
How long should Offspring Lifespan be in order to obtain a proper
exploration?

Antonino Di Stefano, Alessandro Vitale, Vincenzo Cutello, Mario Pavone

Abstract— The time an offspring should live and remain into
the population in order to evolve and mature is a crucial factor
of the performance of population-based algorithms both in the
search for global optima, and in escaping from the local optima.
Offsprings lifespan influences a correct exploration of the search
space, and a fruitful exploiting of the knowledge learned. In
this research work we present an experimental study on an
immunological-inspired heuristic, called OPT-IA, with the aim
to understand how long must the lifespan of each clone be
to properly explore the solution space. Eleven different types
of age assignment have been considered and studied, for an
overall of 924 experiments, with the main goal to determine
the best one, as well as an efficiency ranking among all the
age assignments. This research work represents a first step
towards the verification if the top 4 age assignments in the
obtained ranking are still valid and suitable on other discrete
and continuous domains, i.e. they continue to be the top 4 even
if in different order.

I. INTRODUCTION

The terms immunological-inspired computation identify
nowadays a wide family of successful algorithms in search-
ing and optimization, inspired by the working of the immune
system (IS). The IS defense dynamics and features are a huge
source of inspiration. The IS is indeed the most robust and
efficient recognition system, able to detect and recognize the
invaders, and distinguish between own cells, and foreign ones
(self/nonself discrimination).

Some other really interesting features of IS allow to
design efficient solving methodologies, such as high ability in
learning; memory usage; self-regulation; associative retrieval;
threshold mechanism, and the ability to perform parallel, and
distributed cognitive tasks. In light of the above, immunolog-
ical heuristics are mainly focused on three main theories:
(1) clonal selection [6], [5] (2) negative selection [13];
and (3) immune networks [16]. Such algorithms have been
successfully employed in a variety of different application
areas.

It is well known that to have a successful population-
based algorithm, is important and crucial to have a proper
balancing between exploration and exploitation mechanisms,
usually represented by the perturbation and selection oper-
ators. However, one aspect that is rarely considered but is
also very crucial and strictly related to their good balancing
is determining for how long a B cell (or offspring in general)
remains, evolves, and matures within the population. Having

A. Di Stefano and A. Vitale are with the Department of Electric,
Electronics and Computer Science, University of Catania.

V. Cutello and M. Pavone (Member, IEEE) are with the Department of
Mathematics and Computer Science, University of Catania, V.le A. Doria
6, I-95125 Catania, Italy (email: {cutello, mpavone}@dmi.unict.it).

a short life does not allow a careful search, nor learning from
the knowledge gathered during the search process, with the
final outcome of having a higher diversity that does not al-
ways help in finding the optimal solution. On the other hand,
a life which is too long might lead to a dispersive search,
and an unfruitful exploitation of the solutions, with the final
outcome of having lower diversity that does not help the
algorithm to jump out of local optima. Thus, in this research
work we present an experimental study whose main aim is
to understand how much time is enough and needed for an
offspring to remain into the population so to have the right
maturation and to perform a proper exploration in the search
space, and a fair exploitation of the gained information. For
this study we have developed an immunological algorithm
based on the clonal selection principle (see section II), and
presented in [2], [12], whose core components are the cloning
and hypermutation operators: the first triggers the growth of
a new population of high-value B cells centered on a higher
affinity value; whereas the last can be seen as a local search
procedure that leads to a faster maturation during the learning
phase.

For carrying out this study in a way which is as general as
possible, it is crucial to develop an algorithm not tailored to
a specific problem; in a nutshell, to maintain the algorithm
unaware on the knowledge of the domain. On the other
hand, it is well known in literature that for tackling and
solving a generic and complex combinatorial optimization
problem, any evolutionary algorithm must incorporate local
search methodologies that, even in refining the solutions and
improving the fitness function, they are strongly based on
the features and knowledge of the problem itself, and conse-
quently they make the algorithm unsuitable and inapplicable
to other problems. But in this way, studies will lose general
validity. Therefore, to overcome this limitation and make
our results as general as possible, we conducted our studies
tackling the classic One–Max (or One–Counting) problem
[15], [7].

