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Abstract—Prices of derivative contracts, such as options, traded
in the financial markets are expected to have complex rela-
tionships to fluctuations in the values of the underlying assets,
the time to maturity and type of exercise of the contracts
as well as other macroeconomic variables. Hutchinson, Lo
and Poggio showed in 1994 that a non-parametric artificial
neural network may be trained to approximate this complex
functional relationship. Here, we consider this model with
additional inputs relevant to the pricing of options and show
that the accuracy of approximation may indeed be improved.
We consider volume traded, historic volatility, observed interest
rates and combinations of these as additional features. In
addition to giving empirical results on how the inclusion of
these variables helps predicting option prices, we also analyse
prediction errors of the different models with volatility and
volume traded as inputs, and report an interesting correlation
between their contributions.

1. Introduction

Pricing derivative contracts is a challenging problem
in financial engineering because contracts mature at some
point in the future and there are multiple sources of un-
certainty between the current time at which a fair price
for the contract needs to be determined and the point at
which it may be exercised. The celebrated Black-Scholes
model of options pricing makes specific assumptions about
a stochastic process model of the underlying asset price and
other factors relating to it [1]. These assumptions lead to
a solvable differential equation and result in a closed form
pricing formula for certain simple derivative instruments.
For more complex contracts, where analytical solutions are
not possible, Monte Carlo simulation and numerical analysis
based methods have been developed. There is significant
interest in research literature and wide practical applications
of these topics [2].

In this context, the work of Hutchinson, Lo and Poggio
in 1994 [3], could be seen as an elegant development from
a machine learning or data-driven modelling point of view.
Their non-parametric approach discards the restriction of the
Black-Scholes model and hence it becomes more adaptive
and flexible. The authors showed that a non-parametric arti-

ficial neural network, specifically a Radial Basis Functions
(RBF) model, can be trained to approximate the complex re-
lationship between the prices of an options contract and the
underlying asset. In particular they used only the normalized
asset price and the time to maturity of the contract as inputs
to the network and further showed that the derivatives of the
mapping learned by the network faithfully reproduced the
hedge ratio (A, Delta), a widely used parameter in balanc-
ing portfolio risk. Neural networks are powerful non-linear
approximators, and the RBF architecture itself has found a
wide range of applications including speech classification
[4], time series prediction [5] and financial engineering [6]
among others. RBF is easily deployed in problems that
require sequential learning and adaptive model complexity
as demonstrated in the resource allocating network [5], [7],
[8], and their generalization properties have been analysed
in [9], [10].

In addition to the demonstration that options prices
may be well-approximated, Hutchinson et al.’s work, which
forms the basis of the present study, is notable for a second
reason that is of interest in financial engineering. Their work
showed that the derivatives of the learned model, which is
easily computed for the RBF model analytically, turned out
to be good approximations to the hedge ratio, commonly
known to practitioners by the Greek letter Delta (A). This
ratio determines the construction of a risk neutral portfolio
in which the uncertainty induced by a stochastic process
model of asset price changes may be cancelled out. In a later
development of Hutchinson et al.’s work, one of us showed
that the RBF model, as used in this context, and the Black-
Scholes model itself, may be cast as dynamical systems, and
the unknowns in the model inferred in a sequential setting
using the Extended Kalman Filter (EKF) algorithm [11]. A
broader review of the uses of neural networks, with currency
options as the application is given in [12].

A further topic in empirical finance is the relationship
between the traded volume of an asset and its volatility. Do
assets that are traded more show greater price fluctuations,
and hence greater uncertainty? While it is tempting to expect
such a relationship, there may be no theoretical grounds to
reach such a conclusion. Various empirical studies have at-
tempted to test if volume traded and volatility are correlated
[13], [14]. For instance, in [15] for futures on the London



International Financial Futures Exchange (LIFFE) a positive
correlation between these two variables was found. Besides,
in [16] found that trading volumes are associated with equity
market volatility, in all the markets studied of the BRIC
(Brasil, Russian, India and China) countries.

