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Abstract— This work is on 3-D localization of sensor motes
in massive swarms based solely on 1-D relative distance-
measurements between neighbouring motes. We target applica-
tions in remote and difficult-to-access environments such as the
exploration and mapping of the interior of oil reservoirs where
hundreds or thousands of motes are used. These applications
bring forward the need to use highly miniaturized sensor motes
of less than 1 centimeter, thereby significantly limiting measure-
ment and processing capabilities. These constraints, in combi-
nation with additional limitations posed by the environments,
impede the communication of unique hardware identifiers, as
well as communication with external, fixed beacons.

We propose solving this challenging localization task by
a novel RANSAC algorithm that can cope with noisy 1-D
relative distance measurements and non-unique communication
identifiers. It uses local geometric consistency, to resolve the
ambiguity caused by non-unique communication identifiers and
outlier measurements, and thereby is able to robustly assign
unique hardware identifiers to be used for global non-linear
graph optimization.

Extensive simulations show that this novel localization
method is able to fully reconstruct the positions of the motes, in
cases when the number of communication identifiers is only 2%
of the number of motes. When the number of communication
identifiers is lower, the algorithm exhibits graceful degradation.

I. INTRODUCTION

The exploration of remote, deep underground or difficult-
to-access environments has been subject of study for decades.
Current challenges include the mapping and exploration
of the interior of narrow subterranean cavities like (oil)
reservoirs and piping systems, which have high economic
value and societal importance [1], and the investigation of
the dynamics in industrial (multi-fluid) mixing tanks. The
use of many (e.g. thousands), small and cheap mass-produced
micro-sensor systems – from now on referred to as sensor
motes which are operated in a swarm – is a promising way
to approach these challenges. The specific sensor motes for
mapping have many more promising applications, but are
currently not available yet. The development for the larger
sized sensor motes (5 cm diameter) for e.g. the mapping
and exploration of a mixing tank is under way [2]. Many
hardware challenges still need to be addressed before large
swarms of miniaturized sensor motes (centimeter-sized or
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Fig. 1: Swarms of sensor motes are inserted in the envi-
ronment of interest; they traverse the environment using its
internal dynamics (e.g. flow); and are extracted in order
to retrieve the data. Once the motes are distributed in the
environment, distance measurements between neighbouring
sensor motes are taken. Offline, this data can be processed
to determine the motes positions relative to each other.

smaller) can be developed and deployed effectively. Trade-
offs must be made in the hardware design with respect to
mote capabilities and mote size. Improved mote capabilities,
e.g. larger sensing radius or better signal-to-noise ratios,
inevitably make cost-effective miniaturization of motes more
challenging. Therefore, in our study, we set the challenge
to perform reliable mote localization using severely limited
mote capabilities. Although, these limitations might not be
relevant to current motes, we believe they are relevant for
yet-to-be-developed highly miniaturized motes of the near
future [3]. We show that advances in off-line localization
algorithms, can, to a large extent, compensate for severely
limited mote capabilities. This is important as it implies
that using large swarms of highly miniaturized motes in the
future, is a realistic scenario. At the same time, our research
provides lower bounds on mote capabilities that can guide
the hardware design of yet-to-be-developed motes.

Each type of environment that is to be explored brings
forward a specific set of constraints; in the application cases



we are considering, the environments prevent the use of
large, complex or existing sensing and localization systems,
due to various issues, discussed in Sec. I-A. Exploration can
in that case be performed by injecting swarms of sensor
motes into the flooded environment, as e.g. illustrated in
Fig. 1. The motes traverse the environment due to the
internal dynamics (e.g. flow) and disperse over the volume of
interest. The motes are extracted from the environment and
the measured data that is stored in their internal memory
can be analysed offline. The shape, or map, of the sensor
swarm can be used to infer the geometric structure and size
of the environment. The individual mote positions relative
to each other – from which we can determine such a map –
can be estimated from inter-more distance measurements [4],
[5]. As illustrated in Fig. 2, estimating the positions of the
motes can be seen as a specific kind of graph problem,
G=(V, E), where the vertices V are the mote positions and
the edges E the distances between them. The challenge is to
obtain a robust initial estimate of the mote positions in order
for non-linear graph optimization algorithms to succeed [6].
In contrast to earlier work [7] where a similar problem
has been considered, in our work [8], an initial estimate is
obtained using a novel robust Random Sampling Consensus
(RANSAC) algorithm [9], [10], applied to general lateration
techniques.

