
A Bayesian model for anomaly detection in SQL
databases for security systems

Madalina M. Drugan
Mathematics and Computer Science Department, Technical University of Eindhoven

Email: m.m.drugan@tue.nl

Abstract—We focus on automatic anomaly detection in SQL
databases for security systems. Many logs of database systems,
here the Townhall database, contain detailed information about
users, like the SQL queries and the response of the database.
A database is a list of log instances, where each log instance
is a Cartesian product of feature values with an attached
anomaly score. All log instances with the anomaly score in the
top percentile are identified as anomalous. Our contribution is
multi-folded. We define a model for anomaly detection of SQL
databases that learns the structure of Bayesian networks from
data. Our method for automatic feature extraction generates the
maximal spanning tree to detect the strongest similarities between
features. Novel anomaly scores based on the joint probability
distribution of the database features and the log-likelihood of
the maximal spanning tree detect both point and contextual
anomalies. Multiple anomaly scores are combined within a robust
anomaly analysis algorithm. We validate our method on the
Townhall database showing the performance of our anomaly
detection algorithm.

I. INTRODUCTION

The precise definition of anomaly detection [1] depends on
the envisioned research area, i.e. machine learning, data min-
ing, information theory, statistics, etc. In statistics, anomaly de-
tection is referred as outlier detection, or exceptions, whereas,
in information theory, the noisy data is ignored in compress-
ing the signal. Other similar or related topics are noise or
unwanted data removal, and novelty detection of previously
unobserved patterns. The problem characteristics, like the data
and the anomaly type, and the application domain, like fraud
detection for credit cards, insurance, determine the anomaly
technique used. Detecting and analysing anomalies for security
systems use different methods with different data structures.
For example, network anomaly detection [2] uses distance-
based outlier detection [3], whereas in database systems [4],
the same method is not (straightforwardly) applicable.

Security database systems. This study focuses on anomaly
detection for database security systems, which is a major
issue in the SQL database systems, an important part of our
everyday life. Public databases, like the Townhall and medical
records, have a huge number of users and query requests
every hour. Note the difference between these databases; a
townhall system has only a few users, corresponding to the
amount of the town hall workers, but a huge number of
tables and attributes corresponding to very diverse issues
handled by the community. A medical database system needs
to be distributed such that the home doctors can communicate

their data to specialists; thus, a medical database system
has a large number of users and terminals and few entries
from all the users. More sensitive database systems, from
banks and governments, include private information on their
citizens; the maintenance and integrity of these databases are
essential. Anomaly detection for security systems deals with
the identification of queries with unusual behaviour, like an
invalid response from the database, unauthorised requests or a
large number of similar requests that slow down the system.

A. Main contributions

We consider that the anomaly detection problem is similar
to classification in semi-supervised learning [1]. In fact, in
[5], learning algorithms significantly outperform other specific
outlier algorithms. In this paper, we make an analogy with the
typical learning of the structure of the Bayesian networks from
data [6], used for example by medical expert systems.

Automatic feature extraction. In a log database, each
query is labelled as either ”normal” or ”abnormal”; thus the
class variable has two values. Each query is associated with a
set of features, and the anomaly score based on the frequency
of each feature in the database [7]. We consider that each
query is a Cartesian product of features. Defining the features,
like the length of the query, the time stamp and so on, is
essential in the anomaly detection process. Each feature is
classified as basic or composed (aggregated from several basic
features), and independent or with dependencies. By scoring
the frequencies of individual features, we can detect only so-
called point anomalies. A group of features detects contextual
anomalies. We compute the mutual information for each pair
of features from which we generate the maximal spanning tree
that detects the strongest dependencies between features [8].
The maximal spanning tree maximizes the log-likelihood of
the joint probability distribution of the feature set.

Multiple score anomaly analysis. Various learning and op-
timization techniques, i.e. frequencies or Bayesian approaches,
identify different anomalous queries. Thus, multiple anomaly
scores might lead to the identification of different queries.
Understanding the impact of each technique is important in
assessing the performance of an anomaly detection algorithm.
We compare the results obtained with different anomaly scores
in term of accuracy, sensitivity and so on.

Real database logs. TownHall is a large log of queries that
cumulates about 4 · 105 instances, where each log instance is



characterized by 21 attributes and the initial SQL query. Beside
the actual queries, the log datafile gives detailed information
that includes parameters on 1) the user identification, 2) the
response of the database system, and 3) the attributes of a
query, like the length and the validation flags. We label as
attacks all the query instances that contain a ”SELECT *”
instance, thus the queries that require unauthorized access to
data and instances with an invalid response from the database.
All the other instances are assumed normal. The queries in
TownHall are thus mixed, attacks and normal queries, where
the number of attacks is about 1/10 from the entire log
database. Another difficulty in analysing this log file is the
mixed type of features and their interpretation: some features
have a small number of values whereas others need to be
discretized.

