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Abstract—High order neural networks (HONN’s) are neural
networks that employ neurons which combine their inputs
non-linearly. HONEST (High Order Network with Exponential
SynapTic links) is a HONN that employs product units, and
inter-neuronal connections with associated adaptable exponential
weights. Previous work has found that HONEST benefits from
the inclusion in the network’s error function of a regularization
term that penalizes high-magnitude exponents. In the present
work, we use ACOR, a recent Ant Colony Optimization (ACO)
algorithm, to optimize the parameters of HONEST’s exponent
regularization process, using a collection of UCI datasets. We then
evaluate HONEST with the evolved parameters on a second non-
overlapping collection of UCI datasets against Support Vector
Machines (SVM). We find HONEST’s test set predictive accuracy
to be competitive with SVM, with no statistically significant
difference between the two.

I. OVERVIEW

High order neural networks (HONN’s) are neural networks

that employ neurons which combine their inputs non-linearly

[1]–[3]. HONN’s have been the subject of considerable re-

search [1]–[5], and have generally been found to have superior

generalization, at the expense of being more computationally

intensive and sometimes harder to train. HONEST (High

Order Network with Exponential SynapTic links) [6]–[14]

is a HONN that employs product units, and inter-neuronal

connections with associated adaptable exponential weights. An

HONEST network has an input layer, a single hidden layer,

and an output layer. The output layer has standard weighted-

sum neurons, while the hidden layer neurons raise their inputs

to an exponent and combine them multiplicatively. In addition,

the HONEST network uses identity activation functions for all

of its neurons. This design makes the HONEST network both

powerful and easy to interpret.

Previous work [10] has found that HONEST benefits from

the inclusion in the network’s error function of a regular-

ization term that penalizes high-magnitude exponents—which

are often an indication of over-fitting the training set. The

regularization term was based on an inverted generalized-

bell function, with parameter values that were determined in

an ad hoc manner. Experimental results indicated that the

regularization term resulted in a lower frequency of high-

magnitude exponents and a corresponding improvement in

generalization.

On the other hand, the downside of the regularization

process is that it introduces three new parameters to the

HONEST netwok: two parameters control the shape of the

generalized-bell function, and a third parameter contols the

relative emphasis of the regularization term. This is an example

of a general problem in computational intelligence (CI): the

ever-increasing number of adjustable external parameters in

CI models. To alleviate this problem in the present case,

we would like to use a systematic method to find a “good”

set of parameter values for HONEST’s three regularization

parameters that can be used as default parameter values that

are not specifically optimized for a specific dataset. It is of

course true that, like most CI models, better performance

can likely be obtained if HONEST’s parameters are tuned

for a specific dataset or group of datasets. However, tuning

HONEST, or any other learning model, for a specific dataset

is time-consuming and may not be practical in many situations.

Therefore, our objective in the present study is to iden-

tify, using ACOR, a recent Ant Colony Optimization (ACO)

algorithm, a “good” set of parameter values that are not

specifically tuned to a particular dataset. We use a collection

of 5 UCI datasets in the optimization process; the output of

the optimization process is an optimized setting of these three

parameters. We then fix the value of these three parameters to

the optimized setting, and evaluate the network on a second

collection of 20 UCI datasets, with no overlap between the

two collections. Since the network is evaluated on a different

group of datasets than that with which the parameters were

optimized, the performance of network on the evaluation

datasets can be considered indicative of the generality of

the parameter settings. Of course, if the parameters were

tuned specifically for each of the 20 evaluation datasets, it

is likely that performance can be improved (as with almost

any other CI learning model), but the purpose of the present

study is to identify a “good” set of default parameter settings

that can be used in any future work with the HONSET



network. We compare the performance of HONEST on the

20 evaluation datasets to Support Vector Machines (SVM),

widely-considered to be a state-of-the-art supervised learning

model.

We begin in Section II with a brief review of the HONEST

network and its regularization process. Section III presents

in greater detail our proposed approach in using ACOR to

evolve HONEST’s regularization parameters. Our experimen-

tal methodology and results are presented in Sections IV and

V, respectively, and final comments are offered in Section VI.

