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Abstract—Functional connectivity, which is indicated by time-
course correlations of brain activities among different brain
regions, is one of the most useful metrics to represent human
brain states. In functional connectivity analysis (FCA), the whole
brain is parcellated into a certain number of regions based on
anatomical atlases, and the mean time series of brain activities
are calculated. Then, the correlation between mean signals of two
regions is repeatedly calculated for all combinations of regions,
and finally, we obtain the correlation matrix of the whole brain.
FCA allows us to understand which regions activate cooperatively
during specific stimulus or tasks. In this study, we attempt to
represent human brain states using functional connectivity as
feature vectors. As there are a number of brain regions, it is
difficult to determine which regions are prominent to represent
the brain state. Therefore, we proposed an automatic region-
of-interest (ROI) extraction method to classify human brain
states. Time-series brain activities were measured by functional
magnetic resonance imaging (fMRI), and FCA was performed.
Each element of the correlation matrix was used as a feature
vector for brain state classification, and element characteristics
were learned using supervised learning methods. The elements
used as feature vectors, i.e., ROIs, were determined automatically
using a genetic algorithm to maximize the classification accuracy
of brain states. fMRI data measured during two emotional
conditions, i.e., pleasant and unpleasant emotions, were used
to show the effectiveness of the proposed method. Numerical
experiments revealed that the proposed method could extract the
superior frontal gyrus, orbitofrontal cortex, cuneus, cerebellum,
and cerebellar vermis as ROIs associated with pleasant and
unpleasant emotions.

I. INTRODUCTION

In recent years, higher brain functions such as recognition
and emotion have been studied using noninvasive functional
brain imaging systems. Functional magnetic resonance imag-
ing (fMRI) [1], [2] and functional near-infrared spectroscopy
(fNIRS) [3], [4] are being used to measure brain activities
associated with them. fMRI uses a nuclear magnetic resonance
phenomenon to visualize brain functions. Compared with
other noninvasive imaging modalities, fMRI has higher spatial
resolution. Therefore, fMRI has been rapidly adopted as a
measurement method in brain functional studies. fMRI can
measure brain activity by capturing changes in cerebral blood
flow. The brain replenishes necessary oxygen and saccharides
by increasing blood flow in particular areas depending on
neural activity. It becomes possible to estimate brain function

because blood flow changes are associated with neuronal
activity.

There have been many studies to investigate the functions of
specific regions based on the theory of functional localization.
They have focused on which brain regions activated in re-
sponse to specific stimuli. We refer to this conventional method
as activation study. In emotion studies, brain regions activated
while feeling pleasant and unpleasant emotions have been
investigated based on activation study [5], [6]; however, com-
parisons of brain states that considered cooperative relations
between brain regions associated with pleasant and unpleasant
emotions, have not been performed enough. Nevertheless,
the brain does not activate independently in every region. It
exchanges information and cooperatively activates among each
region. It is known that many regions are involved in some
automatic and simple functions, such as facial recognition
[7]. Even if the brain regions are spatially separated and not
connected directly via nerves, they often cooperatively work.
This is referred to as a functional brain network.

In recent years, a functional network analysis method has
been proposed and developed [8], [9]. Sala-Llonch et al. [8]
used fMRI to measure human brain activity during a memo-
rization task and a resting state, and the functional network
was analyzed using a temporal correlation between the brain
activities of two brain regions as a connectivity measure. Simi-
larly, Van-Den-Heuvel et al. [9] measured human brain activity
using fMRI and investigated a resting-state functional network
using graph theoretical analysis. Furthermore, Bullmore and
Sporns have revealed that the functional brain network formed
a complex network consisted of many nodes and edges [10].
Although they have introduced graph theoretical metrics to
quantitatively analyze characteristics of the functional brain
network, however, it is difficult to search for all networks
because there are many regions in the brain.

Therefore, this paper proposes a method that efficiently
searches for more important brain function networks using
a genetic algorithm (GA) [11], [12], which is an optimiza-
tion method inspired by evolutionary processes. In addition,
the proposed method estimates the regions of interest (ROI)
related to pleasant and unpleasant emotions by extracting
an important brain function network to classify pleasant and
unpleasant emotions.