B. Outline of the paper

Section II presents the current state-of-the-art in anomaly
detection of SQL database systems. Section III introduces
the preliminaries. Section IV proposes a database model with
multiple scores. Section V introduces a Bayesian model for
anomaly detection. Section VI presents an anomaly detection
algorithm, whereas Section VII introduces a multiple scores
anomaly analysis algorithm. Section VIII explains the practi-
cal settings concerning the experimental section. Section IX
presents the experimental results. Section X concludes this
paper.

II. ANOMALY DETECTION AND ANALYSIS IN DATABASE
SECURITY SYSTEMS: SHORT INTRODUCTION

Specific constraints apply to anomaly detection in security
database systems [1], [7]: The approach should be a ”white-
box” optimization transparent to the security officer. The
entire process of anomaly detection and analysis should be
intuitive such that both the security officer and the upset
user with deleted queries could understand them. This first
constraint limits the range of algorithms for this task, meaning
that many trendy algorithms like support vector machines
(SVM) and artificial neural networks (ANN) cannot be directly
used. Behaviour based approaches that learn (on-the-fly) new
threats are opposite to rule-based approaches where rules
are predefined. We need techniques that segregate rare and
infrequent events from anomalies, since infrequent queries
in the database system might not indicate an attack, thread,
etc. Furthermore, the anomaly detection algorithm should
consider particularities of the database, encoded, for example,
as parameter or threshold variables [9].

Anomaly detection. In the frequency based approach [10],
queries are modeled as a set of features. For example, the
length, the IP address, the command, the username, the time
stamp of the queries are only a few features included in
the database logs. A composed feature includes two or more
simple features. Each query has associated an anomaly score
calculated as the inverse of the product of feature’s frequencies
weighted by a threshold set by a human user. Thus, a query
with an average length and the standard command SELECT,

which is much more widespread than INSERT, is considered
normal when analysing the log. The infrequent queries, i.e.
with rare feature values, are considered anomalies. Statistical
measures, like false positives and true negative rates, validate
the performance of the anomaly detection algorithms.

Anomaly analysis [11] is the task of analysing the
performance of an anomaly detection algorithm. Database
systems are split into two categories. ”Normal” databases
contain only well-behaved queries, whereas ”leaked” databases
have anomalous queries, like attacks, malicious behaviour,
threads. The anomaly detection algorithm should be performed
on a normal database, whereas anomaly analysis assumes
that a large part of the database is leaked. Usually, these
two processes are kept separately because of their different
purpose in the security systems. The anomaly analysis includes
different scores than anomaly detection. The severity score
assesses the severity of data leakage. The severity score of
a database is a function that combines the severity score of
each feature assigned by the security expert. The risk score is
simply the product of severity and anomaly scores.

Attack analysis assumes the availability of a vast library of
attacks [11]. The attacks are classified using multiple criteria.
Individual queries that contain attacks are called point attacks,
i.e. unauthorized access or asking for passwords. A multiple
queries attack is an unusual amount of queries coming from
a single IP address such that individual queries are not an
attack, but as a group, they represent an attack, because of
their frequency, timing or size of response.

III. PRELIMINARIES

Each query instance q is a sequence of m distinct basic
features, where m > 0 is a constant. Each feature Fi is a
variable with a finite number of elements. Fi is defined as the
set of all possible values of Fi, denoted as the feature space of
Fi. Let fi be a value in Fi. By definition, a basic feature cannot
be decomposed in other features. Thus, q = {fq1 , f

q
2 , . . . , f

q
m},

where fqi is the value of Fi for query q. For practical reasons,
some basic features, like the SQL query and its identifier, are
ignored. Some numerical features, like the length and the size
of the response, are discretized.

A composed feature Fij pairs basic features Fi and Fj ,
where Fij = FiFj . The number of elements of Fij is finite.
The feature space of the composed feature Fij is defined as the
Cartesian product of two feature spaces, where Fij = Fi×Fj .
Let fij be a value in Fij .

Definition 1: The query space Q is the Cartesian product
of the basic feature spaces, Q = F1 × F2 × . . .× Fm.

We assume that individual feature spaces are inhomoge-
neous. Thus, F1 could be a set of numeric values, whereas F2

could be categorial, and so on.

IV. DATABASE SYSTEMS WITH MULTIPLE SCORES

In the standard interpretation of database systems [7], each
database is associated with a single anomaly score. In anomaly
analysis, the sensitivity score and the labelling function define



the degree of knowledge inferred from the other databases [9].
The sensitivity score uses parameters that need to be tuned by
a human user.

Consider a single anomaly score [10]. A database system
is defined as a tuple (Q, AS), where AS is an anomaly score
selected a-priori by the user, AS : Q → R+, and R+ is the
set of positive real numbers. Thus, each query instance q has
associated an AS(q) positive anomaly score.