One–Max is a well-known toy problem, used for under-
standing the dynamics and searching ability of a stochastic
algorithm [14]. Although it is not of immediate scientific
interest, it represents a really useful tool in order to well
understand the main features of the algorithm, for example:
what is the best tuning of the parameters for a given
algorithm; which search operator is more effective in the
corresponding search space; how is the convergence speed,
or the convergence reliability of a given algorithm; or what
variant of the algorithm works better [3]. It is worth empha-
sizing that a toy problem gives us a failure bound, because a



failure occurs in toy problems at least as often as it does in
more difficult problems. One-Max is simply defined as the
task to maximize the number of 1 of a bit-string ~x of length
`:

f(~x) =
∑̀
i=1

xi,

with xi ∈ {0, 1}. In order to validate our studies and our
outcomes we have set ` = 10, 000 in all experiments.

The goal of this research work is basically to answer three
main questions: (i) is the lifespan related to the number
of offspring generated?; (ii) is the lifespan related to the
population size?; and lastly, in case of negative answer to
the previous two questions, (iii) how long must the lifespan
of an offspring be to carry out a proper exploration?

The paper is structured as follow: in Sect. II we describe
opt-IA, the developed immunological-inspired algorithm, and
its features, with the main emphasis on the cloning, hy-
permutation, and aging operators; in Sect. III we describe
and present the several age options (11 overall) for the
assignment; in Sect. IV we present a large set of experiments
conducted in order to determine primarily the efficiency
ranking; and finally, Sect. V contains the concluding remarks.

II. THE IMMUNOLOGICAL ALGORITHM

In this research work we have developed an immunological
algorithm inspired by the clonal selection theory, which
belongs to a special class of the immunological heuristics
family called Clonal Selection Algorithms (CSA) [4], [9],
[10], [11]. The main features of this kind of heuristics
are the operators: (i) cloning, (ii) inversely proportional
hypermutation and (iii) aging. The first operator generates
a new population of B cells centered on the higher affinity
values; the second one explores the neighborhood of each
point in the search space, perturbing each solution via an
inversely proportional law to its fitness function; and the last
one eliminates old solutions from the current population so to
introduce diversity and avoid, possibly, local minima during
the evolutionary search process.

The developed algorithm takes into account the two main
entities: antigen (Ag) and B Cell receptor. The first is the
problem to tackle, while the second represents points in the
search space of the problem to be tackled. For simplicity,
hereafter, we call the algorithm as OPT-IA. At each time
step t OPT-IA maintains a population of B cells P (t) of size
d (i.e., d candidate solutions), which is initialized at the time
step t = 0, by randomly generating solutions using uniform
distribution in the corresponding domain (i.e. {0, 1}). Once
the population is initialized, the next step is evaluate the
fitness function for each B cell ~x ∈ P (t) using the function
Evaluate Fitness(P (t)). A summary of OPT-IA is presented
in the pseudocode shown in Algorithm 1.

The first immunological operator applied is the cloning
operator, which simply copies dup times each solution (i.e.
each B cell) producing hence an intermediate population
P (clo) of size d×dup, where dup is a user–defined parameter.
To any clone, or copy, we assigne an age that determines

its lifetime into the population: when a clone reaches the
maximum age (τB) (user-defined parameter) the aging op-
erator removes it from the population. The assignment of
the age, together with the aging operator, has the purpose to
reduce premature convergences, and keep high diversity into
the population. It should be pointed out that the choice of
which age to assign plays a central role on the performances
of OPT-IA, and of any evolutionary algorithm in general,
since the evolution and maturation of the solutions depend
on it. What age value to assign to each clone is the focus
of this research work (see section III). The cloning operator,
coupled with the hypermutation operator, performs a local
search around the cloned solutions. The introduction of blind
mutation produces individuals with higher affinity (i.e. higher
fitness function values), which will be then selected to form
the improved mature progenies.

