
Swarm of Agents for Guarding an Art Gallery: A
Computational Study

Mahdi Moeini
BISOR, University of Kaiserslautern,

Erwin-Schrödinger-Str.,
D-67653 Kaiserslautern, Germany.

Email: mahdi.moeini@wiwi.uni-kl.de

Daniel Schermer
BISOR, University of Kaiserslautern,

Erwin-Schrödinger-Str.,
D-67653 Kaiserslautern, Germany.

Email: daniel.schermer@wiwi.uni-kl.de

Oliver Wendt
BISOR, University of Kaiserslautern,

Erwin-Schrödinger-Str.,
D-67653 Kaiserslautern, Germany.

Email: wendt@wiwi.uni-kl.de

Abstract—The Art Gallery Problem (AGP) is one of the classic
problems in Computational Geometry. For a given art gallery,
represented by a polygon, the AGP seeks for the minimum
number of guards that are necessary for overseeing the entire
polygon. Many variants of this problems have already been
studied. In this paper, we are interested in examining and
visualizing two algorithms for the distributed version of the AGP,
where guards are autonomous and have limited communication
abilities. For this purpose, we present a self-contained simulator
that is able to read or generate non convex polygons and to
simulate the movements of robotic guards inside the polygonal
environment by using the navigation algorithms. In particular,
we study two algorithms: Random Search (RS) and Depth-First
Search (DFS). We compare RS and DFS, in terms of computation
time, by testing them on benchmark instances as well as ran-
domly generated polygons. According to our experiments, each
algorithm has a better performance on specific types of polygons.

I. INTRODUCTION

In Computational Geometry, one of the well-known and
interesting problems is the Art Gallery Problem (AGP) [4], [18],
[19] that was proposed by Victor Klee, in 1973. In the AGP, the
objective consists in finding the minimum number of guards
that we need for having the complete view on a polygonal
environment. It has been shown that, even for restricted cases,
the AGP is NP-hard [11], [12], [13]. One of the interesting
results is known as Chvátal’s art gallery theorem. According
to this theorem, for a given polygon (without hole) with n
vertices, bn3 c guards are sufficient (and sometimes necessary)
to oversee the whole polygon. Similar result concerns the
orthogonal polygons for which the bound is bn4 c. In general,
these bounds are not tight; hence, many studies have been
conducted to design algorithms for finding the exact number
of necessary guards [4], [11], [12], [18].

The Art Gallery Problem has several applications in differ-
ent domains, for example robotics and telecommunications.
Deploying autonomous robots inside an unknown area is one
of the interesting application topics in which AGP has been
used [4], [5], [6], [14]. More precisely, for a given polygonal
environment, the objective consists in distributing autonomous
agents (such as robots) with limited communication abilities
in a way to oversee the entire polygon [5], [6], [14]. In
particular, due to recent technical advances that allow creation
of small, robust, and inexpensive robotic units, the AGP has

attracted the attention of researchers in some engineering fields
such as sensor networks and robotics [1], [10], [15], [17].
However, these researchers are interested in a variant of AGP
that is different with the classic one. Indeed, the focus is on
deployment of autonomous robots for solving (autonomously)
the AGP, under the condition that the agents have no global
knowledge on the polygon, prior to deployment [5], [6], [7], [8],
[9], [16]. Consequently, each robot can only get information
by sensing the environment and by communicating with other
robots. Due to this fact, the solution will not be the same as in
the classic AGP: This approach will not focus on finding the
minimum number of the guards that are necessary for guarding
the polygon. Therefore, the main objective consists in covering
the whole polygon without having global knowledge about the
polygonal area. We use the term distributed AGP (or, when
there is no ambiguity, AGP) in order to specify placing the
autonomous agents on (suitable) vertices of a given polygon
with the objective of observing the whole polygon.