II. PROPOSED METHOD

A. Concept: feature selection for fMRI data using GA

In this section, we describe the concept of our proposing
method. The functional network is a connection between brain
regions that indicates similar brain activity. Generally, similar-
ity of brain activity, i.e., the degree of coupling between brain
regions, is calculated by the correlation coefficient of time-
series brain activity data. If a brain region is considered a node
and connections between brain regions are considered edges,
the functional network is considered a weighted undirected
graph. In addition, the correlation matrix between multiple
regions can be regarded as an adjacency matrix of such graphs.
In this study, connectivity between multiple regions is used as
a characteristic vector to classify brain state expressed by a
weighted undirected graph. However, it is not realistic to use
all regions as the feature vector because there are hundreds
of brain regions defined by theory of functional localization.
To classify brain state, we can find a brain region related to a
specific problem or stimulus by understanding the important
connectivity between brain regions. In addition, identifying
a brain region related to a specific problem or stimulus will
provide new neuroscience knowledge. Thus, this study defines
an optimization problem that searches the combination of
feature vectors that obtains maximum classification accuracy
of the brain state using connectivity between regions as the
feature vector. A framework to solve this problem is proposed
in this paper.

B. Problem formulation

The target problem can be formulated as the following
optimization problem.

1) Design variables: Design variable xk selects or deselects
each element aij of adjacency matrix A in an weighted undi-
rected graph of functional brain network illustrated in Fig.1. A
diagonal component is not selected because its correlation is
always 1.0 regardless of given data. In a brain region divided
into n units, the number of design variables is (n2 − n)/2
because the adjacency matrix is symmetric. Therefore, the
design variables x can be expressed as follows:

x = (x1, x2, . . . , xd) (1)

xk ∈ {0, 1} (2)

In addition, anatomical automatic labeling (AAL) [13],
which parcellates the brain into 116 anatomical regions, is used
in this study. In other words, d = (1162 − 116)/2 = 6670.
How variables are lined up is shown in Fig.1.

2) Objective function: The objective function is an classifi-
cation accuracy of the data set in the feature space constructed
using the selected feature vector, which is defined by a design
variable. A combination of feature vectors is optimized such
that an classification accuracy with any classifier becomes
maximum. The objective function f(x) can be defined as
follows:

f(x) = Eclassification(x) (3)

Fig. 1. Representation of the design variables

Fig. 2. Procedure of Objective Function Evaluation

If xk = 1, the corresponding element of the adjacency ma-
trix is utilized as a feature vector for the classification. Thus,
Eclassification(x) is an classification accuracy of distinguishing
a dataset using all the feature vectors chosen (∀xk = 1,
k = 1, 2, . . . , d). This evaluation process is illustrated in Fig.2.

3) Constraints: In this study, our goal is to obtain the
highest classification accuracy using as few feature vectors as
possible. Therefore, it is expected that the prominent feature
vector will be obtained for classification. Therefore, we limit



the number of the selected feature vectors as follows:

g(x) = Σd
k=1xk −M ≤ 0 (4)

Here, g(x) is a constraint on x, and M is the upper limit
of the number of feature vector choices. Note that M is set
by the user.

4) Optimization problem: From the above, the target opti-
mization problem can be formulated as follows:

maximize f(x) (5)

subject to xk ∈ {0, 1}, g(x) ≤ 0 (6)

C. GA implementation

The optimization problem defined in the previous section is
solved using a GA. In this study, we used the GA implemented
in Distributed Evolutionary Algorithms in Python (DEAP)
library [14].

III. FMRI DATA ANALYSIS BY PROPOSED
METHOD

In this study, we conducted an experiment in which pleasant
and unpleasant images were shown to subjects. The important
functional brain networks for emotion classification were ex-
tracted using the proposed method with fMRI data. Moreover,
the ROIs associated with pleasant and unpleasant emotions
were estimated using these networks.