Our interpretation of database systems is a generalization
of the previous definitions of the SQL database for security
systems. We make the analogy with learning the structure of a
Bayesian network from a training set using one function, and
testing the same structure on a test set using another function.
Let AS be a set of a anomaly scores AS = {AS1, . . . , ASa},
where ASi is the i-th anomaly score and ASi : Q→ R+. We
consider validation scores that assess the performance of the
anomaly scores, i.e. general statistic scores like accuracy, true
positive rates, and so on. Let V S be a set of v validation scores
V S = {V S1, . . . , V Sv}, where V Si is the i-th validation
score and V Si : R+ → R+.

Definition 2: A database system is a tuple (Q, AS, V S),
where Q is the query space, AS is a set of a anomaly scores
and V S is a set of v validation scores.
In the experimental section, we consider 5 anomaly scores and
5 validation scores for each anomaly score, a = 5 and v = 25.

In a practical setting, only a subset of the query space
is present in a database system. In fact, the purpose of the
anomaly detection algorithm is to identify types of queries
which do not have instances in a database. Therefore, the
current database is just a subset of the huge space of all
possible databases. Let Xi be a subset of values of the i-
th feature in a database, where Xi ⊆ Fi. For example, the
database Townhall has a validation flag indicating that the SQL
database was able to respond adequately to a query (or not).
The validation flag should be set on true for all queries. All
the queries that have this flag set on false are anomalies, and
a fair anomaly detection system identifies these queries.

V. BAYESIAN MODELS OF SQL DATABASES

Let P (F ) be the joint probability distribution over the set
of variables F = {F1, . . . , Fm} in the database Q. We rewrite
the corresponding joint probability distribution as a product of
conditional probability distributions

P (F ) =

m∏
i=1

P (Fi | F1, . . . , Fi−1, Fi+1, . . . , Fm)

If all variables are independent, then P (Fi) = P (Fi |
F1, . . . , Fi−1, Fi+1, . . . , Fm). Thus, P (F1, . . . , Fm) =
P (F1) · · · . . . · · ·P (Fm). Note that the exact computation
of the joint probability distribution is impractical, since its
complexity is the product of the cardinality of each variable.

A Bayesian network over F is a tuple (G,P), where G
a directed acyclic graph and P a set of conditional proba-
bility distributions. In the digraph G, each vertex models a
stochastic variable from F , and the arcs model the probabilistic

dependence. Each variable Fi is independent of the other non-
descendent in F given its parents in G. Let p(Fi) be the set of
parents of variable Fi. A Bayesian network’s joint probability
distribution is now simplified to

P (F ) =

m∏
i=1

P (Fi | p(Fi))

A. A generic anomaly score

Consider the set of instances of a specific database Q, and
q a specific instance, as before. Let N(xqi ) be the number of
values xqi ∈ Xi, and let N be the total number of queries. The
empirical probability value of the i-th variable in the database
Q is P̂Q(x

q
i ) = N(xqi )/N . For any query q,

Definition 3: The generic anomaly score AS : Q → R+ is
the inverse of the joint probability value for query q, where
AS(q) = 1/P̂Q(x

q
1, . . . , x

q
m).

The exact computation of the generic anomaly score is im-
practical, simpler dependencies between features need to be
considered.

Our first anomaly score considers that all the basic features
are independent of each other. Thus,

Definition 4: The naive anomaly score is defined as

ASN (q) =

m∏
i=1

N

N(xqi )
(1)

Consider now the previous anomaly score [10] defined as
the inverse frequency of both basic and composed features.
When only basic features are used, the frequencies based
anomaly score is defined as

ASF (q) =

m∏
i=1

1

N(xqi )
(2)

We ignore the threshold value of each feature, which we
compare with prior probabilities established by a human
expert.

B. Justification of the Bayesian model

We have identified two reasons why the generic anomaly
score from Definition 3 is better than similar approaches in
literature, see Equation 4. At first, we show that the classi-
fication task of SQL queries is degraded by simultaneously
using composed and basic features in the frequency anomaly
score. To argue this point of view, we use the analogy with
learning Bayesian networks from data: when an attribute is
copied, the classification accuracy is degraded [12]. We now
extrapolate to anomaly scores. Consider an anomaly score
computed over a basic feature Xi and its copy in a composed
feature. The following shows that the corresponding anomaly
score is biased by Xi.

Proposition 1: The frequency based anomaly score ASF is
biased when the same feature is used twice.
Proof. Consider two variables X and Y each with two values,
X = {x1, x2} and Y = {y1, y2}. The database Q has four
type of query instances: q11 = {x1, y1}, q12 = {x1, y2},



q21 = {x2, y1} and q22 = {x2, y2}. Let N = 100 and
N(x1) = 5 and N(y1) = 5, with N(x1, y1) = 1, N(x1, y2) =
4, N(x2, y1) = 4, and N(x2, y2) = 91.

By definition, ASF (q11) = 1/5 · 1/5, ASF (q12) =
ASF (q21) = 1/5 · 1/95, and ASF (q22) = 1/95 · 1/95. The
91% of the queries have a very low anomaly score, and the rest
of the 9% queries have the scores ASF (q11) and ASF (q12).
When we consider the highest 5% anomaly scores, there are
4 false negatives, the score does not make any distinction
between the two variables.

