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Abstract—This paper proposes a memetic direct transcription
algorithm to solve Multi-Objective Optimal Control Problems
(MOOCP). The MOOCP is first transcribed into a Non-linear
Programming Problem (NLP) with Direct Finite Elements in
Time (DFET) and then solved with a particular formulation of
the Multi Agent Collaborative Search (MACS) framework. Multi
Agent Collaborative Search is a memetic algorithm in which a
population of agents combines local search heuristics, exploring
the neighbourhood of each agent, with social actions exchanging
information among agents. A collection of all Pareto optimal
solutions is maintained in an archive that evolves towards the
Pareto set. In the approach proposed in this paper, individualistic
actions run a local search, from random points within the
neighbourhood of each agent, solving a normalised Pascoletti-
Serafini scalarisation of the multi-objective NLP problem. Social
actions, instead, solve a bi-level problem in which the lower
level handles only the constraint equations while the upper level
handles only the objective functions. The proposed approach
is tested on the multi-objective extensions of two well-known
optimal control problems: the Goddard Rocket problem, and
the maximum energy orbit rise problem.

I. INTRODUCTION

In many practical cases in which a dynamical system needs
to be controlled, it is desirable to generate multiple alternative
solutions that are optimal with respect to a number of conflict-
ing cost functions. In the literature, few approaches have been
proposed to tackle multi-objective optimal control problems: in
Coverstone et al. [1] the authors combined Genetic Algorithms
and optimal control theory in a dual loop algorithm. In the
outer loop, NSGAII was generating vectors of co-states and
times of flight. For each set, the inner loop was solving a single
objective optimal control problem with given time of flight,
minimising the propellant consumption. In Ober-Blobaum et
al. [2] a direct transcription approach is used, coupled with
an approach that scalarises the multi-objective vector along
directions pointing at predefined unreachable points in the
criteria space. Each scalar problem is then solved with a
standard NLP solver. In [3] a similar approach is proposed
that uses a smoothed version of Tchebycheff scalarisation to
scalarise the MOO problem. In [4] the authors proposed a
dual loop algorithm in which the outer loop solves a multi-
objective problem handling a set of categorical variables and
the inner loop solves a set of single objective constrained
optimal control problems using Monotonic Basin Hopping.

This paper proposes a memetic approach to find a set of
Pareto optimal control policies that satisfy a set of dynamic
and algebraic constraints. The memetic solver is based on the
Multi-Agent Collaborative Search framework [5]. The optimal
control problem is first transcribed into a Non-linear Pro-
gramming Problem with Direct Finite Element Transcritpion
(DFET) [6] and then into two optimisation problems: a bi-
level optimisation where constraints are satisfied in an inner
level and objectives are handled at an outer level, and a single
level optimisation problem that works on a scalar version of
the original constrained multi-objective optimisation problem.

The single level approach exploits the ability of MACS
to generate displacements (in criteria space) within descent
cones that slide along predefined directions. A normalised
Pascoletti-Serafini scalarisation is used to turn the original
multi-objective NPL problem into a single objective problem
with a given direction in criteria space. This scalarisation does
not suffer from the inability to converge to non convex regions
of the Pareto front, typical of the weighted sum scalarisation,
and, in the implementation proposed in this paper, preserves
the extremal values of each individual objective function.

This paper is structured as follows: section II briefly gives
the mathematical description of multi-objective optimal con-
trol problems, section III explains the DFET transcription
method, section IV describes the solution approach and section
V presents some numerical tests. Finally section VI draws
conclusions.

II. MULTI OBJECTIVE OPTIMAL CONTROL PROBLEM
FORMULATION

This paper is concerned with the following multi-objective
optimal control problem:

min
u∈U

J = (J1, J2, ..., Ji..., Jm)

s.t.
ẋ = F(x,u, t)
g(x,u, t) ≥ 0
ψ(x0,xf , t0, tf ) ≥ 0
t ∈ [t0, tf ]

(1)

where J is a vector of objectives Ji, that are functions of the
state variable x : [t0, tf ] → Rn, control variable u ∈ L∞

and time t. The functions x belong to the Sobolev space



W 1,∞ while the objective functions are Ji : Rn+2 × Rp ×
[t0, tf ] −→ R. The objective vector is subject to a set of
dynamic constraints with F : Rn × Rp × [t0, tf ] −→ Rn,
algebraic constraints g : Rn × Rp × [t0, tf ] −→ Rs, and
boundary conditions R2n+2 −→ Rq . Note that problem (1) can
include a number of additional static parameters, is generally
non-smooth and can have many local minima.