In this work, we explore the limits of swarm-based 3-D
localization of extremely resource limited sensor motes with
the specific set of constraints posed by the application and
the environment. Our work differs from previous works [7],
[9], [10], [12], [13], [14], [15], [16], [17] by,

1) using solely distance measurements (also called range-
only), i.e. no direction information or additional sensor
information, like bearing, odometry or inertia;

2) the distance measurements are performed using non-
unique identifiers;

3) no additional data is exchanged, measurements are
stored in memory for offline analysis;

4) not depending on external communication to e.g. fixed
beacons; and,

5) sparse connectivity in a large swarm.

Although each separate constraint has been considered ear-
lier; this work is, to the best of our knowledge, the first
to show feasibility of reconstructing sensor swarms when
considering all mentioned constraints and under realistic
conditions. The main difference with our previous work
in [8], is using non-unique identifiers (constraint 2) which has
far-reaching consequences on the localization [11]. In [12],
fully anonymous measurements are considered for robot
localization, but cannot be compared to our problem, as
the localization algorithm relies on the significantly larger
sensing, online processing and communication capabilities of
the robots. A similar complete problem as ours is considered
in [18], [19] where a different solution is proposed to resolve
the ambiguities. In both papers, only Gaussian noise is
considered and the effect of ambiguities and noise on the
final localization is not shown.

Fig. 2: Localizing motes within a swarm as a graph problem,
G = (V, E), with the mote positions as vertices V and the
distances between motes as edges E . The initial four mote
positions {s1, s2, s3, s4} are chosen to define the coordinate
system to solve the global reflection and rotation ambiguity.
Additional motes can be added to the graph using general
lateration techniques. For clarity of the figure, not all (re-
quired) edges are drawn.

This paper describes in Sec. II the exact problem that
is considered. In Sec. III we elaborate on the localization
algorithm. Sec. IV describes the simulation model we use
to test the novel mapping method and localization algorithm
in pipe-like environments. In Sec. V, we numerically evalu-
ate the conditions/criteria for the localization algorithm to
reliably estimate the mote positions in the swarm, while
reducing the number of available communication identifiers.
Our conclusions are provided in Sec. VI.

A. Constraints on sensing devices

In our application cases, we consider environments that are
enclosed and/or deep underground and might have a narrow
passage. Examples of these are the sand-free channels in
heavy oil containing sandstone formations which are formed
during oil extraction (Cold Heavy Oil Production using
Sand, CHOPS) [1]. These sand-free channels, also called
wormholes, are typically around one to several centimeters in
diameter; extend over a few hundred meters; and are located
200-400 meter underground. Placing beacons is infeasible
since the structure deep underground spans large distances
and is not known beforehand. Communication using radio
is not feasible due to the extreme high salinity. Acoustic
communication however, is possible within the wormholes
for communication between neighbouring sensor motes.

Passage through a wormhole is only possible if the phys-
ical dimensions of the motes are smaller than that of the
local structure. For this specific application case it limits the
sensor size to less than 1 centimeter in diameter, causing
severe limitations on the instrumentation which can be taken
aboard of the mote. At these scales, the major limitation is
the energy storage, which limits the communication range,
data rate and packet sizes, and the amount of processing that
can be performed on-board. For these reasons we are looking
into 1-D relative distance-only measurements which can be
performed using ultrasound time of arrival or time of flight.
This can for example be achieved using highly miniaturizable
ultrasound technology, e.g. [20].



Identifiers can be encoded into the ranging pulse using e.g.
BPSK or CDMA. But as ultrasound transducers are generally
narrow-banded, data encoded in signal pulses causes signal
pulses to be long [21], [20]. As these environments are
small and reflective and the speed of sound is five orders
of magnitude lower than that of radio waves, signal overlap
due to emission of signals by neighbouring motes and their
multi-paths is expected to be significant [21]. Elaborate
communication techniques to deal with this, require more
complex processing [22], which might not be feasible on
the miniaturized motes. In order to reduce multi-path in
these environments, we attempt to limit the length of the
ranging pulse, and therefore, have to limit the quantity of
identification information encoded in it. The motes unique
hardware identifier (UID) can therefore not be encoded in the
ranging-pulse, but only highly abbreviated and non-unique
communication identifiers (CID) can be communicated. Con-
sequently, received ranging-pulses from neighbouring motes
can only be identified up to a large ambiguity.