A. EXPERIMENTAL METHOD

1) Participants: Fifteen healthy right-handed subjects (ten
men and five women) participated in this experiment. Their
mean age was 22.1 years (standard deviation: 1.3). All par-
ticipants gave written informed consent to participate in this
experiment.

2) Experimental environment: fMRI data were acquired
with a 1.5 T Echelon Vega scanner (Hitachi, Ltd., Tokyo,
Japan). Functional volumes were collected using a gradient-
echo echo-planer imaging (GE-EPI) sequence. We also em-
ployed a Rf-spoiled steady state gradient echo (RSSG) se-
quence to obtain T1-weighted structural images. The MR
imaging parameters are shown in TABLE I.

TABLE I
MR IMAGING PARAMETERS

Parameter functional imaging T1 anatomical imaging
TR [ms] 3000 9.4
TE [ms] 40 4.0
FA [ ° ] 90 8
FOV [mm] 240 × 240 256 × 256
Matrix size [pixel] 64 × 64 256 × 256
Thickness [mm] 5.0 1.0
Number of slices 20 194

Fig. 3. Experimental design

3) Stimulation image: The Nencki Affective Picture System
(NAPS) data set was used for stimulation images in this
experiment. NAPS is a data set that includes emotion images
used in psychology experiments, and a theme and a valence
value (inducibility), arousal value (awakening), and approach-
avoidance value (rule) were assigned to each image. Here,
the valence represents the degree of pleasant and unpleasant
emotion for the image, arousal represents the awakening
degree of emotion obtained by looking at the images, and
approach-avoidance represents the degree of being drawn into
the images [15]. In this experiment, a valence value greater
than 5 was used for pleasant images, and a valence value of 2.5
or less was used for unpleasant images. There was a difference
between the valence degree of the images and the degree
of pleasant which participants feel actually. Therefore, each
image was evaluated with seven levels of pleasant emotion by
the participants before the experiment was conducted. In this
pre-evaluation, pleasant images were evaluated twice. As a
result, 24 images with high mean valence values were chosen
as pleasant images for use in two experimental sessions. In
addition, 24 images were selected randomly as unpleasant
images for use in the two experimental sessions. The stimu-
lation images were chosen in these ways because the pleasant
emotions were difficult to be exposed while the unpleasant
emotions could be easily expressed.

4) Experiment procedure: Brain activity at the time at
which pleasant and unpleasant images were presented was
measured by fMRI. Fig.3 shows the experimental design. This
experiment consisted of two sessions. One session used a block
design in which a rest and a task were shown alternately.
Each session consisted of four blocks of pleasant task and
four blocks of unpleasant task. For each pleasant/unpleasant
task block, three pleasant/unpleasant images were randomly
presented. The first rest time was 12 s, and the other rest times
and the task times were 18 s. A fixation point was displayed
during the rest time, and images were displayed for 6 s per
image during the task. To obtain the participants’ subjective
evaluations, the images used in the experiment were evaluated
by participants in seven stages after fMRI data collection.

B. ANALYSIS METHOD

1) Extraction of correlation matrix: The initial six im-
ages were discarded from analysis in order to eliminate
the non-equilibrium effects of magnetization. As a result,



136 images were used for analysis. Functional brain net-
works were analyzed using Conn [16] in order to analyze
the functional connectivity. SPM8 (Welcome Department of
Cognitive Neurology) [17] was used to preprocess the fMRI
data. All functional images were realigned to correct for head
movements, and adjustment between the functional images of
the subjects’ brains and anatomical images was performed
using a least square approach to regress out 6 head motion
parameters (3 translations and 3 rotations) implemented in
SPM8. Individual brain image was coordinated to match the
Montreal Neurological Institute (MNI) standard brain and was
smoothed with a Gaussian kernel of 8 mm (full-width half-
maximum). Then the image was band-pass filtered (0.008
– 0.09 [Hz]), and the artifacts caused by head movement
and the blood oxygenation level dependent (BOLD) signal of
white matter and cerebrospinal fluid were regressed out from
the BOLD signal of each voxel. The BOLD signal during a
task period was extracted to calculate a temporal correlation
during the task. The brain region was specified based on
AAL [13], and the average BOLD signal for every region was
calculated. Finally, temporal correlation between brain regions
were calculated, and the population correlation coefficients
were estimated by Fisher z-transformation. The correlation
matrix (adjacency matrix), which was divided for each brain
region, was then extracted. These steps are summarized in
Fig.4.