Algorithm 1 Immunological Algorithm (d, dup, ρ, τB)
t← 0;
P (t) ← Initialize Population(d);
Evaluate Fitness(P (t));
repeat

Increase Age(P (t));
P (clo) ← Cloning (P (t), dup);
P (hyp) ← Hypermutation(P (clo), ρ);
Evaluate Fitness(P (hyp));
(P (t)
a , P

(hyp)
a ) ← Aging(P (t), P (hyp), τB);

P (t+1) ← (µ+ λ)-Selection(P (t)
a , P

(hyp)
a );

t← t+ 1;
until (termination criterion is satisfied)

The hypermutation operator acts on each solution of
population P (clo) performing M mutations, whose number
is determined by an inversely proportional law: the higher
is the fitness function value, the lower is the number of
mutations performed on the B cell. It should be noted that
the hypermutation operator works without using mutation
probability. In particular, in OPT-IA, the number of mutations
M to perform over ~x is determined by the following potential
mutation:

α = e−ρf̂(~x),

where α represents the mutation rate, and f̂(~x) the fitness
function value normalized in [0, 1]. Therefore, the number of
mutations M is given by

M = b(α× `) + 1c,

with ` the length of the B cell. Using this equation, at least
one mutation is guaranteed on each B cell; and this happens
exactly when the solution is very closer to the optimal
one. It is worth emphasizing that during normalization of
the fitness function value, in order not to use any a priori
knowledge about problem, we use the best current fitness
value decreased by a user-defined threshold θ, rather than
the global optima (often not known). The hypermutation op-
erator used is basically the classical bit-flip mutation without
redundancy: in any ~x B cell, an element xi is randomly



chosen without repetition, and its value is inverted (from 0
to 1, or from 1 to 0).

The last immunological operator to be performed is the
aging operator, whose task is avoid premature convergences
and getting trapped into local optima; and produce high
diversity into the current population. This operator, simply,
eliminates the old B cells from the populations P (t) and
P (hyp): every B cell is allowed to remain in the current
population for a fixed number of generations τB (user-
defined parameter); as soon as a B cell is old τB + 1 it
is removed from the population of belonging independently
from its fitness value, included the best solution found so far.
The parameter τB , hence, indicates the maximum number
of generations allowed to any B cell to remain into the
population. There exists a variant of this operator that makes
an exception on the removal of the best solution found so far:
i.e. the best current solution is always kept in the population,
even it is older than τB+1. This variant is called elitist aging
operator.

After the three immunological operators have done their
work, a new population P (t+1) is created for the next
generation by using (µ+λ)-Selection operator, which selects
the best d survivors to the aging step from the populations
P

(t)
a and P

(hyp)
a . Such an operator, with µ = d and λ =

(d × dup), reduces the offspring B cell population of size
λ ≥ µ – created by cloning and hypermutation operators
– to a new parent population of size µ = d. The selection
operator identifies the d best elements from the offspring set
and the old parent B cells, thus guaranteeing monotonicity
in the evolution dynamics. Nevertheless, due to the aging
operator, it could happen that only d1 < d B cells survived;
in this case, the selection operator randomly generates new
d− d1 B cells.

Finally, the algorithm terminates its execution when the
termination criterion is satisfied. In this research work a
maximum number of the fitness function evaluations Tmax
has been considered for all experiments performed.

III. AGE ASSIGNMENT LIFESPAN

As previously highlighted, the age assignment to each
clone is crucial for the performances of the algorithm, as
proven in [12] (see table 16, page 29), where using different
age assignments criteria the algorithm shows different per-
formances. Thus, we have conducted an experimental study
in order to understand what is the best age assignment, in
term of performance, convergence and success.

In this research work, several age options have been taken
into account, and are reported in table I. Here we report
a short description of the age considered, and types and
symbols used for showing the results obtained (section IV).

So, overall we have studied 11 different types of age
assignment:

1) age 0 (zero) for each clone;
2) random age chosen in the range [0, τB ];

TABLE I
AGE ASSIGNMENT OPTIONS.

Type Symbol Description

0 [0 : 0] age zero

1 [0 : τB ] randomly chosen in the range [0 : τB ]

2 [0 : (2/3 τB)] randomly in the range [0 : (2/3 τB)]

3 [0 : inherited] randomly in the range [0 : inherited]

4 [0 : (2/3 inherited)] randomly in the range [0 : (2/3 inherited)]

5 inherited or [0 : 0]
inherited; but if constructive mutations occur
then type 0

6 inherited or [0 : τB ]
inherited; but if constructive mutations occur
then type 1

7
inherited or inherited; but if constructive mutations occur
[0 : (2/3 τB)] then type 2

8
inherited or inherited; but if constructive mutations occur
[0 : inherited] then type 3