II. THE HONEST NEURAL NETWORK.

Fig. 1. Architecture of the HONEST network.

HONEST (High Order Network with Exponential Synap-

Tic links) [6]–[14] is a high order neural network that uses

neurons with adaptable exponents. It can be considered a gen-

eralization of the sigma-pi model [1], [15], [16], while sharing

some similarities with the ExpoNet [17] and GMDH [18], [19]

network models. An HONEST network, as illustrated in Fig. 1,

is a three-layer feedforward network made up of two different

neuron types. Neurons in the hidden layer are all of high-order,

whereas output layer neurons are simple linear units with an

identity activation function.

Fig. 2. Hidden Layer Neuron in the HONEST Architecture.

The functionality of a hidden layer neuron i, as illustrated

in Fig. 2, is described by

hi =
∏
j

x
pij

j (1)

where pij is an exponential power associated with the synapse

connecting unit j to a hidden neuron i.
The connections from the input layer to the hidden layer

do not have an associated multiplicative weight; instead, they

have an associated adaptable exponential power. The output

of a hidden layer neuron is the product of its inputs after each

one is raised to its associated power, as indicated in Eq. (1).

Fig. 3. Example of an HONEST network.

The output layer neurons are all simple linear units. The

functionality of an output layer neuron i is described by

yi =
∑
j

wijhj + θi (2)

Each of the outputs, yi, of an HONEST network can be

expressed in terms of the network inputs by an expression

of the form

yi =
∑
h

wih

∏
j

x
phj

j + θi (3)

For example, the equation

y = 3.2x2.5
1 + x−1.3

2 − 0.5x2
1x
−3
2 + 2x4

1 − 4.3 (4)

is represented by the network shown in Fig. 3. The form of

Eq. (3) is similar to the form of a polynomial with the number

of hidden neurons corresponding to the number of terms

in the polynomial. The difference is that, in a polynomial,

the exponents are restricted to being non-negative integers.

Therefore, the form of Eq. (3) can be seen as a generalization

of the form of a polynomial. This means that an HONEST

network can always be prescribed to represent any given

polynomial mapping.

After a conventional MLP network is trained, interpreting

the weights of the network in a meaningful way is very

difficult. For a three-layer network, each network output is

expressed as a sigmoidal function of a linear sum of sigmoidal

functions of linear sums of the network inputs. For non-trivial

network sizes, it is practically impossible to reach an intuitive

understanding of how the networks inputs are mapped to its

outputs.

The structure of an HONEST network is more transparent

and easier to interpret; each of the network outputs can be

expressed in terms of the network inputs by a polynomial-like



equation. It is thus easier to understand how the network’s

inputs come to be mapped to the networks outputs. For

example, using the form of Eq. (3), it is easier to determine

if one particular input is more significant than the others.

It may also be easier to detect undesirable situations where

the network has over-learned or memorized the training set.

Furthermore, it is possible to use external expert knowledge

of the problem domain to examine the validity of the network

solution. Alternatively, examining the HONEST network so-

lution may serve to enrich ones understanding of the problem

domain.

Tsai [12]–[14] has considered variations of HONEST in

which sigmoidal activation functions are used, and in which

there potentially exist multiple layers of multiplicative units.

The drawback of this approach is that it causes HONEST to

lose its transparency and interpretability.

It is often desirable for an HONEST network to avoid

exponents of very high-magnitude. Such exponents reduce the

transparency and interpretability of the network, and make the

mapping learned by the network more jittery and more prone

to over-fitting. In addition, if a hidden layer neuron has only

small-magnitude incoming exponents, then a domain expert

may decide to neglect the term in Eq. (3) corresponding to

that neuron, thus resulting in a simpler model. Alternatively,

exponent regularization could be combined with hidden layer

neuron pruning during the training process.
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Fig. 4. Illustration of the generalized inverted-bell function, ψ, with different
parameter settings.