We now copy X into another variable X ′ and we con-
sider the basic variable X and the composed variable Y X ′.
The composed queries are now X{Y X ′}. The corresponding
frequency anomaly scores are ASF (x1{y1x1}) = 1/5 · 1/1,
ASF (x1{y2x1}) = 1/5 · 1/4, ASF (x2{y1x2}) = 1/95 · 1/4
and ASF (x2{y2x2}) = 1/95·1/91. Note that only queries that
contain x1 are deemed anomalous considering 95 percentile.
�

We conclude that the anomaly scores could be biased when
mixing composed and basic features. Note that our generic
anomaly score, cf Definition 3, considers only basic features.
The dependencies between features are captured through the
conditional probability values.

Another reason to use our generic anomaly score is the
machine learning methods available for the joint probability
distribution function. In the next section, we propose an
anomaly detection algorithm that uses an approximation of the
joint probability distribution using a maximal spanning tree.

VI. AN ANOMALY DETECTION ALGORITHM

Consider a set of basic features identified with the database
model from Section V. Our anomaly detection algorithm has
two phases. In the first phase, see Section VI-A, we propose
a method that extracts the pair of features with the highest
mutual information, from which we construct the correspond-
ing maximal spanning tree. Section VI-B introduces anomaly
scores that use the log-likelihood and / or the maximal log-
likelihood tree.

A. Maximal spanning tree for feature extraction

In this section, we generate a maximal spanning tree from
an SQL database. A tree is a digraph G where each vertex,
except the root, has exactly one parent. The root has no parent.
The pseudo-code of MaximalSpanningTree is presented in
Algorithm 1.

Consider a database system Q, where Q ∈ Q, and the
basic features of Q denoted as a set of variables X =
{X1, . . . , Xm}. Between each pair of variables Xi and Xj ,
we compute the mutual information function that indicates
how much information Xi gives about Xj :

IQ(Xi, Xj) =
∑
xi∈Xi

∑
xj∈Xj

P̂Q(xi, xj)·log

(
P̂Q(xi, xj)

P̂Q(xi) · P̂Q(xj)

)

where P̂Q(xi) is the probability function computed from
frequency of the variable xi of the feature Xi. The concept of

Algorithm 1 Maximal spanning tree for feature extraction
1: procedure MAXIMALSPANNINGTREE(Q)
2: Compute the mutual information between each two

features IQ(Xi, Xj), ∀Xi, Xj ∈ Q;
3: S the ordered list of mutual information values;
4: T → ∅ the list of edges;
5: while S is not empty do
6: Select the first pair (Xi, Xj) ∈ S
7: if T remains a tree when adding XiXj then
8: XiXj is added to T
9: end if

10: Delete XiXj from S
11: end while
12: Select a root Xi

13: Transform T in a directed graph G
14: return G
15: end procedure

mutual information is closely related to the concept of entropy
since

IQ(Xi, Xj) = HQ(Xi)−HQ(Xi | Xj)

where the conditional entropy is defined as

HQ(Xi | Xj) = −
∑
xi∈Xi

∑
xj∈Xj

P̂Q(xi, xj)·log

(
P̂Q(xi, xj)

P̂Q(xj)

)
and the entropy for variable Xi is

HQ(Xi) = −
∑
xi∈Xi

P̂Q(xi) · log
(
P̂Q(xi)

)
If two variables Xi and Xj are independent, then their mutual
information is 0, since HQ(Xi | Xj) = HQ(Xi). Otherwise,
HQ(Xi | Xj) ≤ HQ(Xi). If two variables are copies of
each other, then the mutual information has the highest value
IQ(Xi, Xj) = HQ(Xi).

The first step constructs the ordered set S with all the pairs
of features Xi and Xj in the descending order of their mutual
information value. We initialize the list of edges with an empty
set T = ∅. Each iteration, we select the first edge XiXj from
S, and, in the same time, we remove XiXj from S. The edge
XiXj is added to T , if by adding XiXj to the edges already
in T , the resulting undirected graph does not contain cycles.
The algorithm stops when the list S is empty. We transform
the list T in a directed tree G by selecting any variable Xi

as a root, thus Xi has no parents, and directing all the arcs
such that all the edges except Xi have exactly one parent.
The complexity of this algorithm is O(m2 · logN), with m
the number of features and N the number of queries in the
database Q.

The log-likelihood function is maximized with the maximal
spanning tree over the given set of features. Thus,

LL(G | Q) =

m∑
i=1

N ·HQ(Xi | pG(Xi))

where pG(Xi) is the set of parents of Xi in the digraph G.



B. The log-likelihood anomaly score

In this section, we propose three anomaly score functions,
from which two are log-likelihood scores and one is the inverse
of the joint probability function.