2) Extraction of important functional brain networks: All
negative correlation of the correlation matrix extracted became
0, and we analyzed only positive correlation. An important
functional brain network for emotion classification was ex-
tracted using the proposed method with the correlation matrix.
In this study, a support vector machine (SVM) [18] was used
for emotion classification. The classification accuracy was
evaluated by 10-fold cross validation. The GA was performed
with 10 trials with two constraint settings (M = 5 and 10),
and the extracted functional brain networks were compared.
TABLE II shows the SVM parameters. TABLE III shows the
parameters of the GA.

TABLE II
SVM PARAMETERS

Parameter Value
Label Pleasant / unpleasant
SVM C-SVM
Kernel RBF
Cost 1000
Gamma 0.001
Test 10 fold

IV. RESULTS

Fig.5 shows the fitness history of the GA runs. The figure
indicates that each run of GA converged within 200 gen-
erations. TABLE IV and V show the brain regions whose
functional connections were selected by GA optimization
with the two constraint conditions (M = 5 and 10). The
classification accuracy for each run is also shown in TABLE

Fig. 4. Extraction step of the correlation matrix

TABLE III
GA PARAMETERS

Parameter Scale
Population Size 100
String Length 6670
Number of Generation 200
Tournament Size 2
Crossover Rate 1.0
Mutation Rate 1/6670

IV and V. The best classification accuracy was 100% with
M = 10, and was 93.3% with M = 5. Furthermore, the
brain connections (nodes as regions and edges as functional
connections) selected with the highest classification accuracy
for M = 5 and 10 are mapped on the surface of the brain in
Fig.6 and Fig.7, respectively.

As can be seen in Fig.6, the superior frontal gyrus (SFGmed
and SFGdor), orbitofrontal cortex (ORBsup and ORBmed),



cuneus (CUN), cerebellum (CRBL), and cerebellar vermis
(Vermis) were extracted in many runs. We define these five
regions as important for emotion classification. These regions
were also selected with M = 5, as shown in Fig.7. In Fig.7(a),
the superior occipital gyrus (SOG) was selected with M = 5
case instead of CUN with M = 10. Two of the five important
regions were also selected.

(a) M = 10

(b) M = 5

Fig. 5. Fitness history

V. DISCUSSION

The proposed method extracted five and ten brain connec-
tions at high classification accuracy (93.3% and 100%) among
6670 connections. This indicates that the proposed method is
effective for feature selection in emotion classification. Here

TABLE IV
BRAIN REGIONS WHOSE FUNCTIONAL NETWORKS WERE SELECTED BY

GA OPTIMIZATION AND CLASSIFICATION ACCURACY (M = 10).
N/A INDICATES THE SOLUTION WAS NOT OBTAINED.