In this paper, we introduce an “AGP simulator” in order to
solve the (distributed) AGP. To the best of our knowledge, this
is the first simulator that is self-contained, does not depend
on external libraries or software packages (such as CGAL
and Matlab), and focuses on solving the (distributed) AGP
[3], [5], [6], [7], [11]. In particular, this AGP simulator is
free, portable, and easy-to-use. Two deployment algorithms
(for distributing and placing a swarm of autonomous agents)
are incorporated inside the simulator that permit to solve
the AGP, visualize the algorithms, and export the results.
The implemented algorithms are Random Search (RS) and
Depth-First Search (DFS) navigation procedures [5], [6], [7].
Furthermore, we carried out some numerical experiments by
using benchmark instances as well as randomly generated
polygons. According to the numerical results, each of the
algorithms has a better performance in solving AGP on specific
types of polygons.

We organize this paper as follows: Section II is devoted
to the basic definitions and notation. In Section III, we
present the necessary materials that we need for modelling the
(autonomous) robotic agents and studying the (distributed) AGP.
Section IV explains the algorithms RS and DFS for solving the
(distributed) AGP. The AGP-simulator is presented in Section
V. Section VI consists of the computational experiments, the

numerical results, and comparison of RS versus DFS. In the
last section, we discuss about some concluding remarks and
future research avenues.

II. PRELIMINARIES, BASIC DEFINITIONS, AND NOTATION

We suppose that an art gallery, in form of a simple and
non convex polygon Q (without hole), is given. The set of the
vertices of Q is V e(Q) = {v1, . . . , vn}, where n is the number
of vertices, vi = (xi, yi), and xi, yi are real numbers. Let
E(Q) = {e1, . . . , en} refer to an ordered set of edges of Q.
We denote the exterior of Q, its interior, and the boundary of Q,
respectively, by ext(Q), int(Q), and ∂(Q). A line [vi, vj] ∈ Q
connecting two non-consecutive vertices vi, vj ∈ V e(Q), where
]vi, vj [∈ int(Q), is called a diagonal of Q. The notation P (Q)
is used to denote the set of points that are inside the polygon
(i.e., P (Q) = int(Q)∪∂(Q)). Suppose that a given polygon Q
is partitioned into m smaller polygons Qi (i = 1, . . . ,m), with
disjoint interiors. Any diagonal of Q, that is shared by two
adjacent partitions, is called a gap [5], [6], [7]. A triangulation
T (Q) of a polygon Q is a set of n− 2 triangles that partition
Q [18], [20].

A point q ∈ P (Q) is said to be visible from another point
p ∈ P (Q), if [p, q] ∈ int(Q) ∪ ∂(Q) [11], [12]. For a given
point p ∈ Q, the visibility polygon S(p) ⊂ Q of p consists
of all points of Q that are visible from p. In a similar way,
the vertex-limited visibility polygon Sver(p) ⊂ Q is a polygon
that is defined by the subset of vertices in V e(Q), that are
visible from p. A star-shaped polygon Qstar contains at least
one point from which any point of Qstar is visible. Such a
point, e.g., k is called a kernel point and S(k) = Qstar. We
denote the set of kernel points by K(Qstar) and call it the
kernel of Qstar [20].

In this paper, we consider non-convex polygons (without
hole) and we accept only vertex guards, i.e., the vertices of Q
are the only positions where a guard (agent) can be placed;
however, the guards can move freely inside Q. A subset of
vertices G(Q) ⊂ V e(Q) is said to be a (vertex) guard set if its
members guard or oversee the whole polygon, i.e., any point
p ∈ P (Q) is visible from at least one vertex g ∈ G(Q).

III. DISTRIBUTED ART GALLERY PROBLEM

For a given polygon Q, the (distributed) Art Galley Problem
(AGP) wants to place the guards (robotic agents) on some
vertices of Q such that the set of placed guards oversees the
entire polygon. In this case, the number of agents may not be
equal to the minimum number of guards, as it is in the classic
AGP; however, due to the fact that the agents (guards) have
no knowledge about the polygon (prior to deployment) and
they have limited communication abilities, guarding the whole
polygon is the most important objective of the problem. More
precisely, the objective consists in designing a multi-agent
system in order to deploy a set A of (autonomous) agents (i.e.,
guards) from a given vertex of Q and place them on suitable
vertices for guarding the whole polygonal area. In this context,
the agents can only use the information that they get by sensing
the environment and by communicating with other agents (that

are located within a predefined limited distance). Based on
the gathered information, the agents decide in which direction
and up to which point they can move. Based on the approach
of Ganguli et al. [5], [6], [7], [8], the procedure consists of
partitioning the given polygon, constructing a tree, exploring
the tree, and placing the guards on suitable vertices.