III. OPTIMAL CONTROL PROBLEM TRANSCRIPTION

Problem (1) is here translated into a multi-objective non-
linear programming problem via DFET transcription. DFET
transcription for optimal control problems was initially pro-
posed in [7] and uses finite elements in time on spectral bases
to transcribe the differential equations into a set of non-linear
algebraic equations. Finite Elements in Time for the indirect
solution of optimal control problems were initially proposed
by Hodges et al. in [8], and during the late 1990s evolved
to the discontinuous version. The motivation for the use of
DFET for the transcription of optimal control problems is
twofold. First, as pointed out by Bottasso et al. in [9], FET for
the forward integration of ordinary differential equations are
equivalent to some classes of implicit Runge-Kutta integration
schemes, can be extended to arbitrary high-order, are very
robust (i.e. they can be used for the long term propagation
of stiff problems) and allow full h-p adaptivity. Second, in the
past decade direct transcription with FET on spectral bases
has been successfully used to solve a range of difficult single
objective optimal control problems: from the design of low-
thrust multi-gravity assist trajectories to Mercury [10], to the
Sun [11], to the design of transfers to the Moon in the full 4-
body problem, low-thrust transfers in the restricted three body
problem and optimal landing trajectories to the Moon [7].

For each individual cost function let’s here consider the
following typical optimal control problem (known as Bolza’s
problem):

min
u∈U

Ji = αiφi(x0,xf ,u0,uf , t0, tf ) + βi

∫ tf

t0

Li(x,u, t)dt

(2)
where αi and βi are positive weights, φi is a general function
of initial and final time and corresponding initial and final
time states and controls, and Li is a general function of their
time history with a possible explicit time dependence. From
a multi-objective optimisation perspective, this formulation
corresponds to a weighted sum scalarisation, which is known
to be unable to represent points on non-convex regions of the
Pareto front. Therefore, to avoid this problem and without loss
of generality, in this paper only cases with (αi = 1, βi = 0)
or (αi = 0, βi = 1) will be considered: the multiplicity of
objectives will be handled by the multi-objective optimisation
algorithm. The differential constraints can be recast in weak
form and integrated by parts, leading to∫ tf

t0

ẇTx + wTF(x,u, t)dt−wT
f x

b
f + wT

0 x
b
0 = 0 (3)

where w are generalised weight functions and xb are the
boundary state values. Let the time domain D be decomposed
into N finite elements, such that D =

⋃N
j=1Dj(tj−1, tj), and

parametrise, over each Dj , the states, controls and weight
functions as

x(t) =
N

f
j=1

Xj =
N

f
j=1

l∑
s=0

fsj(t)xsj (4)

u(t) =
N

f
j=1

Uj =
N

f
j=1

m∑
s=0

gsj(t)usj (5)

w(t) =
N

f
j=1

Wj =
N

f
j=1

l+1∑
s=0

hsj(t)wsj (6)

where
N

f
j=1

denotes the juxtaposition of the polynomials defined

over each sub-interval, fsj(t), gsj(t) and hsj(t) indicate the
s− th polynomial over element j and are chosen among the
space of polynomials of degree l, m and l + 1 respectively,
while xsj , usj and wsj denote the nodal values of the
states, control and test functions. It is practical to define
each Dj over the normalised interval [−1, 1] through the

transformation τ = 2
t−

tj−tj−1
2

tj−tj−1
. This way it is easy to express

the polynomials fsj(t), gsj(t) and hsj(t) as the Lagrange
interpolation on Gauss nodes in the normalised interval:

fsj(t) = f̃sj(τ) =

l∏
k=0,k 6=s

τ − τk
τs − τk

(7)

where τ∗ indicates a Gauss node. Similarly it can be done for
gsj and hsj . Different Gauss nodes will lead to schemes with
slightly different characteristics. In this work, Gauss-Lobatto
nodes will be used for the generation of the polynomials for
states and weight functions, while Gauss-Legendre nodes will
be used for the controls. Substituting the definitions of the
polynomials into the objective functions and integrating with
Gauss quadrature formulas leads to objective function

J̃i =αiφi
(
Xb

0,X
b
f ,U

b
0,U

b
f , t0, tf

)
+

βi

N∑
j=1

l+1∑
k=1

σkLi (Xj(τk),Uj(τk), τk)
∆tj

2

(8)

and, for each element j, constraints
l+1∑
k=1

σk

[
Ẇj(τk)TXj(τk) + Wj(τk)TFj(τk)