Definition 5: The log-likelihood tree anomaly score is
defined as

ASLT (G, q) = −
m∑
i=1

∑
Xj∈pG(Xi)

P̂Q(x
q
i , x

q
j)·log

(
P̂Q(x

q
i , x

q
j)

P̂Q(x
q
j)

)
(3)

If Xi is the root, with no parents, then pG(Xi) = ∅ and
the corresponding term is P̂Q(x

q
i ) · log P̂Q(x

q
i ). The follow-

ing anomaly score is derived from the the joint probability
distribution of q given the maximal spanning tree

Definition 6: The tree anomaly score is

AST (q) = 1/

 m∏
i=1

∏
Xj∈pG(Xi)

P̂Q(x
q
i | x

q
j)

 (4)

Note the difference between this definition and the naive
anomaly score, cf Definition 4. Above, we assume that there
are dependencies between features, whereas the naive ap-
proach considers all the features to be independent.

At last, if we assume the independence of the features, we
have the following log-likelihood score

Definition 7: The naive log-likelihood anomaly score is

ASL(q) = −
m∑
i=1

P̂Q(x
q
i ) · log

(
P̂Q(x

q
i )
)

(5)

C. Justification of the log-likelihood scores

Using the log-likelihood function implies using entropy as
a measure of how much information is encoded by a joint
probability distribution. By means of an example, we compare
the naive anomaly score ASN , cf Equation 1, and the log-
likelihood anomaly score ASL, cf Equation 5.

Example 1: Consider twenty variables {X1, . . . , X20}, each
with only two values Xi = {x1i , x2i }, where N(x1i ) = 5 and
Nx2

i
= 95, for all i. The database Q has also only two types

of queries Q = {q1, q2}, where q1 = {x11, . . . , x120} and q2 =
{x21, . . . , x220}. Thus, 5% of the queries are of type q1 and
the rest of 95% queries are of the type q2. The frequencies
anomaly scores are very small ASF (q1) = 0.2020, whereas
probability based anomaly scores are very large ASN (g1) =
2020. For some compilers (here Java), these values are out
of range and prone to computation errors. The log-likelihood
anomaly score ASL(q1) = 0.96 is a real positive number of
reasonable range. If compiled without error, the anomalous
queries are correctly identified in all examples.

A more complicated example with more diverse type queries
is presented in the experimental section, where the log-
likelihood score performs the best.

Algorithm 2 Robust anomaly analysis
1: procedure ROBUSTANOMALYANALYSIS(G, Q)
2: for i = 1 to N do
3: NFi ← ASF (qi);
4: NPi ← ASN (qi); NEi ← ASL(qi);
5: PPi ← AST (G, qi); PEi ← ASLT (G, qi);
6: end for
7: Compute percentile over NF , NP , NE, PF and PE;
8: Calculate the performance measures for each set;
9: Compare the performance of anomaly scores;

10: end procedure

D. Justification of the maximal spanning tree

We now show the advantage in capturing the dependencies
between variables using the same line of reasoning like in
Proposition 1.

Definition 8: A feature Xi is completely defined by a feature
Xj iff HQ(Xi | Xj) ≤ ε, where the noise level ε > 0 is a
small real number.
If two variables are copies of each other they are also com-
pletely dependent since HQ(Xi | Xj) = 0. The noise level ε is
inferred from the database or set by the user. In the following
proposition, we show that, unlike the frequency anomaly score,
the bias introduced by the completely dependent variables is
eliminated by the maximal spanning tree.

Proposition 2: The anomaly score AST using the maximal
spanning tree G generated over Q is not biased by the
completely dependent features of the database Q.

Proof. Consider three variables X , Y and X ′, where X
and X ′ are completely dependent. The maximal spanning tree
always contains the vertex X and X ′ for which the mutual
information is maximal. The joint probability distribution
ignores X ′ since HP (X

′ | X) ≤ ε. Thus, for each query q,

we have AST (q) =
(
P̂Q(x

q) · P̂Q(y
q)
)−1

, where X and Y

are assumed independent. Therefore, the anomaly scores are
independent of X ′, and thus not biased by this dependence
relation. �

In the sequel, the above proposition also holds for the log-
likelihood tree anomaly score ASLS . We have ASLT (q) =
P̂Q(x

q) · log P̂Q(x
q) + P̂Q(y

q) · log P̂Q(y
q).

The experimental section confirms the advantage of using
the maximal spanning tree. We further comment on this issue
in the experimental section.

VII. THE ANOMALY ANALYSIS METHODOLOGY

The robust anomaly analysis algorithm is the sequence
of steps describing an anomaly analysis component. Robus-
tAnomalyAnalysis is the corresponding pseudo-code of Algo-
rithm 2. The input of RobustAnomalyAnalysis is the output
of the detection algorithm from Section VI, cf Algorithm 1.
The maximal spanning tree G includes all the strongest
dependencies between features. For each query qi ∈ Q, we
compute the associated anomaly scores: NF is defined as
the list of the frequency anomaly scores, cf Equation 2. By



definition, NP is the list of the naive anomaly scores, cf
Definition 4, and NE is the list of the naive log-likelihood
anomaly score, cf Definition 7. PP is defined as the list of
the tree anomaly score, cf Definition 6, and PE contains the
log-likelihood tree anomaly scores, cf Definition 5. For each
set of anomalies, we select the top percentile anomaly scores,
i.e. 90 or 95 percentile.