II. PROBLEM DESCRIPTION

Following the operational procedure shown in Fig. 1,
once a ‘steady-state’ distribution of the motes in the volume
of interest is achieved, the motes perform simultaneously
distance measurements to neighbouring motes. This can be
achieved using e.g. a preset time after insertion. The ranging
measurements are performed using ultrasound time-of-flight
(TOF) or time-of-arrival (TOA). Omnidirectional ultrasound
emission and reception is considered (as opposed to direc-
tional), because there is no a priori or online knowledge of
the positions of neighbouring mote. Each mote reaches all
neighbouring motes that are in line-of-sight, and within a
specific sensing radius rs.

We assume a homogeneous speed of sound, and that the
movement of the motes during the distance measurements
can be ignored, i.e. flow velocity of fluid is small compared to
speed of sound in fluid . For now, the motes are also assumed
to be synchronized such that obtaining the distances using
TOA or TOF is straightforward. However, achieving this syn-
chronization under the stringent communication constraints
in the real application is not straightforward, but believed to
be possible [3], [4]; it is a topic for future research.

A. Reconstructing mote positions

A general method of reconstructing the positions of the
sensor motes based solely on distance measurements relies
on general lateration methods. The graph G can be grown
as illustrated in Fig. 2 and detailed in [8]. Every candidate
mote, c, with known distances to four non-coplanar motes
(of which the positions s1, s2, s3, s4 are known) can be
added to the graph. The position of mote c will be the
intersection of the spheres with radii d̄1,c, d̄2,c, d̄3,c, d̄4,c and
centers at s1, s2, s3, s4. Here d̄n,c denotes the true distance
from mote n = {1, 2, 3, 4} to mote c. The initial four mote
positions are chosen such that they define the coordinate
system, therewith fixing the general reflection and rotation

ambiguity: s1 ∈ {0, 0, 0}, s2 ∈ {R, 0, 0}, s3 ∈ {R,R+, 0}
and s4 ∈ {R,R,R+}.

The ranging measurements are performed in twofold, mote
i measuring distance to mote j, dī,j̄ , and vice versa, dj̄,̄i. In
the data processing, this allows for the possibility to perform
a forward-backward consistency check in determining the
distance between the motes.

B. Identity and distance ambiguity

The motes are assigned at random one of the nf available
CIDs; all CIDs are distributed uniformly among the motes.
The motes only emit this non-unique CID in the ranging
pulse, rather than a unique UID. Consequently, the measured
data per mote i will consist of a set of measured distances
dī,CID(j) for all neighbouring motes j within its sensing radius
rs. These distance measurements are not uniquely associated
with neighbouring motes j, but rather only to motes with
CID(j). Therefore, the forward-backward consistency check,
cannot be used to uniquely define a hypothesised distance
between mote pairs, as in [8], but leaves ambiguities.

In order to build the graph, the non-unique distance mea-
surement, dī,CID(j), should be associated with the uniquely
identified motes ī and j. This can be attempted by first
considering all possible arrangements that are consistent with
current measurements; similar as in [12].

With perfect distance measurements, the challenge to
associate measurement dī,CID(j) with mote j and dj̄,CID(i)

with mote i is straightforward. Searching for all possible
arrangements that are consistent with the observation, i.e.,
dī,CID(j) = dj̄,CID(i) will give most of the times an unam-
biguous correct result, since it is unlikely that another set of
motes with similar CID pair have exactly the same distance.