∆tj
2

]
−WT

p+1,jX
b
j + WT

1,jX
b
j−1 = 0

(9)

where τk and σk are Gauss nodes and weights, and Fj(τk)
is the shorthand notation for F (Xj(τk),Uj(τk), τk). Gauss-
Legendre weights and nodes are used for the numerical
quadrature in this work, i.e., the polynomials generated
through the Lagrange interpolation over the Gauss-Legendre
or Gauss-Lobatto nodes are then evaluated at the Gauss-
Legendre nodes over each interval. Inter element matching
conditions, weakly enforcing continuity of the states, will



naturally remove the dependency on Xb
j for all elements except

for the first and last ones, so that only Xb
1 and Xb

N remain.
With DFET, optimal control problem (2) was transcribed into
the following non-linear programming problem:

min
p

J̃(x,p)

s.t.
c(x,p) ≥ 0

(10)

where the vector x contains all the nodal values for the
states except the boundary ones and p = [u,x0,xf , t0, tf ]T

collects all the static and dynamic control variables. In general,
t0, tf ,x0 and xf can be free and thus regarded as continuous
static control variables.

IV. SOLUTION WITH MULTI-AGENT COLLABORATIVE
SEARCH

Multi-Agent Collaborative Search is a meta-heuristics to
combine local and global search heuristics. A set of agents
is endowed with a list of possible actions that can involve
other agents or simply collect information on a neighbourhood
of each agent. In MACS2 the idea of search directions was
introduced in the logic of the agents which could select new
candidate solutions according to either dominance or Tcheby-
cheff scalarisation. The same logic and the ability of the agents
to incorporate local gradient-based actions are here exploited
to solve problem (10) . The general MACSoc (MACS for
optimal control) scheme is summarised in Algorithm 1. The
individualistic and social actions are described in the following
section and are related to the solution of two different prob-
lems. The population P0 (Line 1 in Algorithm 1) is initialised
randomly with Latin Hypercube sampling, while the weights
of Tchebycheff scalarisation λ (Line 2 in Algorithm 1) are
generated as in section IV-B. After performing individualistic
and social actions (lines 4 and 7 in Algorithm 1) both the
population and the archive are updated. The filtering process
(Lines 6 and 9 in Algorithm 1) that updates the global
archive Ag , where all Pareto optimal solutions are stored,
is redistributing solutions so that a pseudo-electric potential
function (function of the reciprocal distance of the elements in
the archive) is minimised (see [12] for further details). Finally,
at each iteration, the descent direction (or scalar subproblem)
allocated to each agent is updated (line 10 in Algorithm 1).

A. Problem Formulation in the MACS Framework

In order to solve (10) with MACS, the problem is tran-
scribed in two different forms amenable to a solution with
either the individualistic or social actions. The first form is
a normalised version of the Pascoletti-Serafini scalarisation,
also known as goal attainment method. Using the Pascoletti-
Serafini scalarisation, for each agent j, problem (10) is tran-
scribed into:

minα>0 α
s.t.
λijϑij(x,p) ≤ α i = 1, ..,m
c(x,p) ≥ 0

(11)

Algorithm 1 MACSoc Framework
1: Initialise population P0 and global archive Ag
2: Initialise search directions d and Tchebycheff weights λ
3: while nfeval < max fun eval do
4: Run individualistic heuristics on Pk
5: Pk → P+

k

6: Update archive Ag with potential field filter
7: Run social heuristics combining P+

k and Ag
8: P+

k → Pk+1 based on Tchebycheff scalarisation
9: Update archive Ag with potential field filter

10: Update subproblem allocation
11: end while

where λj is the vector of Tchebycheff weights associated
to agent j, ϑij is the i-th component of the rescaled ob-
jective vector of the j-th agent and α is a slack variable.
This reformulation of the problem is constraining the j-th
agent the move, in criteria space, within the descent cone
defined by the point αdj + ζj along the direction dj =
(1/λ1j , ..., 1/λij , ..., 1/λmj). The rescaled objective vector is

ϑij(x,p) =
J̃ij(x,p)− z̃i
z∗ij − z̃i

i = 1, ..,m (12)

where z∗j is equal to J̃j(x,p
c) and (x,pc) is the initial guess

for the solution of (11). This way the components of ϑj(x,p)
have value 1 at the beginning of the local search and if the
agent converges to the utopia point z̃, the components of
ϑj(x,p) become all equal to 0. The choice of λj and z̃ will be
discussed in the following subsection. From the normalisation
one can derive the components of the vector ζj :

ζij =
zi

z∗ij − z̃i
i = 1, ..,m (13)

The presence of the rescaling of the objectives, together with
the choice of λj and z̃j , are the elements that distinguish the
proposed approach from the one given in [3]. Note that solving
problem (11) already provides a non-dominated solution that
can be potentially inserted in Ag and used to update Pk. The
pseudocode can be found in Algorithm 2. Note that the size
of the neighbourhood Bj is given by the parameter ρj . The
point (x,pc) is taken at random in Bj if (x,p)j did not change
from the previous iteration, otherwise (x,pc) = (x,p)j . If the
local search returns an infeasible solution a penalty value M
is assigned to all cost functions and the solution is rejected.