Here, we consider that the database system has its own
mechanism to assess attacks. The statistical metrics used as
performance measures, aka accuracy, sensitivity and precision,
compare the SQL queries identified by the system to be
anomalous with the top percentile anomaly scores. Queries
that are selected as anomalous by both the SQL system and
the top percentile anomaly scores are the true positives, TP .
Queries that are selected as anomalous by the SQL system
but not in the top percentile of anomaly score are the false
negatives, FN . Queries that are in the top percentile but not
flagged as such by the system are false positives, FP .

Finally, we compare the performance measures for all the
anomaly scores. An anomaly score is considered better than
another anomaly score iff the anomaly score outperforms the
other scores in all metrics. In the experimental section, none
of the anomaly scores are better than other anomaly scores.
Thus, we consider all the anomaly scores to be informative
and complementary.

VIII. EXPERIMENTAL SETTINGS

A first step in anomaly analysis for SQL database systems
is to extract the important features that classify each query
with high accuracy in normal or anomalous. Based on several
log data files, we have the following classification of the log
features: The SQL query is present in the log as a verification
of the original query. The query identification attribute is
a number attached to each query. The user identification
attributes include the IP address, the host name and the
user name. The time stamp of the query is not necessarily
unique because a database could have a distributed imple-
mentation. The validation flags indicate whenever the query
is considered an attack by the interrogated database system.
Possible validation flags include the SELECT ALL type of
queries that might indicate unauthorized access or wherever
the SQL statement was correctly interpreted or not. The
response indicators are attributes returned by the database, like
response code, response size, and the number of rows returned
from the database. The query characteristics include the type
of command, like SELECT, INSERT or REMOVE, and the
length of the query. The database characteristics consider
the schema name (groups of databases). The data structures
accessed during a query are the list of databases and attributes.

Any log database (we know) has at least the first four kinds
of features. The Townhall database has all these features. The
log of different databases contain different information and
text formatting. Therefore, we adapt a log parser for each
database. As a general observation, a variety of features makes
the anomaly analysis more reliable via the interpretation of

the results, but the analysis is more complicated and prone to
mistakes.

A. Townhall database

To test the proposed methodology, we have used the log of
the Townhall database system. We have counted 372788 valid
instances in the database. Table I shows the complete set of 22
features of this database log and some of their characteristics
like the number of values and their mean entropy.

For example, the user identification attribute is represented
in five basic features: (5)1 the connection IP address of the
host, (6) the connection hostname, (7) the host connection
port, (8) the role of the database user, (9) the username. We
have considered only the queries that parse correctly, meaning
that they have 22 attributes, some of these attributes having
a format check, i.e. numerical values, time stamps or non-
empty values. Some queries have empty fields, not necessarily
the same in all queries. Our analysis ignores the first two
attributes that are unique for each query: (1) the SQL query,
and (2) the unique identifier of each SQL. Thus, the anomaly
detection and analysis algorithms consider 20 attributes in the
TownHall database. The time stamps are measured in minutes,
and the duration of a query, for most of the queries, is under
a minute. There are, on average, 10 attributes per database
instance, but some databases have much more attributes than
other databases. Three features have continuous values and
they are therefore discretized: (11) the size of the response,
(12) the number of rows in the response, (16) the length of
a query. Four attributes are either null or a list of attributes
or tables: (13) list of attributes after the SELECT command,
(14) list of tables after the FROM command, (19) list of
attributes after the WHERE command, and (20) list of tables
after WHERE command. For the INSERT command, the first
two lists are empty.

B. Type of anomalies in the townhall system

SQL injections and privilege misuse are only two examples
of attacks that can be initiated in a database. Only one privilege
misuse is signalled in the Townhall database system by (4) the
flag for ”SELECT *” type of queries. However, this flag is not
linked with a syntactic parser, and thus different calls of the
same command SELECT ALL, are not appropriately flagged.
In the sequel, SQL injections are signalled in the database by
(3) the flag signalling SQL queries of unknown type.

According to the standard frequency based approach, sets
of malicious queries could have the right frequencies to be
considered normal, and thus the standard algorithm fails.
Attacks involving groups of queries can be identified with
the maximal spanning tree if variables are dependent. For
example, the type of command ”Unknown” coincides with the
invalid flagged SQL queries, meaning that the two variables
should be correlated in the maximal spanning tree.