An underlying theoretical premise, known as the Mixture
of Distribution Hypothesis (MDH), introduced by Clark
[17], suggests that daily trading volume and price changes
are driven by the same flow of information. Starting from
this there are empirical studies that have attempted to ex-
plore this relationship. For example, Wen-Cheng et al. [18]
suggest a bidirectional relationship between the two using a
bivariate vector autoregressive methodology, and Jain [19]
suggests a strong contemporaneous relation between trading
volume and volatility with hourly values. However, Karpoff
[20] reports an asymetric relationship, which is also sup-
ported by the work in [21]. Similar explorations have been
carried out on the Korean and New York Stock Exchange
data [22], [23]. Nevertheless, in various commodity future
contracts analyzed in the Chinese market, the correlation
between return and trading volume are close to zero [24]
and on intra-day trading data on S&P 500 index a negative
correlation is reported [25].

In this work, we extend Hutchinson ef al.’s work by
asking the question if expanding the feature set to include
additional variables of interest help in improving their data
driven model of options pricing. Specifically, we include
combinations of historic volatility, volume traded and inter-
est rates as inputs in addition to the normalized asset price
and time to maturity, as illustrated in Figure 1. Empirical
work we carried out, on a range of data with much wider
scope than the original work, shows this to be the case. We
follow this up with an analysis of how much the volume
traded and volatility of asset help in predicting options
prices and demonstrate an intriguing correlation between
their relative contributions.

2. Model & Data

In this section, we describe the architecture of the Radial
Basis Functions (RBF) model as introduced in [3], our
extensions to the feature sets and the data used in training
the networks. We use substantially more data than [3], who
restricted their analysis to options drawn on the S&P500
Index only.

Let the input data vector to the RBF model given by the
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where S denotes the underlying asset price, X, the strike
price of the contract and 7' — ¢ is the time to maturity (the
difference between the time of maturity, 7', of the contract
and the present time t). With this vector of features as input,
each of the basis functions in the RBF model for predicting
options prices is written as
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Figure 1. The data-driven neural network scheme of approximating options
prices. Left: Model used by Hutchinson et al. using two inputs [3]; Right:
our models with the combination of additional variables considered.

where, ¢y, denotes the response of a nonlinear basis function
which is parameterized by local mean m and covariance
matrix Y, and by, a local bias term.

The basis function locations and local covariance ma-
trices are estimated by fitting a Gaussian Mixture Model
(GMM) to the distribution of input data, making the model
sensitive to its local density. For simplicity, in our imple-
mentations, we set the bias terms by to zero. In addition to
these nonlinear terms, the model includes a linear part as
well. Thus least squares problem to solve is shown by the
simultaneous equations:
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where n is the number of observations and
¢j,j = 1,.n are the output call option prices
normalized by their strike prices. The vector of unknowns
[ A 0 A wr wa wo ]T is estimated by linear
least squares, which is the main computational advantage
of using a fixed non-linear, linear in unknowns RBF model.

A pseudo-inverse solution to the problem is often used
w=(P"P)"'PT®, “)

where P is the so called design matrix and ®, the vector of
outputs. Often, for reasons of numerical ill-conditioning and
to avoid over-fitting by the model, a regularization term in
the form of a diagonal matrix is added before the inversion
of PTP:

w=(PTP+~1)" P&, )



where 7y controls how much regularization is applied.

Once the model is trained, the resulting output is given
by,

c=®X+wlx +w (6)

Following the work of Hutchinson et al. we have defined
the above model with four basis functions. In our own work,
we tested the effect of the choice of the number of basis
functions, hence the model complexity, and found four to be
a reasonable number. We also confirmed this by running the
RBF model with the Akaike information criterion (AIC) [26]
as the method of model selection. Beyond that the model
showed clear signs of overfitting as shown in Figure 2.
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Figure 2. Modelling errors as a function of the number of Gaussian basis
functions used on a small subset of the data used. Consistent with [3], a
small number of basis functions was considered sufficient.

For empirical evaluation, we used the daily prices of
21 call and 11 put options written on the Financial Times
Stock Exchange (FTSE) index and nine call and seven
put options of the popular software companies Apple and
Microsoft. Additionally, we considered minute-by-minute
intraday call and put options prices on a contract on Apple
with a strike price of 95 and 100, maturing in September
2015 and June 2016 respectively. Table 1 lists the range of
options considered and includes their strike prices and dates
of maturity.