However, distance measurements are subject to noise and
result in an erroneous distance determination. The searching
condition F for associating motes with measurements should
be extended to

F(da,b,dc,d) =

{
da,b+dc,d

2 when da,b'dc,d

∅ otherwise
(1)

where da,b ' dc,d means da,b and dc,d are similar to each
other. We can define this similarity by the condition

da,b'dc,d when


|da,b − dc,d| ≤ εr and
CID(a) = CID(d) and
CID(b) = CID(c)

(2)

where εr is set as threshold value for maximum allowed
difference in distance measurement for which two measure-
ments are considered inliers. This threshold should be related
to the noise. It can e.g. be obtained using trial and error if
the error model is unknown.

The obtained hypothesised distance between mote ī and
mote j is not unambiguous. As also illustrated in Fig. 3, the
hypothesised distances and associations hi,j for measurement
dī,CID(j) can consist of three types of contributions:



Fig. 3: Platforms with UID ={i, j, k,m, p, q} using only two
distinct CIDs (indicated by © and �) cause ambiguities in
associating UID with measured distances. Identity ambiguity
arises due to similar distance between pairs with similar CID
within the swarm (Eq. 2). Distance ambiguities arise due to a
plurality of motes with similar CIDs within a sensing radius.

hi,j =


F(dī,j̄ ,dj̄,̄i) (a)

F(dī,j ,dp,q) (b)

F(dī,k,dj,m) (c)

(3)

a) the measurement between the real motes ī and j̄;
b) identity ambiguity: an association to a mote p which

is believed to be at similar distance as mote j̄ but not
necessarily within sensing range of ī (see Fig. 3);

c) distance ambiguity: an association with the correct mote j̄
but with a distance belonging to the measured distance
to another mote k within its sensing radius (see Fig. 3).

The identity ambiguities are based on the statistical likeli-
hood that somewhere in the swarm, a mote pair with similar
CIDs and distance is present. Assuming uniform distribution
of the motes, the average amount of identity ambiguities in
hi,j scales with AI ∝ εrnsN/n2

f , in which ns is the average
amount of neighbouring motes within the sensing radius rs
and N the total amount of motes in the swarm. Equally, the
distance ambiguities are based on the statistical likelihood
that neighbouring motes give rise to confusion. The average
amount of distance ambiguities per dī,CID(j) then scales with
AD ∝ εrn2

s/n
2
f .

Both type of ambiguities, AI and AD, increase with
an increasing amount of neighbouring platforms ns, lead-
ing to a more challenging task associating measurements
with the correct motes. However, our RANSAC algorithm,
which is described in the next section, exploits the fact
that measurements of true neighbouring motes can be used
to resolve ambiguities by providing geometric consistency
checks. An increase in ambiguities can be compensated
for by a larger amount of consistent measurements from
neighbouring motes.

III. SWARM LOCALIZATION ALGORITHM

From the ambiguous set of hypothesised distances and
associations hi,j in Equation 3, the graph G should be

Fig. 4: RANSAC graph growing algorithm uses an inlier-
outlier voting system to filter out outlier distance measure-
ments and proposes a position for candidate motes to add
to the graph. Using cliques of motes in the graph that are
within twice the sensing radius helps in reducing the chance
motes are positioned wrongly.

robustly built. We use a similar approach as in [8] but made
significant modifications to prune false entries in hi,j .

The main steps in our localization method are described
next in Algo. 1 and Sec. III-A through Sec. III-D.

A. Initial seed selection

Four neighbouring motes are selected as initial seed to
start the graph growing. Their positions, s1, s2, s3, s4, define
the coordinate system as described in Sec. II-A. The motes
are selected based on their connectivity and the stability of
their geometric configuration which is obtained by general
lateration techniques. Since hi.j contains ambiguities, the
initial seed selection is conditional until the graph growing
has successfully added several motes to the graph G. If this
is not possible, a new initial seed is selected and the process
is repeated.

B. RANSAC graph growing

Additional motes can be added to the graph when the
motes have at least four connections to already reconstructed
motes. This set of candidate motes is denoted as C. Figure 4
illustrates a simplified 2-D situation in which a candidate
mote c ∈ C has associations to its true neighbouring motes
in V , but also false associations to motes somewhere else in
the graph due to identity ambiguities.

A RANSAC approach can be used to attempt to correctly
position the candidate mote based on true associations only.
The inlier-outlier voting mechanism is similar as in [8] but is
adjusted to handle ambiguities. This is described in Algo. 2.