Let A be the set of agents that we want to deploy in Q
by starting from a given vertex s ∈ V e(Q). We suppose that
each agent ai ∈ A, has a unique identifier (ID) i, where
i ∈ {1, . . . , |A|}. Furthermore, each agent is equipped with an
omni-directional line-of-sight sensor with an unlimited range
[5], [6], [7]. With this equipment, the agents can sense their
star-shaped vertex-limited visibility polygon from their current
position in P (Q). Each agent ai has also a limited amount of
memory Mi that is updated based on the agent’s movements and
its communications with other agents [5], [6], [7]. Defining R as
the maximum broadcast range, contents of the memory of any
agent ai as well as its ID can be broadcast to any other agent
aj ∈ A, where j 6= i, if aj is within the range and line-of-sight
of ai. We denote such a broadcast by Broadcast(i,Mi).
Furthermore, each agent can:

• send a predefined amount of repeated
Broadcast(i,Mi), each δ > 0 seconds;

• while broadcasting, Listen for incoming data, received
from other agents Broadcast(j,Mj);

• Process the received information and continue to
Listen during this period;

• Move to a desired point, based on the decision made
during Process.

Let us suppose that the polygon Q is partitioned into
m star-shaped polygons with kernel points kl ∈ K(Q) =
{k1, . . . , km}. Based on this partition, we have a directed
tree T (Q) with K(Q) as its nodes and k1 as the root.
Using this set of information, the memory of each agent
is composed of a quadruple of points in Q, labelled as
(pparent, plast, gleft, gright):

• pparent refers to the parent kernel point;
• plast refers to the last way-point i.e., the point before

moving to the current position;
• (gleft, gright) is the gap that is shared by the current

partition and its parent partition.
The initial location of the agents is used for initializing these
parameters. During each broadcast, each agent sends these
values to all agents that are within its range and line-of-sight.

Whenever an agent moves from a kernel point ki to a
child kernel point kj , the agent performs a Move-to-Child
operation (see Algorithm 2) through the gap, described by two
vertices [vn, vm], (where vn, vm ∈ V e(Q)). The memory Ma

of the agent a is updated as follows:
• pparent = ki,
• plast = kj ,
• gleft = vn,
• gright = vm.

Whenever we want to perform a Move-to-Parent operation
(see Algorithm 3) an agent moves from a kernel point kj to a

parent kernel point ki and the memory Ma of the agent a is
updated as follows:

• plast = w, where w is the mid-gap point of the diagonal
that is shared by partitions Qj and Qi,

• pparent, gleft, and gright are updated during the next
Process action. Every agent receives the content of
each agent’s memory from all other agents within the
range and line-of-sight during the Listen action. We
update the values of pparent, gleft, and gright by listening
to the incoming message that is received from the agent
with the highest ID.

IV. ALGORITHMS FOR DEPLOYING AGENTS IN AN ART
GALLERY

In order to introduce the navigation algorithms that we
use for exploring and guarding a polygonal environment, we
present preliminary algorithms that are necessary for using the
navigation algorithms.

A. Vertex-Induced Partition and Tree Algorithm

Suppose that a non-convex polygon Q is given, the vertex-
induced partition and tree algorithm starts from a given vertex
s ∈ V e(Q) and:

• partitions Q into a set S∗(Q) of star-shaped polygons
{Q1, . . . , Qm};

• finds a list of kernel vertices K∗(Q) = {k1, . . . , km} for
each respective star-shaped polygon;

• constructs a rooted tree T ∗(Q) with K∗(Q) as the set of
nodes and k1 as the root.

The details of the vertex-induced partition and tree algorithm
can be found in [6]; however, for the sake of completeness
and clarity, we provide a brief description of the procedure
in Algorithm 1 that outlines different steps of the procedure.
Figure 1 highlights different steps of the algorithm.