9
inherited or inherited; but if constructive mutations occur
[0 : (2/3 inherited)] then type 4

10 inherited− 1 same age of parents less one

3) random age chosen in the range [0, 23 τB ]. In this way
it is guaranteed to each B cell to evolve at least for a
fixed number of generations (in the worst case 1

3 τB);
4) random age chosen between 0 (zero) and age of parent

that for simplicity we call “inherited”. In this way each
offspring has the same age of the parent in the worst
case;

5) random age chosen in the range [0, 23 inherited]. In this
way for each offspring is guaranteed a lower age than
the parent;

6) to each clone is assigned the same age of the parent (in-
herited). However, if after the M mutations performed
on one clone, its fitness value improves, then its age is
updated with:
(a) zero;
(b) randomly chosen in the range [0, τB ];
(c) randomly chosen in the range [0, 23 τB ];
(d) randomly chosen in the range [0, inherited];
(e) randomly chosen in the range [0, 23 inherited];

7) same age of parent less one (inherited− 1).

It is worth to note that assigning the same age of the
parent (inherited) to each clone leads to loss of clones
and parents in the same generation, as showed in fig. 1 (an
example performed with ` = 1000) with the outcome to
waste the gained learning, as well as the best result found
up to that time step. In light of this, we have considered
the option (inherited − 1) because it guarantees at least
one life generation more than the parent. It is also very
interesting to observe, by inspecting this figure, that OPT-
IA, though it looses all individuals (clones and parents) in
the same generation, resulting in turn in the loss of all the
information gained during the evolution, is able to gain again
the same information and in the same time interval, starting
from new individuals, randomly generated. This confirm us
the robustness and efficiency of OPT-IA.

The goal of this study is to have an efficiency ranking



Fig. 1. Convergence dynamics of OPT-IA, using the same age of the parent
for each clone.

between these options, rather than only to determine the best
one, and to check as well if among the top 3 − 4 positions
the same options appear always, although in different order.
To achieve our goals, we need first to understand if the age
assignment depends on the number of offspring considered;
or on the population size.

IV. RESULTS

In this section we present the experimental results obtained
by variations of OPT-IA with the aim to understand which
are the top 3 − 4 age assignments that show better overall
performances. We have considered the classical One-Max
toy problem for our experiments, and in order to make
more complex the testbed we have considered a bit string
of length ` = 10, 000 as problem dimension. However, as
already highlighted, we first need to understand if the age
assignment is closely related to the number of offspring,
or to the population dimension. Thus, in order to answer
these questions, and the two main other – (i) what is the
best age assignment, and (ii) what is the efficiency ranking
– we have performed several experiments, varying of the
parameters as follows: d = {50, 100}; dup = {2, 5, 10};
and τB = {5, 10, 15, 20, 50, 100, 200}. Furthermore, the two
variants of OPT-IA, with and without elitism, have been
tested and studied, with a total of 924 overall experiments.
Each experiment has been performed on 100 independent
runs, and fixing Tmax = 106.

Fig. 2. The OPT-IA performances at varying of ρ parameter: a zoom.

The evaluation measures considered for our experiments

are, in order: (a) success rate (SR), i.e. how many times
OPT-IA finds the optimal solution in 100 runs; (b) average
number of fitness evaluations to the optimal solution (AES);
(c) best solution found on 100 independent runs (when SR =
0); (d) mean of best solutions found on 100 independent
runs; (e) σ standard deviation; and (f) mean of the fitness
of the population, averaged on the overall generations, and
100 runs (avg fit).

Fig. 3. SR versus Aging Type: results obtained by the elitist
version of OPT-IA (d = 100, dup = {2, 5, 10} and τB =
{5, 10, 15, 20, 50, 100, 200}).

Before starting the experimental study we need to tune the
only parameter that does not affect the age assignment, i.e. ρ,
which determines the mutation rate to perform. This param-
eter indeed is closely related only to the problem dimension.
Thus, OPT-IA was tested by varying the parameter ρ in the
range of real-valued [6, 15]. From these experiments OPT-IA
showed the better performances for ρ ∈ {11.5, . . . , 12.5},
as showed in figure 2, and the best one was obtained for
ρ = 11.5. Hereafter, all experiments showed in this section
have been performed using this setting for ρ.