Thus, it would be beneficial to apply a regularization

function that only affects the exponents. In previous work, we

used a network error function E consisting of two components:

E = EMSE + αEreg (5)

where EMSE is the conventional mean-squared-error function,

normalized relative to the number of patterns and the number

of output neurons:

EMSE =
1

2mP

m∑
i=1

(ti − yi)
2 (6)

where yi denotes output neuron i, ti denotes the target output

for output neuron i, m denotes the number of output neurons,

and P denotes the number of patterns. The regularization

component Ereg consists of

Ereg =
1

nHP

n∑
j=1

H∑
h=1

ψ(phj) (7)

where n denotes the number of input units, H denotes the

number of neurons in the hidden layer, and ψ denotes the

generalized inverted-bell function (illustrated in Fig. 4):

ψ(p) =
1

1 +
(
p−c
a

)−2b
(8)

where a, b, and c are parameters that control the shape of

the inverted bell function. The a and b parameters control the

width of the curve and its slope, and c controls where the curve

is centered. For our purposes, we would like the generalized

inverted-bell function to be symmetric around zero; therefore,

the c parameter is fixed at 0, reducing the ψ function to

ψ(p) =
1

1 +
(

a2

p2

)b
(9)

In previous work, we set a = 4 and b = 5, based on

the observation that this setting had the following desirable

properties:

• when p ≈ ±2, then ψ(p) ≈ 0;

• when p ≈ ±4, then ψ(p) ≈ 0.5;

• when p ≈ ±5, then ψ(p) ≈ 0.9;

These properties mean that the penalty ψ increases from

0 to 0.5 as the exponent progresses from ±2 to ±4, and

then continues to increase to 0.9 as the exponent nears ±5.

This means that exponents will be increasingly penalized

as they move outside the range [−2, 2]. Fig. 4 illustrates

the generalized inverted-bell function with these parameter

settings (a = 4, b = 5).

The α coefficient in Eq. (5) is an external parameter that

controls the relative emphasis of the regularization term.

Because EMSE and Ereg are both normalized, it is possible

to set α in a manner that is problem-independent. In previous

work, α was set to 0.05.

III. APPROACH

HONEST’s regularization function has three adjustable pa-

rameters: a, b, and α. Our objective in this paper is to use

ACOR, a recent Ant Colony Optimization (ACO) algorithm,

to optimize these three parameters. Ant Colony Optimiza-

tion (ACO) [20] is a general-purpose, biologically-motivated,

population-based meta-heuristic, and is based on a number of

primitive processing elements, each operating in parallel with

little centralized control. The processing elements in ACO

are called ants, and the collection of processing elements

are called a colony. In an ACO algorithm, there is usually

a central data structure, analogous to pheromone information

in biological ant systems, that represents the time-evolving

collective knowledge of the group. In each iteration, each ant

typically generates a candidate solution, making use of the



central pheromone data structure in some way in its solution

construction. After all ants have generated their solutions, a

subset of those solutions is then used to update the central data

structure in some way. ACO has been applied to a wide variety

of domains, and has been applied to supervised learning using

a variety of learning models including classification rules [21]–

[26], decision trees [27], [28], and various types of Bayesian

network classifiers [29], [30].

ACOR is a fairly-recent ACO algorithm for continuous

optimization [31], [32], and has been applied to the training

of neural networks [11], [33], [34], optimizing feedforward

neural network topology [35], and optimizing the external

parameters of support vector machines [36]. Variations of

ACOR include a variation called incremental ACOR in which

the size of the population archive grows incrementally over

time [37], and a variation in which the search width ξ gradually

decays over time [38].

The central data structure, analogous to pheromone in-

formation in natural ants, that is maintained by ACOR is

an archive A of R previously-generated candidate solutions.

Each element sk in the archive, for k = 1, 2, . . . , R, is a 3-

dimensional real-valued vector that represents a configuration

of the three parameters (a, b, α). For example, sk,2 represents

the value of the HONEST regularization parameter b in the

k-th solution in the archive. Similarly, sk,1 and sk,3 represent

the value of the parameters a and α, respectively, in the k-th

solution in the archive.

ACOR is a problem-independent meta-heuristic; to apply it

to a specific problem, a problem-dependent quality evaluation

function Q must be specified. The quality evaluation function

takes as input a candidate solution vector, and returns a

non-negative real value that represents the problem-dependent

“goodness” of the candidate solution. Our quality evaluation

function is described towards the end of this section.