When a candidate mote c is considered, all motes that are
already reconstructed in the graph and that are associated
with this c are selected, A = {a : a ∈ V, ha,c 6= ∅}. A set
of three of these motes is selected, {ap ∈ A}, to propose –
using general lateration – a position for c up to a reflection
ambiguity. But since no guarantees can be given whether the
entries in hap,c are true distances or true associations, the



Algorithm 1: Localization
Data: dī,CID(j), CID({1, ..., N})
Result: graph G = (V, E)
Hypothesise distances and associations hi,j using F (Eq. 1&3);
Create stable seed from 4 motes (Sec. III-A);
while unreconstructed motes left do

select all c ∈ C that observe ≥4 motes in V;
sort c according to most likelihood to succeed (Sec. III-C);
perform RANSAC on c (Sec. III-B & Algo. 2);
if motes c with sufficient RANSAC-score then

add motes with highest RANSAC-score to G;
else if mote added since last non-linear refinement then

run non-linear refinement (Sec. III-D);
else abort algorithm ;
if m new motes have been added to G then

run non-linear refinement (Sec. III-D);

Algorithm 2: RANSAC
Data: sorted c∗, hi,j , Q
Result: RANSAC-score and proposed positions of c∗ in G
while no good enough RANSAC-score do

select (next) largest clique in Q with associated candidate b;
select all possible sets of 3 motes {a : a ∈ Q(b)};
for all a do

for all ap = possible (3-)sets of distances in ha,b do
hypothesise position for b, based on lateration;
if hypothesised position /∈ R3 then continue ;
select all voters {av : (av ∪ ap) = a, (av ∩ ap) = ∅};
voters support hypothesis when observation hav,b

is consistent with hypothesised position;
voters oppose otherwise;
if # of supporters > # of opposers then

RANSAC-score hypothesis is # of supporters;
if RANSAC-score is good enough then

break while-loop;

proposed positions do not need to be viable or close to the
true position. Therefore, each of the other associated motes
{av : (av ∪ap) = A, (av ∩ap) = ∅} are used to vote for the
proposed position. Consensus is reached when the majority
of the voting motes, including the three proposing motes,
have at least a 50% majority. The reflection ambiguity is
chosen based on which of the two positions received more
supporting votes. When consensus is reached, the amount of
supporting votes is called the RANSAC-score for the specific
proposal.

This step in the RANSAC algorithm is repeated with
each time a different set of three proposers ap, until all
possibilities are exhausted or until a proposal received a
specific threshold in RANSAC-score. In the latter case, it

Algorithm 3: Sorting of candidate motes
Data: c, hi,j , V
Result: sorted c∗ and cliques Q(c)
for every b in c do

select all motes a ∈ V with existing ha,b;
create graph G∗(b) = (V(a), E∗) in which all vertices V (a) are

connected with an edge E∗ if their positions are within 2rs
of each other;

find cliques Q(b) in G∗(b);
sort c according to clique size of largest cliques in Q(c);

is then considered good enough for addition in the graph.
When no ‘good enough’ condition is reached, the RANSAC
procedure is repeated for a next candidate mote until all
possibilities are exhausted or the ‘good enough’ condition
is found. The candidate with the highest RANSAC-score is
added to the graph in V with edges only to the supporting
motes and corresponding ha,c entry in E . The ‘good enough’
condition for the RANSAC is chosen heuristically.

C. Sorting candidate motes
The amount of false associations from candidate motes

to the motes in the already reconstructed graph grows on
average linearly with the amount of motes in the graph as
explained in Sec. II-B. As a consequence, candidate motes
might get voted to a wrong position in the graph during
the RANSAC process in cases where the true neighbouring
motes are outnumbered.

To reduce the chance of this to happen, a sorting order of
candidate motes is made before the RANSAC algorithm is
performed on them. The sorting is based on the likelihood
that candidate motes have enough true neighbouring motes
already in the graph. As such, candidate motes that are
more prone to be positioned based on false connections, are
considered later. This gives the chance that more of its true
neighbouring motes will be added to the graph first. The
algorithm is stated in Algo. 3 and described next.