trial 1 trial 2 trial 3 trial 4 trial 5

1 ORBmid.R ORBmid.R PreCG.R PreCG.R MFG.R
CUN.R IOG.R FFG.L PCG.L IFGtriang.R

2 ROL.R IFGoperc.L ORBsup.L PreCG.R ORBmid.R
DCG.R CRBLCrus1.R OLF.L PoCG.L PoCG.R

3 OLF.L CUN.L IFGoperc.L ORBsup.L ORBinf.R
ORBsupmed.L FFG.L IFGtriang.L MFG.L FFG.R

4 SFGmed.L CUN.R IFGtriang.L ORBsup.R ROL.L
CRBL9.R Vermis6 PCL.R MOG.L CAU.L

5 PHG.L LING.L ROL.R ORBmid.L CUN.L
CAU.R CRBLCrus1.R PHG.R Vermis9 SOG.R

6 PHG.R MOG.L SFGmed.L IFGtriang.L SOG.L
STG.R CAU.L MOG.L PHG.R PAL.R

7 LING.L MOG.L ACG.L DCG.L SOG.R
Vermis7 Vermis10 CRBL9.L PHG.R PAL.L

8 PoCG.R FFG.R HIP.R PHG.R PoCG.R
CRBL10.L TPOmid.L ANG.L STG.R PAL.L

9 TPOmid.L THA.R CUN.R AMYG.L PCL.L
Vermis6 vermis8 vermis8 PUT.R Vermis45

10 CRBL3.L CRBLCrus1.L LING.L STG.R THA.L
Vermis6 vermis12 CRBL6.R CRBL45.L CRBL3.L

Accuracy 100 100 100 96.7 93.3
[%]

trial 6 trial 7 trial 8 trial 9 trial 10

1 SFGdor.L MFG.L SFGdor.L PreCG.L SFGdor.R
OLF.L Vermis9 IFGtriang.R SMG.L CAL.L

2 SFGdor.R MFG.R ORBmid.L PreCG.R ORBsup.R
TPOmid.R ITG.L Vermis9 Vermis6 SFGmed.R

3 ORBsup.R ORBmid.L ORBinf.R MFG.R ORBmid.L
IOG.L Vermis9 CRBL8.L IFGtriang.R CRBL6.L

4 IFGtriang.R ORBmid.R INS.L ORBmid.L ROL.R
ACG.R SMA.R AMYG.L CRBLCrus2.L IOG.R

5 SFGmed.R ROL.R CUN.L ROL.R SFGmed.L
CRBLCrus1.L CUN.L CRBL6.L TPOmid.R Vermis9

6 DCG.R REC.R CUN.R OLF.L ORBsupmed.L
CAL.L MOG.L STG.R CRBLCrus2.R LING.R

7 HIP.L PCG.R LING.L SFGmed.R CAL.L
ANG.R CRBLCrus1.L CRBL6.L Vermis6 MOG.L

8 CUN.R CUN.R PoCG.L SPG.L CUN.R
STG.R ANG.R Vermis6 STG.L ANG.R

9 LING.L ANG.R CRBLCrus1.R TPOmid.L CRBL7b.L
FFG.L Vermis12 CRBLCrus2.L Vermis6 CRBL10.R

10 SOG.R CRBL6.R CRBL6.R N/A N/ACRBL9.R CRBL10.R CRBL8.R
Accuracy 93.3 96.7 96.7 96.7 100

[%]

we investigate the reason that the five important regions were
derived.

The dorsolateral prefrontal cortex, which is included in
SFG, is considered to play an important role in predicting
emotion stimulus [19]. Therefore, derivation of SFGmed and
SFGdor suggests that the proposed method could find brain
regions associated with emotional reaction.

The orbitofrontal cortex is considered related to the eval-
uation of affective value (valence) and controlling behavior
associated with reward and punishment stimuli [20] [21].
Moreover, it has been reported that this region is activated
when perceiving beauty in paintings [22]. On the other hand,
this region also activates when avoiding harmful stimuli [23].



TABLE V
BRAIN REGIONS WHOSE FUNCTIONAL NETWORKS WERE SELECTED BY

GA OPTIMIZATION AND CLASSIFICATION ACCURACY (M = 5)

trial 1 trial 2 trial 3 trial 4 trial 5

1 IFGoperc.L OLF.R ORBsup.R SFGdor.R MFG.L
SOG.R PoCG.R LING.L MOG.R SMG.R

2 ROL.R CUN.R ORBsupmed.L ROL.R MFG.R
PoCG.L ANG.R HIP.R PoCG.L IFGtriang.R

3 CUN.R CUN.R SOG.R ACG.L OLF.L
ANG.R TPOsup.R IOG.L CRBLCrus1.L Vermis45

4 SOG.R IOG.R IOG.R PHG.R CUN.L
PCL.R CRBL10.R HES.R STG.R MOG.L

5 IPL.R PCL.R TPOmid.L CUN.R STG.R
CRBL10.L ITG.R Vermis6 Vermis6 Vermis10

Accuracy 86.7 90.0 93.3 93.3 90.0
[%]