The archive A is always maintained in a state of being sorted

by solution quality, so that Q(s1) ≥ Q(s2) ≥ . . . ≥ Q(sR).
Each solution sk in the archive has an associated weight ωk

that is related to Q(sk), so that ω1 ≥ ω2 ≥ . . . ≥ ωR.

The ACOR algorithm consists of repeated iterations where

each iteration consists of two phases: solution construction and

pheromone update. In the solution construction phase, each

ant probabilistically constructs a solution based on the solution

archive A (representing pheromone information). The solution

archive A is initialized with R randomly-generated solutions,

where the size R is a user-supplied parameter of the ACOR

algorithm. In our case, the elements of the archive is randomly

initialized using a Gaussian distribution centered around the

parameter values (4, 5, 0.05) used in previous work.

In the pheromone update phase, the m constructed solutions

(where m is the number of ants) are added to A, resulting in

the size of A temporarily being R + m. The archive A is

then sorted by solution quality, and the m worst solutions are

discarded, so that the size of A returns to being R.

The heart of the algorithm is the solution construction phase.

In this phase, each ant i generates a candidate solution si,
where si is a 3-dimensional vector, and si,j represents an

assignment to the j-th parameter. In constructing its solution

si, ant i is influenced by one of the R solutions in the archive

A. The ant first probabilistically selects one of the R solutions

in the archive according to:

Pr(select sk) =
ωk∑R
r=1 ωr

(10)

Thus, the probability of selecting the k-th solution is propor-

tional to its weight ωk. Recall that the archive A is sorted by

quality, so that solution sk has rank k. The weights ωk that

are used in Eq. (10) are constructed in each iteration as:

ωk = g(k; 1, qR) (11)

where g is the Gaussian function:

g(y;μ, σ) =
1

σ
√
2π

e−
(y−μ)2

2σ2 (12)

Thus, Eq. (11) assigns the weight ωk to be the value of the

Gaussian function with argument k, mean 1.0, and standard

deviation (qR). The value of q is a user-supplied parameter

of the algorithm, where smaller values of q cause the better

ranked solutions to have higher weights ω (and thus makes the

algorithm more exploitative), while larger values of q result in

a more uniform distribution.

Let sk be the solution of A that is selected by ant i according

to Eq. (10) in a given iteration. Ant i then generates each

solution element si,j by sampling the Gaussian probability

density function (PDF):

si,j ∼ N(sk,j , σk,j) (13)

where N(μ, σ) represents the Gaussian PDF with mean μ and

standard deviation σ.

In Eq. (13), sk,j represents the value that the solution sk
assigns to variable Vj , and the standard deviation σk,j is

computed according to:

σk,j = ξ

R∑
r=1

| sk,j − sr,j |
R− 1

(14)

where ξ is a user-supplied parameter of the algorithm. The

effect of Eq. (14) is that the average distance from sk to other

solutions in the archive, for the j-th dimension, is computed,

and is then multiplied by ξ. The parameter ξ plays a role

in ACOR similar to that of evaporation rate in other ACO

algorithms. The higher the value of ξ, the less the extent to

which the search is biased towards the area of the search space

around the solutions stored in the archive, and the slower the

algorithm will converge. Once each ant constructs its solution,

the archive A is updated as described above.

If the top solution in the archive does not improve for

I ′ iterations, then the algorithm is said to be stagnated.

In such a case, the archvie is re-initialized with random

solutions. The process terminates if the top solution has not

improved for Iconv iterations, where I ′ and Iconvare user-

supplied parameters with I ′ < Iconv . In all, besides I ′ and

Iconv , the algorithm has four user-supplied parameters m, R,

q, and ξ. The parameter m determines the number of ants; the



parameter R determines the number of solutions stored in the

archive A; the parameter q controls the extent to which the

top solutions in the archive will dominate solution construction

(Eq. 11); and the parameter ξ influences the degree of diversity

in solution construction (Eq. 14).