For each candidate mote {b : b ∈ C}, a list is made
of associated motes that have already been positioned in
the graph A = {a : a ∈ V, ha,b 6= ∅}. A new graph
G∗ = (V(A), E∗) is made with these motes as vertices. These
vertices are connected with edges E∗ when their positions
are less than twice the sensing radius, 2rs, apart. In this new
graph, maximal cliques are listed as Q(b). These cliques
indicate the groups of motes that are within the sensing
radius of a proposed candidate mote that can potentially be
agreed on by all of these motes. The example in Fig. 4 shows
these cliques in coloured oval areas. The amounts of motes in
these cliques are registered and are used as sorting order in
which RANSAC is performed. Platforms with larger sized
cliques in Q(b) are more likely to have more associations
with true neighbouring motes.

D. Robust non-linear refinement
The stepwise addition of new motes to the graph in-

troduces build-up of errors. These errors in positions can
prevent other motes from being added. In order to reduce
this error build-up, a global non-linear optimizer algorithm
is performed [6], [8], after every m newly added motes, or
failure to add a new mote.

There is a clear trade-off between the size of m and the
processing time required for the localization algorithm. In
our work, m is chosen arbitrarily to 10. In future work, this
can e.g. be adjusted dynamically based on uncertainty of
previously added motes.

IV. SIMULATION SETUP

The swarm-based distance-only localization can be used
in a variety of environments. In this paper we will be using



long, pipe-like structures as an example. The diameter of the
pipe is large enough such that motes can be positioned all
around one another instead of in one line along the pipe axis.

Simulations are performed 4-7 times, each time with a
different pipe-structure. The course path of the loop-less,
non-overlapping pipe without branches is randomly chosen
with incremental steps of 1 meter over a single {x,y,z}-axis.
The pipe axis is smoothed out by drawing a spline through
these points. The pipe diameter is chosen to be fixed at 8
cm and there are 100 motes in every meter of pipe-length.

The positions of the motes are assumed to be uniformly
distributed within the pipe; rs is chosen such that each mote
has on average ns neighbouring motes. Parameter ns is one
of the parameters that will be swept. The motes sensing
radius rs, in which ranging measurements are possible, is
for all motes the same.

In reality, homogeneous distribution of mote positions is
difficult to achieve, but allows for thorough study of all other
parameters involved.

A. Measurement noise
The measured distance between motes will be affected by

different imperfections in the system. The distance measure-
ment errors are modelled similar to what we have described
in [8], which means we add additive Gaussian noise to
account for inaccuracies in the timing of TOF and multi-
plicative Gaussian noise to account for imperfect knowledge
of the speed of the (ultrasound) signal through the medium.
Let d̄ be the true distance between a set of motes, then the
measured distance d is modelled by

d̄i,̄j = d̄ī,j̄ + d̄ī,j̄Nm +Na + BU (4)

with Nm and Na being perturbations from the zero-mean
Gaussian distributions N (0, σ2

m) and N (0, σ2
a) respectively.

Outlier noise is added to the measurement with the term
BU in which U is a perturbation drawn from a uniform
distribution in the range [−rs, rs] and B ∈ {0, 1}. The
chance that a measurement has outlier noise, i.e. B = 1, is
determined by a Bernoulli distribution such that on average
a percentage ω is an outlier. Any measurement that lies
outside of the sensing range (0, rs] is discarded from further
processing.

Identification noise, that accounts for the possible errors
in determining the senders CID, is included by assigning
a CID that is drawn randomly from the available set of
CIDs to a measurement. The chance that a measurement has
identification noise is determined by the ratio φ.

Initially, in Sec. V, we consider no outlier and identifica-
tion noise, i.e. ω = 0% and φ = 0%, and we consider three
Gaussian noise levels: σm = {0.30, 1.0, 3.0} ·10−3 and
σa = {0.36, 1.3, 3.6} · 10−3 m. This yields an average
standard deviation of the distance measurement noise of
ν ≈ {0.4%, 1.33%, 4%} expressed in percentage of the
average sensing radius when ns = 20.

In Sec. V-A we investigate the robustness against addi-
tional outlier and identification noise with noise levels ω and
φ ranging between 0% and 20%.