For selection of training data, for any of the options we
took a temporal window of 40% of the data as the training
set and evaluated the model performance on the next point
in time. We moved this window one sample at a time and
repeated the training and testing. Thus all results we quote
are based on single sample unseen data. The reason for this
choice of window, rather than a randomized training/test
partition as often used in machine learning is that the
financial data is expected to have temporal structure and
in any practical application, one is likely to apply a trained
model in the next point in time. We computed volatility over
a window of 25% of the data immediately preceding a point
of analysis.

TABLE 1. CALL AND PUT OPTIONS USED IN THIS STUDY WITH
DIFFERENT TIME TO MATURITY AND NUMBERS OF TRADING DAYS. THE
STRIKE PRICES AND INDICATION OF WHETHER THE OPTION IS A CALL
OR PUT IS IN THE NAME OF THE CONTRACT.

Opt. [ Exp. Days [ Opt. [ Exp. Days
C6600 09-13 171 C6600 12-14 397
C6700 09-13 290 C6700 12-14 359
C6800 09-13 171 C6800 12-14 397
C6700 06-14 352 C6900 12-14 299
C6750 06-14 85 C7000 12-14 387
C6800 06-14 525 P6000 09-13 462
C6900 06-14 291 P6300 09-13 525
C7000 06-14 288 P6400 09-13 525
C7100 06-14 171 P6500 09-13 250
C6600 09-14 462 P6600 09-13 513
C6400 09-14 462 P6700 09-13 171
C6800 09-14 462 P6800 09-13 525
C6900 09-14 299 P6600 06-14 513
C7000 09-14 387 P6700 06-14 352
C7200 09-14 462 P6750 06-14 85
C7400 09-14 342 P6800 06-14 525

CAPL50 07-15 239 CMSF39 07-15 236
CAPLS8S 07-15 239 PAPL120 07-15 239
CAPL90 07-15 239 PAPL130 07-15 238
CAPL95 07-15 239 PAPL135 07-15 238
CAPL105 07-15 236 PAPL140 07-15 238
CAPL110 07-15 236 PAPL150 07-15 236
CAPL115 07-15 236 PMSF45 07-15 236
CAPL120 07-15 236 PMSF47 07-15 236

3. Empirical Results

3.1. Prediction performance with additional fea-
tures

Evaluating the options listed in the Table 1 demonstrate
that Hutchinson et al.’s model with additional inputs relevant
to the pricing of options may have enhanced the accuracy of
approximation. This values are shown in Table 2 for call and
put options. An example of this improvement is illustrated
in Figure 3.
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Figure 3. Price of a FTSE index option (strike price 6800, expiring Sept.
2013) and its approximations from Hutchinson et al.’s model and a model
that includes interest rate and trading volume as additional inputs.



TABLE 2. AVERAGES OF MEAN SQUARED MODELLING ERRORS OF THE
VARIOUS MODELS ON THE DIFFERENT OPTION CONTRACTS. THE
DISTRIBUTION OF MEAN SQUARED ERRORS IS SHOWN IN FIGURE 4.
EACH VALUE IN THE TABLE SHOULD BE SCALED BY 106,

- Hutch. Vol. Sig Sig+Vol LR. IR+Vol
C 5.19 427 551 4.79 4.70 421
P 9.13 8.78  9.31 9.74 8.38 8.93
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Figure 4. Prediction performance on FTSE index call options for the
various models considered. Overall, the largest improvement in prediction
accuracies is obtained when volume traded and interest rates are included
as additional covariates.

Figure 5 shows performance of RBF predictors on the
two equity options. Here, with volatility as additional in-
put we see only a marginal improvement in performance
whereas all other models give significant reduction in errors
when compared to Hutchinson et al.’s model.
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Figure 5. Prediction performance on single equity options. The use of
volatility as additional input yields a marginal improvement, whereas all
the other combinations of additional variables give significant reduction in
error.

Figure 6 shows performance of RBF predictors consid-
ering minute-by-minute intraday call and put equity op-
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Figure 6. Squared errors of different RBF models on equity call option with
intra-day data. The corresponding averages (MSE) are shown in Table 3.