Our quality evaluation function uses a set of training set/test

set pairs T . In other words, T consists of a set of pairs

(Dtrain,Dtest) where each Dtrain is to be used as a training

set and Dtest is to be used as a test set. To compute the quality

of a candidate solution s = (a, b, α), we apply an HONEST

network, using the regularization parameter settings specified

by the vector s, to the dataset pairs of T . For each dataset pair

(Dtrain,Dtest) ∈ T , we start with an HONEST network with

randomly-initialized exponents and weights; the exponents

are randomly initialized, with a uniform distribution, in the

range [0.9, 1.1], and all other weights are initialized, with a

uniform distribution, in the range [−0.25, 0.25]. The randomly-

initialized HONEST network is then trained using the Resilient

Propagation (R-Prop) algorithm [39] for 50 epochs using the

training set Dtrain. The performance of the network is then

evaluated as the accuracy rate on the test set Dtest. The

accuracy rate is computed as the ratio of the correctly classified

patterns of Dtest to the total number of patterns of Dtest. The

quality measure Q is computed as the average of the accuracy

rate on the datasets in T .

R-Prop [39] is a classic neural network training algorithm,

that has been previously applied to HONEST [9], [10]. Unlike

the well-known Back-Propagation algorithm [40], R-Prop uses

only the sign of the gradient, not the magnitude. Each weight

wi has its own adaptable step size si. Note that we use the

generic term weight to refer to all adaptable parameters in

HONEST, including exponents, multiplicative weights, as well

as biases.

At iteration t of R-Prop,

Δwi =

⎧⎪⎨
⎪⎩

−si(t) if ∂E
∂wi

(t) > 0

+si(t) if ∂E
∂wi

(t) < 0

0 if ∂E
∂wi

(t) = 0

(15)

In other words, if ∂E
∂wi

(t) is positive, then this means that a

decrease in the value of wi(t) will result in a decrease in the

error E; thus, wi(t) is decreased by si(t). On the other hand,

if ∂E
∂wi

(t) is negative, then this means that an increase in wi(t)
will result in a decrease in E; therefore, wi(t) is increased by

si(t).
The step size si is itself adapted every epoch, as follows:

si(t) =

⎧⎪⎨
⎪⎩

γ+ · si(t− 1) if ∂E
∂wi

(t) · ∂E
∂wi

(t− 1) = 1

γ− · si(t− 1) if ∂E
∂wi

(t) · ∂E
∂wi

(t− 1) = −1
si(t− 1) if ∂E

∂wi
(t) · ∂E

∂wi
(t− 1) = 0

(16)

where 0 < γ− < 1 < γ+. All the step sizes si are initialized

to Δ0, where Δ0 is a third parameter of the R-Prop algorithm

(along with γ− and γ+).

In R-Prop, whenever the partial derivative changes sign

(i.e. whenever ∂E
∂wi

(t) and ∂E
∂wi

(t− 1) have different signs),

indicating that a minimum was missed, the previous weight

change is reversed and a flag is set to prevent the step size

from being updated in the next iteration.

IV. EXPERIMENTAL METHODOLOGY

A. Experiment A

In Experiment A, the ACOR algorithm is used to optimize

the three HONEST regularization parameters a, b, and α, as

described in Section III. The objective of this experiment is

to determine an optimized setting of those three parameters.

The quality evaluation function Q uses a suite of five

datasets obtained from the popular University of California

Irvine (UCI) machine learning repository. Table I shows im-

portant characteristics of the datasets used in Experiments A

and B of this paper

In both Experiments A and B, each dataset is divided into

ten mutually exclusive partitions (folds), with approximately

the same number of instances and roughly the same class dis-

tribution in each fold. In Experiment A, one fold is randomly

selected to be the test set, and the other nine folds are merged

and used as the training set.