Figs. 3 – 4 show the results obtained by opt-IA on the
11 options of age assignment, in term of SR by varying
the τB parameter. In particular, fig. 3 shows the results
obtained by using elitism, and fig. 4 the results without
elitism. Analysing the results with the use of elitism, it is
possible to see how the age assignment “type 0” (see table
I) shows always the higher success rate with respect to all
other options. This means that every offspring needed a good
maturation time in order to well explore the search space.
These good performances are more obvious for τB = 5,
where in all three experiments OPT-IA produces a SR > 10.



In the overall from fig. 3 we may deduce the following top 4
age assignments: “type 0”; “type 4”; “type 2”; and “type 3”.
It is worth to note that assigning the same age of the parent

Fig. 4. SR versus Aging Type: results obtained by the version of
OPT-IA without elitism (d = 100, dup = {2, 5, 10} and τB =
{5, 10, 15, 20, 50, 100, 200}).

minus 1 (“type10”) is not a good choice, since in this case
OPT-IA is never able to find the optimal solution (SR = 0).
What it is instead really interesting, by inspecting this figure,
is that there exists a threshold for the maximum number
of generations allowed (τB), above which OPT-IA shows
an overall form of elitism (strengthening of the elitism),
regardless not only to the age assignment, but also to all
parameters, with the result of driving all B cell solutions
toward the optimal one. The existence of this threshold is
found in all experiments done although with different values.
Of course, this feature is related to the type of the problem
tackled. A better understanding of this dynamic will be the
subject of future research.

Figure 4 shows the results obtained by OPT-IA without
elitism. Is possible to see that the algorithm for small dup
values is not able to find the optimal solution, except for
high τB values. In these experiments, for dup = 2 is also
possible to note how the threshold appears less effective
than in the previous experiments in fig. 3, as well as for
the other dup values. Also in these experiments the age
assignment “type0” seems to be the best choice, followed
by “type4;” “type3;” and “type2;” whilst “type10” also in
these experiments proves to be a bad choice.

By inspecting these two first figures, it is possible already
to assert that the age assignment seems to be independent
from the number of offspring used.

Fig. 5. SR versus Aging Type: results obtained by the elitist
version of OPT-IA (d = 50, dup = {2, 5, 10} and τB =
{5, 10, 15, 20, 50, 100, 200}).

Where, instead, the existence of the threshold appears to be
very effective is in the experiments performed for d = 50 and
using the elitism version of OPT-IA, as reported in figure 5.
Using small population size and the elitist aging operator, the
outcome is to make stronger the elitism, and this, although
helps OPT-IA in reaching always the best solution for this
problem independently by parameters and age assignments
used, may not occur in other complex problems.

An almost opposite behavior occurs instead by running
OPT-IA without elitism, as shown in fig. 6. Also in these
experiments the top 4 age assignment options are “type0;”
“type4;” “type3;” and “type2”. All in all, by inspecting all
4 figures, it is possible to assert that the age assignment is
not related to the number of offspring nor to the population
size, and the top 4 age assignments seem to be, in the
order, “type0;” “type4;” “type3;” and “type2”. Moreover, all
experiments clearly prove that the age assignment “type10”
shows the worst performances, not reaching the optimal
solution, and consequently, not allowing a proper maturation
of the B cell.

To confirm these claims, we show some of the most
relevant results in tables II, and III, for both versions of
OPT-IA when varying the population size. In these tables we
show the results for all 11 aging type using the evaluation
measure described above. Table II shows the results obtained
by the two versions of OPT-IA (elitism and no elitism) with
the following parameters setting: d = 100, dup = 5 and
τB = 20. These results were performed on 100 independently
runs. We highlight in bold face the best result. By inspecting



Fig. 6. SR versus Aging Type: results obtained by the version of
OPT-IA without elitism (d = 50, dup = {2, 5, 10} and τB =
{5, 10, 15, 20, 50, 100, 200}).

this table, it is possible to confirm the above statements,
as well as to note that the two best options (“type0” and
“type4”) show similar performances in both versions of OPT-
IA, proving that a proper setting of the age helps significantly
in performing a right exploration, and exploitation (mainly
in absence of elitism). It is also possible to note how the
“type10” age reaches a best solution far from the optimal
one, albeit it works on a population with high average fitness
(avgf it). This is due, as we expected, to a very low diversity
produced by this kind of age assignment, that, on one hand,
helps the algorithm to keep B cell with high affinity, but on
the other hand it doesn’t help the algorithm to jump out from
the local optima.