1The number of a feature variable in Table I



TABLE I
THE CHARACTERISTICS OF THE TOWNHALL DATABASE

Feature Meta Feat type verified empty nr values entropy remarks
1 SQL

query

string yes no 372788
2 id numeric yes no 372788 the unique identifier
3 valid boolean yes no 2 0.0 13 queries are not valid
4 select * boolean yes no 2 0.419 14.8% are ”SELECT *” queries
5 user IP address

user

IP add yes no 3 0.716 51.9% and 47.7% for two IP addreses
6 host string no yes 6 1.159
7 port numeric no yes 2 0.493 80% not specified
8 role string no yes 1 0.0 Not specified
9 name string no yes 3 0.513 80% unknown, 0.4% monitor

10 code

response

numeric yes no 4 0.228 94% a valid code
11 size numeric yes no 3 2.242 discretized
12 nr rows numeric yes no 11 0.727 27.8% have no response
13 list of attributes list of strings no yes 469 19.936 Max 51% queries per attribute, multiple

attributes per query
14 list of tables list of strings no yes 9 −1.189 2291 not specified, the rest more than 2

databases per query
15 schema

database

string no no 2 0.006 99.9% not specified
16 sensor id numeric no no 1 0 unknown functionality
17 length numeric yes yes 27 1.590 discretized
18 command string no no 4 0.001 ”SELECT” 99.9%, ”INSERT”, ”Update”,

”Unknown”
19 list of attributes string no yes 955 42.893 Max 47% queries per attribute, multiple

attributes per query
20 list of tables string no yes 216 7.207 Max 52.9% queries per attribute, multiple

attributes per query
21 start time date(min) yes no 2 discretized
22 end date(min) yes no 10 0.013 99.8% queries ending in less than a minute

IX. EXPERIMENTAL RESULTS

In this section, we describe and discuss the experimental
results of the tested algorithms and methods. Table II shows
statistical measurements on the individual anomaly score sets.
Besides the mean and standard deviation for anomaly scores,
we have computed the top 90 and 95 percentiles anomaly
scores. We consider the following performance measures. 1)
Accuracy Acc = (TP + TN)/N , where N is the total
number of queries. 2) Sensitivity or true positive rate is
TPR = TP/(TP + FN), and 3) specificity or true negative
rate is TNR = TN/(TN + FP ). 4) Precision or positive
predictive value is PPV = TP/(TP + FP ). 5) F1 score is
sensitivity and precision F1 = 2∗TP/(2∗TP +FP +FN).
6) F score combines precision and sensitivity F = 2∗PPV ∗
TNR/(PPV + TNR).

We analyse the impact of the maximal spanning tree on
the performance of the detection algorithm. The structure
of the maximal spanning tree generated from the Townhall
database given the 20 features is simple. We have observed
strong dependencies between the features describing the list
of attributes and the rest of the features explicable by the
large number of attributes and databases. All the features
are connected with the attribute feature from the database,
position (19) in Table I, which has the largest number of
values implying the largest mutual information values. Since
we construct a tree, all other dependencies between variables
are ignored.

For a second experiment, when building the maximal span-
ning tree, we ignore the features with the largest number of
values, naming (13), (14), (19) and (20). These four features

that describe the attributes and the databases used in SQL
queries, have the largest mutual information in the unpruned
tree. The pruned tree includes the four vertexes but with no
children and no parents when computing the corresponding
ASLT anomaly score. As a result, some of the performance
indicators of the pruned tree improved considerably whereas
others decreased significatively.

In our last experiment, we decreased the percentile of the
anomaly score to 90. The most robust detection algorithms
vary the least with the change of percentile.

Discussion. It is interesting to note that qua anomaly scores,
no score dominates all the other scores, and the difference
between scores is rather small. The frequencies ASF and
the naive ASN scores behave exactly the same in terms of
statistical performance measures, because the two anomaly
scores differ by a constant given by the size of the database.
The pruned tree log-likelihood score anomaly score ASLT has
the highest accuracy Acc, sensitivity TPR, specificity TNR,
and F1 score. The second best for the above scores is the naive
log-likelihood ASNT . In opposition, the (unpruned) tree log-
likelihood score ASLT has the largest precision PPV and F
score, but the lowest accuracy, specificity TNR and F1 score.
When compared with the naive probability score ASN , the tree
based probability score AST has a slightly larger precision
PPV and F score but decreases in all other metrics.

As a general note for the 95 percentile experiment, the
accuracy, sensitivity and F1 scores are quite high, whereas
the specificity, precision and F scores are quite low. High
accuracy means a large overlap between the queries classified
as anomalous by the detection algorithm, with a high anoma-



TABLE II
STATISTICAL MEASUREMENTS ON THE INDIVIDUAL ANOMALY SCORES

Type anomaly type Average score ± Std 95 percentile Statistical measures %
Acc TPR TNR PPV F1 F

Frequencies Frequencies ASF 1.83E-93 ± 2.79E-181 2.86E-102 83.8 86.3 12.4 15.2 91.0 25.84

Probabilities Naive ASN 4.93E18 ± 2.01E42 7.7E9 83.8 86.3 12.4 15.2 91.0 25.84
Tree AST 5.22E153 ±∞ 3.84E108 82.9 85.9 9.2 15.7 90 26.54

Log-likelihoods
LL Naive ASLN 1.97 ± 0.28 2.67 87.4 88.2 24.4 13.1 93.0 22.81
LL Tree ASLT 1.60± 1.91 4.64 80.2 84.4 0.0 17.4 89 28.85