In both Experiments A and B, each dataset went through

the following preprocessing steps before being presented to

the HONEST network. Each continuous (numeric) attribute

was scaled to the range [0.1, 0.9]. Each categorical attribute

with c category labels was transformed to c network inputs,

one input for each category label. For each pattern, the

input corresponding to the category label for each categorical

attribute was set to 0.9, and all the others were set to 0.1. Any

missing value for a continuous attribute was set to the mean

value for that attribute. Any missing value for a categorical

attribute was set to the mode (the most popular category)

for that attribute. If the number of classes is m, then the

network will have m output neurons, one corresponding to

each class. For each pattern, the target value for the output

neuron corresponding to the correct class was set to 0.9, and

for all other output neurons was set to 0.1.

In Experiment A, the number of HONEST’s hidden neurons

was set to (n +m)/2, where n and m represent the number

of input and output neurons, respectively.

Table II shows our ACOR parameters used in Experiment

A, which follow [32]. Table III shows our R-Prop parameter

settings used in both Experiment A and Experiment B. These

parameter values represent typical settings for R-Prop [41].

The number of R-Prop epochs in Experiment A was 50.

B. Experiment B

Experiment B uses the evolved HONEST regularization

parameter settings determined in Experiment A, and com-

pares HONEST to Support Vector Machines (SVM) using 20

datasets (that do not include the 5 datasets used in Experiment

A).

In Experiment B, each dataset is partitioned into 10 mutu-

ally exclusive folds, as described in Sect. IV.A. Each method,

HONEST and SVM, is applied to the dataset 10 times, where

each time a different fold takes its turn as the test set and



TABLE I
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset Instances Classes Features

Total Numeric Categorical

Experiment A breast-tissue 106 6 9 9 0
ecoli 336 8 7 7 0
hay 132 3 4 0 4
liver-disorders 345 2 6 6 0
pima 768 2 8 8 0

Experiment B automobile 205 7 25 15 10
balance 625 3 4 0 4
breast-l 283 2 9 0 9
breast-p 198 2 32 32 0
breast-w 569 2 30 30 0
chess 3,196 2 36 0 36
credit-a 690 2 14 6 8
credit-g 1,000 2 20 7 13
horse 366 2 22 7 15
ionosphere 351 2 34 34 0
monks 556 2 6 0 6
parkinsons 195 2 22 22 0
pop 90 3 8 0 8
s-heart 270 2 13 6 7
thyroid 215 3 5 5 0
transfusion 722 2 4 4 0
ttt 958 2 9 0 9
voting 425 2 16 0 16
wine 178 3 13 13 0
zoo 101 7 16 0 16

TABLE II
PARAMETER SETTINGS OF THE ACOR ALGORITHM.

Parameter Description Setting

m number of ants 5
R size of archive 90
q influence of top solutions 0.05
ξ width of search 0.68
I′ # of iterations after which restart is triggered

if the top solution has not improved 650
Iconv # of iterations after which algorithm terminates

if the top solution has not improved 5000

TABLE III
PARAMETER SETTINGS OF THE R-PROP ALGORITHM.

Parameter Description Setting

γ+ acceleration multiplier 1.2
γ− deceleration multiplier 0.5
Δ0 initial step size 0.07

the other nine folds as the training set. Because HONEST

is stochastic, the entire process is repeated for HONEST 10

times—using a different random seed each time. The accuracy

rate on each of the 10 test set folds is recorded, and the average

test set performance, aggregated over all ten folds, is reported

as being representative of the performance of each method. In

the case of SVM, this is the average test set accuracy over 10

runs (1 run for each fold); for HONEST, this is the average

over 100 runs (10 repetitions for each fold).

In Experiment B, HONEST is trained by R-Prop for 100

epochs (unlike Experiment A where only 50 epochs were

used). The remaining R-Prop parameter settings were the

same as in Experiment A and are shown in Table III. In

Experiment B, the number of HONEST’s hidden neurons was

set to (n+m), where n is the number of input units, and m
is the number of output neurons. We used Weka’s [42] SMO

implementation of SVM, and used Weka’s default parameters

for SVM.

V. EXPERIMENTAL RESULTS

A. Experiment A

TABLE IV
EXPERIMENT A: EVOLVED HONEST REGULARIZATION PARAMETERS.