Figure 7 shows the AES dynamic behavior, i.e. the
average number of fitness evaluations to find the optimal
solution (SR 6= 0) when varying the parameter τB (third
column of table II). The top plot reports the performances of
the elitist version of OPT-IA, whilst the bottom one shows the
AES obtained without using elitism. In figure 8, instead, are
reported the average fitness population (avg fit) behavior for
each age assignment options considered, for both elitist (top)
and no elitist (bottom) versions.

In table III are reported the results obtained by OPT-IA
without elitism fixing the parameters: d = 50, dup = 10 and
τB = 15. Also from this table is possible to verify the same
ranking (approximately) of the above results. In figures 9 and
10 are reported respectively the AES and avgf it dynamic
behaviors when varying the τB parameter for all the 11 age
options. Also in these plots, as well as in the previous ones,

TABLE II
OPT-IA ON ONE-MAX PROBLEM WITH ` = 10, 000. THE RESULTS HAVE

BEEN OBTAINED BY SETTING: d = 100, dup = 5, τB = 20, WITH AND

WITHOUT ELITISM.

type SR AES best mean σ avg fit
With Elitism

0 98 4.3 × 106 10000 9999.98 0.14 8964.70

1 69 4.6 × 106 10000 9999.69 0.46 8957.78

2 85 4.4 × 106 10000 9999.85 0.36 8964.36

3 95 4.4 × 106 10000 9999.95 0.22 8964.25

4 97 4.4 × 106 10000 9999.97 0.17 8965.08

5 77 4.3 × 106 10000 9999.75 0.48 8485.66

6 25 4.7 × 106 10000 9998.79 0.96 8458.66

7 33 4.5 × 106 10000 9999.17 0.69 8468.74

8 48 4.5 × 106 10000 9999.34 0.71 8421.47

9 59 4.4 × 106 10000 9999.53 0.62 8460.44
10 0 // 9992 9983.61 3.71 8943.93

Without Elitism
0 97 4.3 × 106 10000 9999.97 0.17 8964.36

1 34 4.6 × 106 10000 9999.29 0.55 8956.5

2 76 4.5 × 106 10000 9999.76 0.43 8964.26

3 90 4.4 × 106 10000 9999.9 0.3 8964.99

4 96 4.4 × 106 10000 9999.96 0.2 8964.35

5 43 4.2 × 106 10000 9999.32 0.68 8486.99
6 0 // 9999 9997.2 1.25 8475.98

7 13 4.2 × 106 10000 9998.56 1.02 8449.93

8 4 4.3 × 106 10000 9998.36 0.77 8443.18

9 20 4.2 × 106 10000 9998.94 0.71 8451.6
10 0 // 9944 9939.36 2.21 8932.74

Fig. 7. AES versus τB : d = 100; dup = 5; elitist (top), and no elitist
(bottom) versions of OPT-IA.

it is possible to see how the top 4 age assignment types need
a lower number of fitness function evaluations to reach the
optimal solution, obtained higher SR values.

Finally, what emerges also from all presented experiments
is that the option “type6” is almost always the second to last
in the ranking, and this is because if an offspring improves
the fitness, it likely will have an age as closer as possible to



Fig. 8. Average fitness of the population (avg fit) versus τB : d = 100;
dup = 5; elitist (top), and no elitist (bottom) versions of OPT-IA.

TABLE III
OPT-IA ON ONE-MAX PROBLEM WITH ` = 10, 000. THE RESULTS HAS

BEEN OBTAINED USING: d = 50, dup = 10, τB = 15, AND NO ELITISM.

type SR AES best mean σ avg fit

0 94 3.1 × 106 10000 9999.94 0.24 9473.86

1 1 4.7 × 106 10000 9998.47 0.56 9467.7

2 31 3.5 × 106 10000 9999.29 0.5 9473.4

3 44 3.4 × 106 10000 9999.44 0.5 9474.14

4 49 3.3 × 106 10000 9999.49 0.5 9473.61
5 0 0 9999 9997.27 1.08 8534.37
6 0 0 9995 9991.43 1.98 8513.31
7 0 0 9998 9994.51 1.46 8505.78
8 0 0 9998 9994.47 1.6 8505.55
9 0 0 9998 9995.93 1.32 8515.91
10 0 0 9937 9931.4 1.93 9417.13

τB , or anyhow older than its parent, and thus the occurred
improvement is not exploited properly. This is likely because
even the age “type1” does not show good performance as
we would have expected.