trial 6 trial 7 trial 8 trial 9 trial 10

1 ROL.R ORBmid.L MFG.L PreCG.L ORBsup.R
SMA.R Vermis7 CRBL10.R ACG.R SOG.L

2 ROL.R IFGoperc.L INS.R SFGdor.R ORBmid.L
Vermis6 PUT.L SMG.L TPOmid.R Vermis9

3 REC.L PHG.R PCG.L INS.R REC.L
HIP.L STG.R PoCG.L SMG.L CRBL3.L

4 DCG.R LING.L CUN.R CUN.R INS.R
SMG.L CRBL6.L ANG.R ANG.R SMG.R

5 LING.R ANG.R MTG.R CRBL45.R CUN.L
CRBL6.L PCUN.R CRBL8.L CRBL6.R MOG.L

Accuracy 86.7 93.3 90.0 90.0 86.7
[%]

(a) trial 1 (b) trial 2

(c) trial 3 (d) trial 10

Fig. 6. Functional brain networks and ROIs (M = 10; accuracy 100%)

Therefore, it is reasonable that ORBsup and ORBmed were
extracted by the proposed method because they are associated
with emotional response.

CUN receives and processes visual information and plays a
key role in primary visual processing. Moreover, it is associ-

(a) trial 3 (b) trial 4

(c) trial 7

Fig. 7. Functional brain networks and ROIs (M = 5; accuracy 93.3%)

ated with inhibitory control in bipolar depression patients [24].
In Fig.7(a), SOG replaces CUN; however, it has been reported
that SOG activation is observed more in patients suffering
depression than healthy subjects [25]. Thus, both CUN and
SOG are extracted as ROIs because they are associated with
emotion control.

It is assumed that CRBL and Vermis were extracted because
they are associated with emotion control and awareness of
negative emotion [26] [27]. Moreover, in Fig.6(b), we assume
that the highest classification accuracy was obtained by choos-
ing many regions around the cerebellum in addition to three
important regions.

On the other hand, in Fig.7(c), only two important regions
were selected. However, precuneus (PCUN), which integrates
emotion and awareness and generates pleasant emotions [28],
was extracted. As a result, high classification accuracy of
93.3% was obtained.

From these observations, the effectiveness of the proposed
method has been demonstrated.

VI. CONCLUSION AND FUTURE WORK

In this study, we have proposed an automatic ROI extraction
method for functional brain networks measured by fMRI.
The proposed method explores the best brain regions in
order to classify predefined brain states, such as pleasant and
unpleasant emotions, using a GA. Through GA optimization,
the binary value, which indicates whether each feature vector
(correlation coefficient between the time series MRI signals
of two brain regions) is used for classification, is used as a
design variable. Combinations of brain regions were optimized
to maximize the classification accuracy of the brain states in



the feature space constructed by the selected feature vectors.
The number of feature vectors was constrained to a predefined
value. To verify the effectiveness of the proposed method,
fMRI data measured during pleasant and unpleasant emotions
were used. Two brain states were classified, and the ROIs for
their classification were extracted. Through the experiments
we could find the five important ROIs: the superior frontal
gyrus (SFGmed and SFGdor), orbitofrontal cortex (ORBsup,
ORBmed), cuneus (CUN), cerebellum (CRBL), and cerebellar
vermis (Vermis). We found that these five regions were associ-
ated with emotional functions, and the classification accuracy
obtained using these only five ROIs was high (93.3%). These
findings indicate the effectiveness of the proposed method for
ROI determination of the functional brain networks. Further
studies focused on improvement of optimization by GA (e.g.,
regarding constraint handling, crossover method, parameter
configuration of GA, and multi-objective optimization for
classification accuracy and number of features), deviations of
optimized results with more than 10 runs, validations in other
brain activities, and a comparative study with other feature
extraction methods are necessary to ensure the effectiveness
of the proposed method. They will be investigated in our future
work.
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