For a polygon Q with n vertices, T ∗(Q) has, at most, bn/2c
vertices. If we put a guard on each vertex of T ∗(Q), the whole
polygon will be overseen. Consequently, the cardinality of the
guard set G(Q) is ≤ bn/2c (see also [6]).

B. Node-to-Node Navigation Algorithms

Using the vertex-induced partition and tree algorithm, for a
given polygon Q, we can create a directed rooted tree T ∗(Q)
with the kernel points {k1, . . . , km} as its vertices, where
s = k1 ∈ K∗(Q) is the root of the tree. The tree T ∗(Q) can
be used for deploying a swarm of (robotic) agents in order
to guard Q. For this purpose, we consider two algorithms for
navigating through the vertex-induced tree. In these algorithms,
we use the mid-point of the gaps and the vertices of the polygon
for the movements. Through the navigation, we use two basic
operations as follows [5], [6], [7]:

• Move-to-Child: refers to moving to a child kj ∈ K∗(Q)
of a node ki ∈ K∗(Q) (see Algorithm 2).

• Move-to-Parent: refers to moving from a node kj ∈
K∗(Q) to its parent node ki ∈ K∗(Q) (see Algorithm 3).

Figure 1 (c) shows the paths that are created by movements
using Move-to-Parent and Move-to-Child operations.

Algorithm 1 Vertex-Induced Partition and Tree Algorithm
1: Inputs: Vertex s and Polygon Q;
2: Outputs: Vertex-Induced Partition and Tree;
3: Build a list of vertices that are visible from k1 = s.
4: Let P1 be the polygon determined by the vertices that are

visible from k1 = s (P1 includes k1).
5: Create a FIFO-list, named openGaps. Identify the edges

of P1 that are diagonals of Q, call each of them a gap of
P1, and add them to openGaps.

6: while openGaps is not empty do
7: Popup openGaps to get the current gap.
8: Find a new point kj ∈ V e(Q), outside the star-shaped

polygon of the current gap, such that kj is able to see the
current gap entirely.

9: Add the current gap to the list closedGaps and
remove it from the list openGaps.

10: Build a list of the vertices that are visible from kj
and do not cut the current gap; Let Pj be the polygon
determined by these vertices (by definition, kj ∈ K(Pj)).

11: Identify the edges of Pj that are diagonals of Q and call
each of them a gap of Pj . If they are not in closedGaps,
add them to the list of openGaps.

12: end while

Algorithm 2 Move-to-Child Algorithm
1: Input: Position ki;
2: Output: Position kj , j > i;
3: compute the mid-point of the gap shared by the current

partition Qi and the child partition Qj .
4: go to the mid-point of the gap;
5: compute the nearest vertex from which the entire gap is

visible and which is not located inside the parent partition;
6: go to that vertex.

C. Depth-First Search Deployment Procedure

Ganguli et al. [5], [6], [7] introduced the Depth-First Search
(DFS) navigation algorithm by which the vertex-induced tree
is explored via a Depth-First Search (DFS) approach. Indeed,
the procedure consists in exploring T ∗(Q) as deep as possible
along each branch before returning (if necessary) to a parent
node. Once the full covering of the polygon is achieved, the
algorithm stops. Algorithm 4 presents the different steps of
DFS navigation algorithm.

For a given polygon Q with n vertices, if we deploy sufficient
number of agents (e.g., bn2 c agents), Algorithm DFS is able to

Algorithm 3 Move-to-Parent Algorithm
1: Inputs: Position kj , gap shared with parent partition;
2: Output: Position ki, i < j;
3: compute the mid-point of the gap shared by the current

partition Qj and the parent partition Qi;
4: go to the mid-point of the gap;
5: go to pparent, representing the parent node.

(a)

k1k1

(b)

k1

k2

k1

k2

k3

k4

k5

k6

(c)

k1

Fig. 1. Computation of the vertex-induced partition and tree on a polygon
with n = 23 vertices.

explore the vertex-induced tree and guard the whole polygon
in a finite time (for more details, see [5], [6]).