TABLE 3. AVERAGE PREDICTION PERFORMANCES OF VARIOUS
MODELS ON INTRA-DAY CALL AND PUT OPTIONS CONTRACT. EACH
VALUE IN THE TABLE SHOULD BE SCALED BY 1075,

- Hutchinson Volume Sigma  Sigma+Volume
C 297 2.19 2.64 2.76
P 2.72 2.57 2.83 2.29

tions. Here, we plot the squared error at every point in
time (minute) as boxplots of the intraday call option. The
corresponding mean squared errors are shown in Table 3.

3.2. Volume Traded and Volatility

Further we used these models as a tool to explore
the relationships between volatility and trading volume.
The measurement of this correlation is made by the mean
squared errors of the predictive models with volume traded
and volatility as additional inputs. Figure 7 (left boxplot)
shows the distribution of correlations in mean squared er-
rors of model fitting with volume traded and volatility as
additional inputs on athe 48 options which is 0.675. In the
right bloxplot in Figure 7 shows the correlation between the
corresponding volume trading values and volatility values.

The observations analysed for this empirical study are
separated into equity options and FTSE 100 index options.
Figure 8 shows a substantial correlation between volume
traded and volatility in predicting options prices in the FTSE
100 index call options. Evaluating the call options found a
Pearson coefficient value of 0.663 in the Mean Square Errors
on the RBF with volume and volatility as additional inputs
. A similar distribution was observed for put options with a
correlation of 0.678 pricing put derivative options.

Analysing the equity call and put options, Figure 9
shows the Pearson correlation coefficient between Mean
Square Errors on the RBF with volume and volatility as
additional inputs. The mean on the correlation of each call
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Figure 7. The Pearson correlation values from the mean square errors of
the RBF models with volatility and trading volume on all options tested.
It demonstrates that the mean on the correlation of each option analysed
is over 0.67 giving a substantial correlation. The relationship between the
corresponding values of trading volume and volatility does not show a
correlation
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Figure 8. Correlation on the contribution of RBF errors on predicting each
call FTSE options when volume and volatility are included as additional
inputs. This correlation value is 0.663.

option analysed is over 0.6818 and 0.6985 for each put
option, which demonstrates a substantial correlation.

An example of the correlation on minute-by-minute
intraday call equity option is shown in Figure 10 and its
Pearson correlation value is 0.7199.

4. Conclusion

In this work, we study a non-parametric neural network
model that quantifies the complex relationship between a
class of financial instruments known as options and that
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Figure 9. Correlation between Mean Square Error values of the RBF models
that include trading volume and volatility on put(a) and call(b) equity
options.
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Figure 10. Contribution to prediction error from volatility and volume
traded on minute-by-minute intra-day data on equity call option, showing
a high correlation of 0.72.

of the underlying asset on which the contract is drawn.
Whereas previous work introducing this model uses the
asset price and the time to maturity of the contract as
its only inputs, we have demonstrated that the inclusion
of additional features relating to the contract, namely the
volatility, volume of the underlying asset traded and the risk-
free interest rate help in improving the accuracy with which
the market value of the contract may be predicted. Our
empirical results, carried out on index options, two equity
options and an intra-day contract covers a substantially
wider range than previous authors have considered. Hence
the results quoted in this study are more robust.

The results lead to the exploration of an intriguing rela-
tionship between the volatility of an asset and the amount
of volume traded, a topic that has attracted healthy discus-



sion in empirical finance. Our model makes an interesting
contribution to this discussion in that we demonstrate that
while the volume and volatility of an asset do not correlate
significantly, their contributions to modelling the price of
an options contract drawn on the asset do show significant
correlation. This has also been demonstrated on the FTSE
index, individual equities and intra-day datasets.

The empirical work reported in this paper is on static
data, mapping instantaneous values of covariates to the
response variable. Apart from the selection of training and
test data, we have not explicitly modelled the temporal dy-
namics. However, with financial time series, this dynamics
is important and for this particular model a state space
formulation and inference using extended Kalman filter has
been shown to be possible [11]. Hence our current work
focuses on extending the models with the extended features
to a dynamical setting.
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