V. CONCLUSION AND FUTURE WORK

In this research work, we presented an experimental study
on what age should be assigned to a B cell in order to prop-
erly explore the search space. An immunological-inspired
heuristic has been developed, and called OPT-IA, which
is based on three main operators: cloning, hypermutation
and aging operators. The age assignment, i.e. how many
more cycles an offspring must remain into the population,
plays a central role on the performance of any evolutionary

Fig. 9. AES versus τB : d = 50; dup = 5; and version of OPT-IA without
elitism.

Fig. 10. Average fitness of the population (avg fit) versus τB : d = 50;
dup = 5; and version of OPT-IA without elitism.

algorithm, since it is crucial for having a correct balance
between exploration of the solutions in the search space,
and the exploitation of the knowledge gained during the
search process. For this research work, we have considered
the classical One-Max toy problem in order to design OPT-
IA not tailored to a specific problem, keeping then the
algorithm unaware on the problem knowledge. Toy problems
are generally used to understand the dynamics and features
of a generic stochastic algorithm. On the other hand, it
is known that, an evolutionary algorithm works well on a
complex combinatorial optimization problem if it incorpo-
rates knowledge of the problem itself, with the outcome
to limit the application flexibility of the algorithm. Eleven
(11) different types of age assignment are presented, and
studied (when varying of the OPT-IA parameters), with the
goal to determine the best one, and mainly their efficiency
ranking. In order to achieve our goal we needed first to
understand if the age assignment was strictly related to the
number of offspring considered, or to the population size.
Many experiments have been performed for an overall of
924 tests, and from the analysis of all experimental results,
we may assert that the age assignment is not affected by
neither the number of the copies (B cells or offspring), nor
the population size used. Moreover, it emerges that assigning
age zero (0) to each clone seems to be the best choice to
do, whilst considering the same age of parent minus one,



doesn’t help the performances of the algorithm, taking the
last place of the efficiency rankings. Referring to the ranking,
the top 4 age assignment types are respectively: (1) “type0;”
(2) “type4;” (3) “type3;” and (4) “type2” (see table I). It is
also possible to claim that in the last two positions we have
the options “type6” and “type10” respectively, whose worst
performances are caused by a lower diversity produced, and
very less time given to the offspring to evolve and mature.

Finally, of course, we don’t expect that the best obtained
age assignment in this work is still valid in other problems
or in another evolutionary algorithm, but rather, we are
interesting in determining the top 3 − 4 age assignments
to take into account, not necessarily in the same order.
This research work is a first step of our study, which is
addressed, in the overall, in verifying if the top 4 age
assignments are still valid on other problems - discrete and
continuous domains - even if in different order. In a second
step of our work (currently under study), we are testing
OPT-IA using mathematical models as “tunably rugged”
fitness landscape, in order to validate the generality of the
outcomes obtained. Another interesting line of research we
intend to pursue is to use our methodology to analyze other
intelligent algorithms, such as Moth Search (MS) algorithm
[17], EarthWorm optimization Algorithm (EWA) [18], Ele-
phant Herding Optimization (EHO) [19], Monarch Butterfly
Optimization (MBO) [20].

REFERENCES

[1] http://tracer.lcc.uma.es/problems/onemax/onemax.html
[2] P. Conca, G. Stracquadanio, O. Greco, V. Cutello, M. Pavone,

G. Nicosia: “Packing equal disks in a unit square: an immunologi-
cal optimization approach”, 1st International Workshop on Artificial
Immune Systems (AIS), IEEE Press, pp. 1–5, 2015.

[3] V. Cutello, A. G. De Michele, M. Pavone: “Escaping Local Optima via
Parallelization and Migration”, VI International Workshop on Nature
Inspired Cooperative Strategies for Optimization (NICSO), Studies in
Computational Intelligence, vol. 512, pp. 141–152, 2013.