D. Random Deployment

Another way of exploring the vertex-induced tree consists
in using a random (however, systematic) navigation approach.
More precisely, the Random Search (RS) algorithm is, essen-
tially, the same as Algorithm 4; except, in place of visiting
all children of a node one-after-one, and doing a backtracking
(if necessary), we choose randomly either a child and execute
Move-to-Child operation or we do a Move-to-Parent [5], [6].
At a given node, we draw a random number such that all
children of the current node as well as its parent have a same
chance (probability) to be selected. This method of selection is
rational because, if there are many children to visit, then there
will be higher probability to move in the direction of children,
rather moving back towards the parent node.

The RS can be stopped as soon as the polygon is entirely
covered; however, theoretically, there is no guarantee that the

Algorithm 4 Depth-First Search (DFS) Algorithm for AGP
1: All agents are initially located at the root vertex s of the

vertex-induced tree.
2: During each Process operation, the agents execute the

following steps:
3: Find maximum ID received during the Listen operation;
4: if maximum received ID is less than its own ID then do

not move.
5: else
6: if the current kernel point has no children then
7: Move-to-Parent via the gap {gleft, gright} of the

current position.
8: else Order the children in a consistent way (e.g.,

clockwise).
9: if plast (in memory) is the parent of the present

node, then
10: Move-to-Child towards the first child in the

ordering;
11: end if
12: if plast (in memory) is a gap that is not the last in

the ordering, then
13: Move-to-Child towards the next child in the

ordering;
14: end if
15: if plast (in memory) is a gap that is the last in the

ordering and the current node is not the root, then
16: Move-to-Parent towards pparent via
{gleft, gright} (that is a gap);

17: end if
18: if plast (in memory) is a gap that is the last element

in the order and the current node is the root, then
19: Stop the algorithm, we have the full visibility

on the polygon.
20: end if
21: end if
22: end if

RS algorithm covers the whole polygon in finite time.

V. A SIMULATOR FOR SOLVING THE DISTRIBUTED AGP

We carried out some numerical experiments by testing and
comparing the algorithms RS and DFS. For this purpose, we
developed a self-contained simulator and tested the algorithms
on benchmark instances as well as randomly generated non-
convex polygons (without hole).

The self-contained platform 1, that has been developed in
Java, allows for the generation of random simple (nonorthogo-
nal) polygons based on 2-opt moves [2] and von Koch polygons
based on a procedure presented in [11]. Furthermore, it is also
possible to read vertices of polygons from a text file.

Once a polygon has been either generated or imported, the
number of agents to deploy and the deployment policy can be
defined via a GUI. The Algorithms RS and DFS have been

1The simulator is publicly available at https://sites.google.com/site/
mahdimoeini2013/software-packages

implemented for exploring the tree and any of them can can
be selected. One can choose a starting point s ∈ V e(Q) or a
randomly selected vertex will be considered for starting the
selected deployment procedure.

Additional settings can be adjusted as follows:
• Movement Delay of agents: can move 100 units per α

seconds (α ∈ [0, 1]),
• Broadcast Delay (in seconds) can be set to δ, where
δ ∈ [0, 0.4],

• Broadcast Range R, which can be set to a number in the
interval [0, 1000],

• an initial Startup Delay (in seconds), that will make agents
to randomly start after a delay that can be any number
an the interval [0, β], where β ∈ [0, 20].

The simulation can then be started with the default or adjusted
parameters. Then, the simulator presents a real time animation
of the exploration of the polygon by the agents. Each agent
continuously performs its autonomous actions, based on the
predefined deployment policy. A graph highlights the time-
discrete evolution of coverage (of the polygon), based on the
number of covered (guarded) vertices.

As soon as all vertices are covered, a log file is created that
contains all information about the polygon, the guard set, the
selected settings, and runtime to achieve full coverage. If the
algorithm (RS or DFS) fails (within a predefined time-limit) to
find a guard set with the full cover of the polygon, the log file
will also store the amount of currently visible vertices at the
moment of the timeout. The current state of the network can
also be stored as an image file. Figure 2 shows an overview
of the developed platform.

Fig. 2. Overview of the developed Platform.