LL pruned Tree ASLT 2.64± 0.08 3.05 89.9 89.3 31.3 11.9 94.3 21.14
Type anomaly type Average score ± Std 90 percentile Statistical measures %

Acc TPR TNR PPV F1 F
Frequencies Frequencies ASF 1.83E-93 ± 2.79E-181 4.81E-103 83.9 88.3 29.3 12.2 90.8 21.43

Probabilities Naive ASN 4.93E18 ± 2.02 1.29E9 83.9 88.3 29.3 12.2 90.8 21.43
tree AST 5.69E17 ± 5.27E39 4683559 78.87 85.59 12.42 15.21 87.94 25.81

Log-likelihoods
LL Naive ASLN 1.96±0.28 2.53 87.39 90.3 41.19 10.21 92.80 18.34
LL tree ASLT 1.98 ± 1.98 3.87 77.20 84.67 6.78 16.19 86.99 27.18

LL pruned tree ASLT 2.50 ± 0.09 2.98 94.28 93.71 61.41 6.70 96.75 12.5

lous score, and by the database system, meaning that at least
one validation flag negates its normal state. Low specificity,
on the other hand, shows that the false positives are quite
large compared to TN . Precision shows that the number of
true positive identifications is much lower than the number of
false positives.

The second part of Table II shows results with a cut-off
on anomaly scores at 90 percentile. The ranking qua anomaly
scores and performance metrics is preserved. The accuracy
and F1 metrics are the same for all anomaly scores, except
the tree based detection algorithms with an increased accuracy
and F1 value. Both specificity and sensitivity scores increase
across all the anomaly scores, but the precision and F score,
which is the combination between precision and sensitivity,
decreases.

Comparing now the two parts of Table II, we note a clear
trade-off between precision and sensitivity. Thus, a detection
algorithm with high percentile cuts-off true positive queries,
whereas a lower percentile means more false positive queries.

X. CONCLUSION

In this paper, we propose a model of SQL databases that
uses several anomaly scores. We use the analogy between the
anomaly detection and learning the structure of a Bayesian
network from data to generate a maximal spanning tree that
captures the strongest dependencies between the features. The
corresponding anomaly scores use the dependencies in the
maximal spanning tree. Our anomaly analysis algorithm uses
a set of other metrics, like the accuracy of the classification,
to score the algorithm’ classification performance. We justify
our design choices with theoretical findings.

We compare our method with the simplistic frequency based
approach showing that log-likelihood methods outperform the
other anomaly scores. None of the anomaly scores, however,
dominates the other anomaly scores in all performance metrics.
We argue that for efficient anomaly detection in database
security systems, advanced optimization and machine learning
tools, like cross-validation, feature selection, are necessary
preserving at the same time its ”white-box” paradigm. Here,

we use the analogy with Bayesian networks, but more work
is required to extensively apply this method. Further work is
required to understand the advantages and disadvantages of
the proposed method.

ACKNOWLEDGMENTS

M.M. Drugan is funded from ITEA M2Mgrid project.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, 2009.

[2] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications,
vol. 60, pp. 19 – 31, 2016.

[3] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers:
Algorithms and applications,” VLDB J., vol. 8, no. 3-4, pp. 237–253,
2000.

[4] S. Hashemi, Y. Yang, D. Zabihzadeh, and M. R. Kangavari, “Detecting
intrusion transactions in databases using data item dependencies and
anomaly analysis,” Expert Systems, vol. 25, no. 5, pp. 460–473, 2008.

[5] M. R. Smith and T. Martinez, “Improving classification accuracy by
identifying and removing instances that should be misclassified,” in Proc
of International Joint Conference on Neural Networks (IJCNN). IEEE,
2011.

[6] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network Clas-
sifiers,” Machine Learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[7] E. Costante, J. den Hartog, M. Petkovic, S. Etalle, and M. Pechenizkiy,
“Hunting the unknown - white-box database leakage detection,” in Proc
of Data and Applications Security and Privacy IFIP, 2014, pp. 243–259.

[8] C. K. Chow and C. N. Liu, “Approximating discrete probability distribu-
tions with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, pp. 462–467, 1968.

[9] S. Vavilis, M. Petkovic, and N. Zannone, “A severity-based quantifica-
tion of data leakages in database systems,” Journal of Computer Security,
vol. 24, no. 3, pp. 321–345, 2016.

[10] E. Costante, S. Vavilis, S. Etalle, J. den Hartog, M. Petkovic, and N. Zan-
none, “Database anomalous activities - detection and quantification,” in
SECRYPT 2013 - Proceedings of the 10th International Conference on
Security and Cryptography, 2013, pp. 603–608.

[11] S. Vavilis, A. I. Egner, M. Petkovic, and N. Zannone, “An anomaly anal-
ysis framework for database systems,” Computers & Security, vol. 53,
pp. 156–173, 2015.

[12] P. Langley and S. Sage, “Induction of Selective Bayesian Classifiers,”
in UAI, 1994, pp. 399–406.