B. Performance parameters

To analyse the performance of the localization algorithm,
we investigate the parameter recall, X, which is the per-
centage of motes reconstructed by the localization algorithm.
The recall parameter can only be interpreted correctly when
also considering the accuracy. The accuracy is described by
both the relative error and the absolute error of the mote
positions. The relative error gives the error of the distance
between two neighbouring motes, expressed as d̂/d̄, where
d̂ is the reconstructed distance between motes and d̄ the true
distance between them. The absolute error gives the error
between the reconstructed position and the true position of
the motes: |̂s−s̄|. Since the reconstruction is performed based
on relative position only, i.e. relative to the initial four motes
that determine the coordinate system, the absolute error is
only useful when the reconstructed swarm is aligned with
its ground truth. In order to solve this ambiguity, a linear fit
between the 3-D positions of the initial four motes and their
true positions is performed.

These experiments are designed to evaluate condi-
tions/criteria of the localization algorithm for reliable recon-
struction of the sensor swarm with non-unique identifiers.
Besides the pipe structure and the motes positions, the
parameters which play a role are the amount of motes in
use (N ), the amount of CID (nf ), the average amount of
neighbouring motes within the sensing radius (ns) and the
distance measurement noise levels (ν, ω, φ).

A parameter set yields successful reconstructions when:
a) the amount of added motes, based mainly on false asso-
ciations, is below 5% of X; and, b) the local pipe structure
(its diameter and its course axial direction) is reconstructed
correctly. Build-up of small directional changes over the
course of the pipe axis are allowed for a reconstruction to
be defined successful. In this work, this is assessed rather
subjectively. As addition on b), successful reconstruction is
also achieved when there is at one point in the reconstructed
swarm a large deviation in the course path of the pipe axis
relative to its true direction, but the positions of the motes
after the this point are reconstructed correctly relative to
the neighbouring motes. An example of such a line-break
is shown in Fig. 7.a.

V. NUMERICAL SIMULATIONS

The recall X results of the experiments without outlier
and identification noise are illustrated in Figure 5. Indicated
in green are the parameter sets which yield successful recon-
structions, grouped in: X= 100%, X≥ 80% and X≥ 20%.
Unsuccessful reconstructions are indicated in white, grouped
in: X≥50% (cross) and X<50% (plain). The green hatched
areas indicate that either a maximum of one iteration has a
significant pipe axis line break or several iterations have a
minor pipe axis line break.

It can be seen that at each N and noise level ν, there
exists a minimum ns and nf � N for which successful
reconstruction can be achieved with 100% recall. Increasing
nf beyond this point does not significantly improve the recall
or accuracy parameters.



Fig. 5: Reconstruction of sensor swarm from simula-
tions with different parameter sets N, ν, nf , ns. Recall
X in five categories: sufficient reconstruction: X ≥
{100%, 80%, 20%} (green); unsuccessful reconstruction
X ≥ 50% (white with cross) and X < 50% (plain white).
Red rectangle marks dataset used in Fig. 6, red cirle marks
parameterset used in Sec. V-A.

Figure 6, shows the relative and absolute accuracy of
the reconstructions with the specific set of parameters high-
lighted in Figure 5 with a red line. The errors are shown
in boxplots for all reconstructed sensor motes. Only the ten
highest outliers are plotted (>1.5× the interquartile range);
the lowest quartile and lower outliers are not plotted. As a
reference, the recall is also plotted.

The amount of neighbouring motes ns has a crucial role in
whether a successful reconstruction can be achieved. In these
experiments ns = {12, 20, 30} has been used and the recall
results show that in most cases it is not sufficient to choose
ns = 12. In most cases, there is a significant chance that
somewhere in the graph growing process, there are too little
true neighbouring platforms already reconstructed for inlier
votes in the RANSAC algorithm. A minimum of ns =20 is
required for reliable reconstruction at larger N . This confirms
our findings in [8]. Increasing ns from 20 to 30, however,
does not increase the recall significantly at these noise levels.