VI. NUMERICAL EXPERIMENTS

In this section, we present a comparative analysis on the
performance of DFS and RS methods for solving the AGP. For
this purpose, the algorithms have been implemented in Java,
inside the developed simulator, and the experiments have been
carried out on a 3.5 GHz quad core laptop with 8GB of RAM.

A. Instances and Test Settings

For our experiments, we selected three types of polygons:
simple (nonorthogonal), orthogonal, and von Koch. Some
sample polygons are shown in Figures 3 - 5. Different types of
polygons help us to gain deeper insight into the performance
of each algorithm in solving AGP at different polygonal areas.

The test sets include benchmark instances as well as
randomly generated polygons. The random polygons are
generated by our Java platform and the benchmark instances
(that have already been used in several research studies, e.g.,
[11], [12]) are publicly available at http://www.ic.unicamp.br/
∼cid/Problem-instances/Art-Gallery/AGPVG/index.html.

For a given polygon with n vertices, we deploy bn/4c agents
for orthogonal and von Koch polygons and bn/3c agents for
the others.

In total, we used 45 polygons and did 270 experiments:
• 9 types of polygons (orthogonal, von Koch, and simple

(nonorthogonal): with 60, 100, and 200 vertices),
• 5 polygons of each type and 3 runs on each polygon (in

each run, a different starting point was used),
• 2 deployment policies (i.e., RS and DFS) for each starting

point.
For the polygons with either 60 or 100 vertices, the experiments
were done under default settings, that is:

• Movement Delay is set to 0.5: i.e., the agents can move
200 units per second.

• Broadcast Delay is set to 0.2.
• Number of Broadcasts is 3: i.e., three broadcasts are sent

before processing.
• Broadcast Range is 0: Only the agents that are located on

a same vertex can communicate with each other.
• Initial Delay is 0: The agents start as soon as the simulation

starts.
The higher dimensions need different configurations in order
to have a better performance of the platform. For this purpose,
following settings has been used for polygons with 200 vertices:

• Movement Delay is set to 0.4.
• Broadcast Delay is set to 0.4.
• Number of Broadcasts is set 3.
• Broadcast Range is set to 0.
• Initial Delay is set 5: This means that the agents have, at

most, 5 seconds time for starting.
Finally, we set a time-limit of 5 minutes on each experiment. If
no full visibility is achieved within the time-limit, the number
of currently visible (covered) vertices is recorded in a log file.

B. Numerical Results

The results of our experiments are presented in Table I
and Figures 6-8. In Table I, the average computation time (in
seconds) of each algorithm (i.e., RS (s.) and DFS (s.)) are
presented. In particular, each row of the table represents a
polygon type and its corresponding number of vertices. The
second column of Table I shows the number of deployed agents
(# Agents) that, in fact, depends on the type and the size (i.e.,
number of vertices) of a given polygon. In our experiments,

Fig. 3. A simple polygon with n = 200 vertices.

Fig. 4. A von Koch polygon with n = 200
vertices.

Fig. 5. An orthogonal polygon with n = 200
vertices.

we consider a time-limit of 300 seconds and we interrupt the
algorithm if the time-limit is reached. In this case, it may
happen that the polygon is not yet completely covered.

Figures 6–8 show more details on performance of the
algorithms. Each of these figures is associated to a certain
type of polygon (i.e., simple (nonorthogonal), orthogonal, and
von Koch). On each figure, the horizontal axis is partitioned
into 2 parts, associated to a deployment algorithm (i.e., random
search and DFS). Furthermore, in each partition, we present the

Instances # Agents Average Computation Time (s.)
Polygon Type size Random Search DFS

Simple 60 20 115.6 69.7
Simple 100 33 169.2 106.9
Simple 200 66 291.6 240.8

von Koch 60 15 41.8 54.8
von Koch 100 25 71.5 94.8
von Koch 200 50 116.6 236.5

Orthogonal 60 15 123.1 46.2
Orthogonal 100 25 187.9 73.7
Orthogonal 200 50 300 136.5

TABLE I
THE AVERAGE COMPUTATION TIME (IN SECONDS) OF EACH ALGORITHMS
FOR COVERING A GIVEN POLYGON Q. IF NO FULL COVERAGE IS ACHIEVED

WITHIN 300 SECONDS, THE COMPUTATION TIME IS SET TO 300.

results for polygons of size 60, 100, and 200. More precisely,
the minimum, average, and maximum computation time (in
seconds) that each algorithm requires to find a guard set for
polygons are presented. For some orthogonal polygons, the
random search fails to cover the whole polygon within the
time-limit.