Parameter Description Setting

a inverted-bell half-width 3.78
b inverted-bell slope 2.31
α weight of regularization term 0.0635

Figs. 5 and 6 show the evolution of the HONEST regu-

larization parameters (a, b, α) over the course of execution of

ACOR. In Fig. 5, the x-axis represents the ACOR iteration

number, and the y-axis represents the value of the a and b
parameters. In Fig. 6, the x-axis similarly represents the ACOR

iteration number, and the y-axis the value of α. The final

evolved values of the regularization parameters are reported

in Table IV. Fig. 7 contrasts the ψ function with the evolved

parameter settings to the ψ function with the initial parameter

settings. Comparing the two parameter configurations, we note

the following:
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Fig. 5. Evolution of the a and b regularization parameters. The x-axis repre-
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parameter value at that iteration.
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• The initial ψ function is flat and near-zero as its input

exponent goes from zero to just past ±2, whereas the

evolved ψ function starts rising much earlier.

• The “inverted legs” of the evolved ψ are noticeably wider

than the initial ψ. The initial ψ is nearly 0.9 when its input

is nearly ±5, and is near-one when its input is nearly ±7.

In contrast, the evolved ψ is nearly 0.9 when its input is

nearly ±7, and when its input is ±9, its output is still

slightly less than 1.

B. Experiment B

Table V shows the results of applying HONEST (with the

evolved regularization parameters) and SVM to the 20 datasets

identified in Table I. Each entry in this table represents the av-

erage test set accuracy, aggregated over the 10 cross-validation

 0

 0.75

-8 -6 -4 -2  0  2  4  6  8

pe
na

lty

exponent

evolved ψ
initial ψ

Fig. 7. Comparison of the generalized inverted bell function, ψ, with the
final evolved parameter settings and with the initial parameter settings.

TABLE V
EXPERIMENT B: AVERAGE TEST SET PREDICTIVE ACCURACY RESULTS

FOR SVM AND FOR HONEST WITH THE EVOLVED REGULARIZATION

PARAMETERS.

Dataset SVM HONEST

automobile 68.74 62.84
balance 90.83 91.00
breast-l 71.68 72.03
breast-p 76.29 70.43
breast-w 97.90 82.44
chess 95.72 96.54
credit-a 84.93 85.71
credit-g 73.90 75.38
horse 81.51 81.02
ionosphere 88.50 90.94
monks 63.64 64.60
parkinsons 87.16 80.93
pop 72.50 65.25
s-heart 84.45 82.15
thyroid 88.88 84.74
transfusion 71.75 72.26
ttt 98.42 95.40
voting 92.97 94.80
wine 98.82 94.06
zoo 98.75 98.50

#wins 11 9

folds and the 10 repetitions (in the case of HONEST). The

best performance for each dataset is indicated in boldface.

The results indicate that HONEST has better test set accuracy

in 9 datasets, and SVM in 11 datasets.

TABLE VI
EXPERIMENT B: RESULTS OF APPLYING A (TWO-TAILED) WILCOXON

SIGNED-RANKS TEST COMPARING SVM TO HONEST WITH THE EVOLVED

REGULARIZATION PARAMETERS.

Comparison N W z p sig.?

HONEST vs. SVM 20 61 -1.64 0.101 no

Table VI reports the results of applying a Wilcoxon signed-

ranks test to the results of Table V. The results indicate that

no statistically significant difference is detected at the 0.05

conventional threshold.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we have used ACOR, an ant colony algorithm

for continuous optimization, to optimize the parameters of the

HONEST network’s regularization process. We identified a set

of regularization parameter settings (reported in Table IV) that

we propose should be used as default parameters in any future

work with HONEST.

Comparing HONEST with the evolved parameter settings

to Support Vector Machines (SVM), a machine learning tech-

nique that is widely acknowledged to have state-of-the-art

performance, we find that HONEST’s test set predictive accu-

racy is competitive with SVM, with no statistically significant

difference detected between the two.

In future work, we would like to explore mechanisms for

pruning hidden neurons dynamically while the network is



being trained. In such a case, we would add an additional

regularization component that favors small weights (between

hidden and output neurons). Hidden neurons whose incoming

exponents and outgoing weights are small would then be

considered candidates for exploratory pruning.
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