Figure 7 shows four reconstruction of different iterations
with the parameter set from Figure 6. Figure 7.a and 7.b
show the reconstruction of pipe structure with equal mote
placement, both with a recall X = 100%. Figure 7.a has
been made with nf =100 and shows a significant line break
in the reconstructed pipe axis. Figure 7.b with nf =500 has
significantly better reconstruction at this critical point in the
swarm.
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Fig. 6: Recall (red ‘×’) plotted together with relative error
(top) and absolute error (bottom) for all iterations with spec-
ified parameter sets (marked in Fig. 5 with red rectangle).
Reconstructions of four selected runs (arrows) are shown in
Fig. 7.

Figure 7.c and Figure 7.d show reconstructions in an equal
pipe structure and mote placement, but with a different nf .
The lower amount of nf increase the amount of ambiguities
introduced in the dataset, and due to the coherent nature
of these ambiguities, RANSAC can in this particular case
not distinguish between correct candidate motes and false
candidate motes to add to the graph. The reconstruction
in Figure 7.c has an average total ambiguity factor (both
distance and identity) of A = 480% versus A = 210% in
Figure 7.d.

The reconstructions with parameter set N = 400, ν =

4%, ns = 30, nf = 15 has a dataset with the largest
average ambiguity factor for which the reconstruction is still
considered successful. With an average ambiguity factor of
A=1700% it still has a reliable recall of X=20%. The re-
construction of these iterations was terminated due to a self-
imposed time constraint. All of the partial reconstructions
(with sufficient accuracy) with ns =30 as well as the highly
ambiguous datasets with ns = 20 have been terminated due
to this time-constraint. Some other high ambiguous datasets
with A> 2000% have been preventively terminated due to
the large amount of total entries in hi,j (larger than 2×105).

A. Non-Gaussian outlier and identification noise
The results described above are based on measurement

datasets without non-Gaussian outlier and identification
noise. But as these types of noise are inevitable in re-
alistic scenarios, we also study the localization algorithm
on datasets including outlier and identification noise. The
unmodified algorithm is performed with ω and φ ranging
from 0% to 20%. This is performed on the parameter set
N = 400, ns = 20, nf = 25, µ = 1.33% (marked in Fig 5



(a) (b)

(c) (d)

Fig. 7: (Parts of) reconstructions of four different runs
(indicated with arrows in Fig. 6). Blue are true positions,
red are reconstructed positions.

TABLE I: Recall X in percentage with outlier noise ω and
identification noise φ of dataset N=400, ns=20, nf =25, µ=

1.33% . The median of 10 iterations is taken; the lowest recall
of the iterations is between brackets.

Outlier Identification noise, φ
noise, ω 0% 1% 5% 10% 20%

0% 99 (92) 100 (91) 99 (15) 96 (88) 65 (7)
1% 100 (89) 99 (91) 99 (87) 100 (72) 83 (1)
5% 100 (88) 100 (89) 98 (74) 100 (15) 27 (1)

10% 100 (75) 100 (87) 94 (12) 93 (9) 8 (1)
20% 83 (2) 70 (9) 64 (1) 21 (1) 1 (1)

with red circle). Recall results are shown in Table I. Outlier
and identification noise of up to 10% still yields successful
reconstruction with X ' 100% for the majority of the
iterations.

VI. CONCLUSION

The localization algorithm proposed in this paper was
found to provide robust reconstructions of the motes relative
positions in the novel swarm-based mapping approach with
the use of non-unique communication identifiers. It uses a
novel RANSAC method to obtain local geometric consis-
tency of neighbouring motes for reconstruction. A realistic
time-of-flight noise model has been used, which includes
imperfect knowledge of the speed and timing of ranging
pulses, as well as outlier noise in range measurements and
communication identifiers.

Our work shows that depending on the noise levels and the
geometric structure of the environment, there is a minimum
amount of communication identifiers required for successful
reconstruction. This can in our case be as low as 2% of the
amount of motes in the swarm. Under the specific constraints
that we are investigating, increasing the amount of identifiers
above this minimum, or even using unique identification,

does not significantly improve localization. This relaxation
aids the feasibility of sensor swarm mapping using resource-
limited sensor motes.

This work currently only considers a static case in which
motes have enough energy to perform a single distance
measurement. When considering cases in which the motes
are able to perform subsequent multiple measurement, ad-
ditional analysis can be performed: e.g. ambiguities can be
filtered out better and the motes distribution throughout the
environment can be less homogeneous; this is subject of
future research.
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