Fig. 6. Minimum, average and maximum runtime to find a guard set in simple
polygons of various sizes by using DFS and random search.

C. Comments on the Results

First, it is interesting to note that the structure of the vertex-
induced tree depends on shape of the underlying polygon,
its number of vertices, and the choice of starting point. For
example, the simple (nonorthogonal) as well as orthogonal
polygons lead to a similar vertex-induced trees. In particular,
the average degree of each node is usually smaller than the case
of a tree for a von Koch polygon with a same size. However,
if we consider the height of the vertex-induced trees of the
polygons, the simple (nonorthogonal) and orthogonal polygons
have (usually) trees with larger height than the case of von
Koch polygons. Due to these facts, the deployment algorithms
RS and DFS do not have the same performance in solving
AGP on different types of polygons.

Fig. 7. Minimum, average and maximum runtime to find a guard set in
orthogonal polygons of various sizes by using DFS and random search.

Fig. 8. Minimum, average and maximum runtime to find a guard set in von
Koch polygons of various sizes by using DFS and random search.

According to Table I and Figures 6-8, we observe that, in
solving simple (nonorthogonal) and orthogonal polygons, the
RS algorithm is less efficient than DFS. However, random
deployment performs surprisingly well in solving von Koch
polygons. Indeed, in the case of von Koch polygons, most of
the nodes of the vertex-induced tree have a relatively large
degree but the tree has relatively small height. Due to this fact,
if we scatter the agents randomly amongst children of a node,
then we can explore quickly different nodes of the vertex-
induced tree and, consequently, oversee the entire polygon.
However, this is not the case for simple (nonorthogonal) and
orthogonal polygons, where the tree has considerably large
height and the nodes have small degree. In such a case, a more
intelligent approach such as the DFS deployment algorithm
performs considerably better than RS.

As an example, Figures 9 and 10 visualize the solutions

provided, respectively, by DFS and RS for a von Koch polygon
with 100 vertices. On these figures, the vertical axis shows the
number of covered vertices and the horizontal axis represents
the time. Furthermore, each circle indicates the moment of
covering a new group of uncovered vertices. As we observe,
both methods (DFS and RS) provide similar solutions. In fact,
DFS needs 19 agents to cover the polygon and RS requires 18
agents. However, these methods are rather different in terms
of the computation time. As it is depicted on Figures 11 and
12, the RS navigation algorithm has a better performance than
DFS. Indeed, in less than 5 seconds, RS covers almost 90 %
of the vertices versus 50 % for DFS. Finally, RS needs 16.145
seconds versus 57.242 seconds for DFS, in order to solve this
instance.

Fig. 9. The solution provided by DFS method for a von Koch
polygon with 100 vertices.

Fig. 10. The solution provided by Random Search method for
a von Koch polygon with 100 vertices.

Fig. 11. The performance of the DFS method for covering a
von Koch polygon with 100 vertices.

Fig. 12. The performance of the Random Search method for
covering a von Koch polygon with 100 vertices.

VII. CONCLUSION

In this paper, we highlighted current research related to
solving the Art Gallery Problem (AGP) using a multi-agent
approach and present computational results of the relevant
algorithms (DFS and RS) for solving the AGP. These solution
methods are based on the vertex-induced partition and tree
algorithm [5], [6], [7]. This approach allows us to deduce,
as a multi-agent system, a graph exploring problem from the
AGP. In particular, our experiments, that we carried out by a
self-contained Java platform, confirm that the algorithm RS is
more efficient than DFS in solving AGP on von Koch polygons.
In the case of orthogonal and simple (nonorthogonal) instances,
DFS is more efficient that RS.