[4] V. Cutello, D. Lee, S. Leone, G. Nicosia, M. Pavone: “Clonal Se-
lection Algorithm with Dynamic Population Size for Bimodal Search
Spaces”, 2nd International Conference on Natural Computation (ICNC),
LNCS 4221, pp. 949–958, 2006.

[5] V. Cutello, D. Lee, G. Nicosia, M. Pavone, I. Prizzi: “Aligning Multiple
Protein Sequences by Hybrid Clonal Selection Algorithm with Insert-
Remove-Gaps and BlockShuffling Operators”, 5th International Confer-
ence on Artificial Immune Systems (ICARIS), LNCS 4163, pp. 321-
334, 2006.

[6] V. Cutello, G. Morelli, G Nicosia, M. Pavone, G. Scollo: “On discrete
models and immunological algorithms for protein structure prediction”,
Natural Computing, vol. 10, no. 1, pp. 91-102, 2011.

[7] V. Cutello, G. Narzisi, G. Nicosia, M. Pavone: “Clonal Selection Algo-
rithms: A Comparative Case Study using Effective Mutation Potentials”,
4th International Conference on Artificial Immune Systems (ICARIS),
LNCS 3627, pp. 13–28, 2005.

[8] V. Cutello, G. Nicosia, M. Pavone: ”An Immune Algorithm with Stochas-
tic Aging and Kullback Entropy for the Chromatic Number Problem”,
Journal of Combinatorial Optimization, vol. 14, no. 1, pp. 9–33, 2007.

[9] V. Cutello, G. Nicosia, M. Pavonem I. Prizzi: “Protein Multiple Se-
quence Alignment by Hybrid Bio-Inspired Algorithms”, Nucleic Acids
Research, vol. 39, no. 6, pp. 1980–1992, 2011.

[10] V. Cutello, G. Nicosia, M. Pavone, G. Stracquadanio: “An Information
Theoretic Approach for Clonal Selection Algorithms”, 9th International
Conference on Artificial Immune Systems (ICARIS), LNCS 6209,
pp. 144–157, 2010.

[11] V. Cutello, G. Nicosia, M. Pavone, J. Timmis: “An Immune Algorithm
for Protein Structure Prediction on Lattice Models”, IEEE Transaction
on Evolutionary Computation, vol. 11, no. 1, pp. 101–117, 2007.

[12] M. Pavone, G. Narzisi, G. Nicosia: ”Clonal Selection - An Immuno-
logical Algorithm for Global Optimization over Continuous Spaces”,
Journal of Global Optimization, vol. 53, no. 4, pp. 769–808, 2012.

[13] M. Poggiolini, A. Engelbrecht: “Application of the feature-detection
rule to the negative selection algorithm”, Expert Systems with Appli-
cations, vol. 40, no. 8, pp. 3001–3014, 2013.

[14] A. Prugel-Bennett, A. Rogers: “Modelling Genetic Algorithm Dynam-
ics”, Theoretical Aspects of Evolutionary Computing, pp. 59-85, 2001.

[15] J. D. Schaffer, L. J. Eshelman: “On crossover as an evolutionary viable
strategy”, 4th International Conference on Genetic Algorithms, pp. 61–
68, 1991.

[16] S. Smith, J. Timmis: “Immune network inspired evolutionary algorithm
for the diagnosis of Parkinsons disease”, Biosystems, vol. 94, no. (1–2),
pp. 34–46, 2008.

[17] G.G. Wang: “Moth search algorithm: a bio-inspired metaheuristic
algorithm for global optimization problems”, Memetic Computing, pp.
1–14, 2016.

[18] G.G. Wang, S. Deb, L.D.S. Coelho: “Earthworm optimization algo-
rithm: A bio-inspired metaheuristic algorithm for global optimization
problems”, International Journal of Bio-Inspired Computation, 2015.

[19] G.G. Wang, S. Deb, L.D.S. Coelho: “Elephant Herding Optimization”,
3rd International Symposium on Computational and Business Intelli-
gence (ISCBI), pp. 1–5, 2015.

[20] G.G. Wang, S. Deb, Z. Cui: “Monarch butterfly optimization”, Neural
Computing and Application, pp. 1–20, 2015.


