc.ca/eng/rapports-reports/marine/
2010/m10f0003/m10f0003.asp

TABLE V
RISK FEATURE VALUES FOR THE ACTIVE WEATHER SCENARIO

Risk Feature Point 1 Point 2 Point 3
High “Speed Too Low” Risk 0.500 0.800 0.900
High Speed Risk 0.314 0.200 0.171
High Proximity Risk 0 0 0
High Wreck Risk 0 0 0
High Swarming Risk 0 0 0
High Poor Visibility Risk 0 0.222 0.556
High Sea State Risk 0 0.100 0.800
High Collision Composite Risk 0.063 0.23 0.274
High Aground Composite Risk 0.094 0.367 0.218
High Boarding 1 Composite Risk 0.075 0.120 0.135
High Boarding 2 Composite Risk 0.100 0.243 0.263

TABLE VI
OVERALL RISK VALUES FOR THE ACTIVE WEATHER SCENARIO

Risk Model Point 1 Point 2 Point 3
Open Water 0.5475 0.5625 0.6375
Active Weather 0 0.55 0.7325
Active Weather (adjusted) 0 0.55 0.9
Piracy 0.55 0.6225 0.6325
Overall (General) 0.55 0.6225 0.7325
Overall (Dynamic - Unadjusted) 0.5475 0.5625 0.7325
Overall (Dynamic - Adjusted) 0.5475 0.5625 0.9

unadjusted and adjusted Active Weather models give the same
risk values with the general model still being dominated by
the Piracy risk model. Note that this is an area of the world
with no reported piracy. At Point 3, we see that the general
and dynamic models are both reporting the same level of
risk based on the Active Weather risk model. The dynamic
model in which the Active Weather risk model adjustment
applied shows a much higher level of risk, enough to indicate
a risky situation for the vessel. In the report that this case
study is based on, the vessel in question capsized and was
lost, therefore a risk value indicating a risky situation is not
only appropriate, but also expected.

VI. CONCLUSIONS

Context-aware information fusion [23] [24] is one of the
main research trends within the data/information fusion com-
munity given the plethora of contextual data sources available
nowadays and the tangible benefits they provide to any fusion
process. This paper has brought contextual information to
the core of an existing RMF [5] [6] and hence, made it
available to any DSS. A Dynamic Risk Assessment Module is
proposed to host and coordinate the activation of one or more
a-priori-defined atomic risk models guided by context-specific
insights drawn from the CKB, or adjusting their internal risk
assessment valuations.

The proposed methodology has been illustrated in the
maritime domain by means of an act of piracy and an active
weather scenario, respectively. The advantages of this RMF
augmentation come along four distinct lines: (1) increased
situational understanding, since each atomic risk model is
now subject to an individual risk assessment based on its
own set of risk features, therefore equipping the system with



TABLE VII
INTERPRETABILITY METRICS OF THE DIFFERENT RISK MODELS

Act of Piracy Scenario Active Weather Scenario
Point 1 Point 2 Point 3 Point 1 Point 2 Point 3

General Model
Number of Rules 3 3 3 3 3 3
Total Rule Length 23 23 23 23 23 23
Number of Inputs 7 7 7 7 7 7

Dynamic Model
Number of Rules 1 2 2 1 2 2
Total Rule Length 7 14 14 7 16 16
Number of Inputs 5 7 7 5 6 6

Dynamic Model (adjusted)
Number of Rules - - - 1 2 2
Total Rule Length - - - 7 17 17
Number of Inputs - - - 5 6 6

the ability to track the individual risk contributions made by
each risk model to an unfolding situation in the monitoring
region; (2) more interpretable decisions, as demonstrated in
Table VII by the fewer number of rules, their input variables
and antecedents in the dynamic risk models compared to the
general, self-contained static risk model; (3) improved support
to other fusion tasks (e.g., intent/threat assessment) within the
same fusion process given the modularized nature of the risk
derivations; and (4) although perhaps negligible in the two
previous case studies, we noticed a reduced computational
effort due to the fact that only a subset of all atomic risk
models need to be loaded and evaluated at any point in time.
This aspect gains more prominence as the number of atomic
risk models in the system becomes considerably large.

Future work will be geared towards the application of the
proposed methodolody to other domains and the exploitation
of different types of contextual knowledge as part of the RMF
inference mechanism.
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