The future research directions can be extension of the
platform for processing more variants of polygons as well
as developing and implementing more algorithms. Designing
more efficient algorithms is also an interesting research topic
to explore. The research in these directions is in progress and
the results will be reported in future.

ACKNOWLEDGMENT

The authors acknowledge the Technical University of Kaiser-
slautern (Germany) for the financial support, through the
research program “CoVaCo”.

REFERENCES

[1] Asama, H., Tamio, A., Fukuda, T., Hasegawa, T. Mobile Sensor Network
Deployment using Potential Fields: A Distributed, Scalable Solution to
the Area Coverage Problem, Distributed Autonomous Robotic Systems,
299–308, 2002.

[2] Auer, T., Held, M. Heuristics for the Generation of Random Polygons.
Proc. 8th Canad. Conf. Comput. Geom, 38–44, 1998.

[3] CGAL: Computational Geometry Algorithms Library, http://www.cgal.org
[4] de Rezende, P.J., de Souza, C.C., Friedrichs, S., Hemmer, M., Kröller, A.,

Tozoni, D.C. Engineering Art Galleries. arXiv:1410.8720, 2014.
[5] Ganguli, A., Cortes, J., Bullo, F. Distributed Deployment of Asynchronous

Guards in Art Galleries, American Control Conference (ACC), 1416–1421,
2006.

[6] Ganguli, A., Cortes, J., Bullo, F. Distributed Coverage of Nonconvex
Environments, Networked Sensing Information and Control, 289–305,
2007.

[7] Ganguli, A. Motion Coordination for Mobile Robotic Networks with
Visibility Sensors, Electrical and Computer Engineering Department,
University of Illinois at Urbana-Champaign, 2007.

[8] Ganguli, A., Cortes, J., Bullo, F. Visibility-based Multi-Agent Deployment
in Orthogonal Environments, American Control Conference (ACC), 3426–
3431, 2007.

[9] Howard, A., Matarić, M.J., Sukhatme, G.S. An Incremental Self-
Deployment Algorithm for Mobile Sensor Networks, Autonomous Robots,
Vol. 13, No. 12, 113–126, 2002.

[10] Huang, C.F., Tseng, Y.C. The Coverage Problem in a Wireless Sensor
Network, Mobile Networks and Applications, Vol. 10, No. 4, 519–528,
2005.

[11] Kröller, A., Baumgartner, T., Fekete, S.P., Schmidt, C. Exact Solutions and
Bounds for General Art Gallery Problems, J. on Experimental Algorithmics,
Vol. 17, No. 1, 2012.

[12] Kröller, A., Moeini, M., Schmidt, C. A Novel and Efficient Approach for
Solving the Art Gallery Problem, WALCOM: Algorithms and Computation,
Lecture Notes in Computer Science (LNCS), Vol. 7748, 5–16, 2012.

[13] Lee, D.T., Lin, A. Computational Complexity of Art Gallery Problems,
IEEE Transactions on Information Theory, Vol. 32, No. 2, 276–282, 1986.

[14] McLurkin, J., Smith, J. Distributed Algorithms for Dispersion in Indoor
Environments using a Swarm of Autonomous Mobile Robots, Proc. 7th
Internat. Sympos. Distr. Auton. Robot. Syst., 2004.

[15] Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M. Exposure
in Wireless Ad-Hoc Sensor Networks, Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking, 139–150,
2001.

[16] Obermeyer, K.J. Visibility Problems for Sensor Networks and Unmanned
Air Vehicles, Mechanical Engineering Department, University of California
at Santa Barbara, 2010.

[17] Obermeyer, K.J., Ganguli, A., Bullo, F. A Complete Algorithm for
Searchlight Scheduling, International Journal of Computational Geometry
& Applications, Vol. 21, No. 1, 101–130, 2011.

[18] O’Rourke, J. Art Gallery Theorems and Algorithms. Oxford University
Press, Inc., 1987.

[19] Shermer, T.C. Recent Results in Art Galleries. Proceedings of the IEEE,
Vol. 80, No. 9, 1384–1399, 1992.

[20] Urrutia, J. Art Gallery and Illumnation Problems, 2004.