The second form is a bi-level formulation of problem (10) in
which the upper level is handling only the objective functions
and the lower level the constraint functions. Problem (10) is
then transcribed for each agent j in the following general bi-
level optimisation problem:

min
p∗

J̃j(x
∗,p∗)

s.t.
(x∗,p∗)j = argmin{f(x,pc)|c(x,pc) ≥ 0}

(14)

where f = 1 in this implementation and (x,pc) is a candidate
solution generated with a Differential Evolution (DE) operator.



The DE operator is applied to a mix of agents associated to a
particular weight λ and elements of the archive Ag . If the inner
level returns a feasible solution, that solution is selected for
possible inclusion in the population Pk+1 using Tchebycheff
criterion (line 8 of Algorithm 1). The pseudocode for both
levels can be found in Algorithms 3 and 4. Note that if the
inner level return an infeasible solution a penalty value M is
assigned to the cost functions and the solution is rejected.

B. Selection of λ and z̃

In [3], the MOOCP was tackled by first solving each of the
two individual objectives, and then choosing a set of evenly
spaced weights, obtaining a set of directions d. This approach
has a two main limitations: first, since only a local strategy
was employed, there is the possibility that the extreme values
of the Pareto front generated are on a local Pareto front.
Second, that approach is not easy to generalise for more than
two objectives: as already stated by its authors regarding the
extension to the three objective case: ”it is well known that
the boundary of the Pareto front may very well lie outside the
triangle formed by the three points”. The proposed approach
instead consists in assigning vector λi = (0, 0, i, .., 0, 0) to
agents solving subproblem i and vector λj = (1,1,1,··· ,1)

‖(1,1,1,··· ,1)‖ to
all the other agents. The modified utopia point z̃ is given by

z̃ = 2z− z∗A (15)

where z and z∗A are respectively the utopia and nadir points of
the current approximation to the Pareto front that is contained
in the archive Ag . When an agent j solving subproblem i
has locally converged and is not displaced by any action, its
subrpoblem is updated with λj = (1,1,1,··· ,1)

‖(1,1,1,··· ,1)‖ , conversely

an agent associated to λj = (1,1,1,··· ,1)
‖(1,1,1,··· ,1)‖ that has locally

converged and is not displaced by any action will have its
subproblem replaced with λi = (0, 0, i, .., 0, 0) (line 10 in
Algorithm 1).

V. NUMERICAL TESTS

In this section we test the proposed direct memetic approach
on the solution of two simple test cases: the first test case is
the Goddard Rocket problem and the second is the maximum
energy orbit rise problem. For the former an analytical solution
is available for a single objective optimisation problem and
will be used to construct the exact Pareto front. For the latter
the exact control law is known but an analytical expression for
the Pareto front is not available although it can be empirically
derived collecting the solutions from multiple runs. The algo-
rithm was run 30 times on each problem to gather statistics
on the quality of the Pareto front. The local NLP solver is the
Matlab fmincon function.

A. Goddard’s rocket problem

The Goddard’s rocket problem is to find an optimal ascent
trajectory from a flat celestial body with no atmosphere to a
prescribed altitude. The control variable is the thrust angle and
both gravity and thrust accelerations are constant. The final

Algorithm 2 Individualistic Action
1: Set z̃ = 2z− z∗A
2: if current agent is solving problem i only then
3: λj = (0, 0, i, .., 0, 0)
4: else
5: λj = (1,1,1,··· ,1)T

‖(1,1,1,··· ,1)T ‖
6: end if
7: Pick a point (x,pc) in Bj
8: Run local search from (x,pc) to solve Problem (11) and

find solution (x∗,p∗)j
9: if (x∗,p∗)j feasible then

10: Return (x∗,p∗)j , J̃j(x
∗,p∗) and increase ρj < 1

11: else
12: if number of times ρj is reduced > max contr ratio

then
13: ρj = 1
14: else
15: Reduce ρj and return (x∗,p∗)j = (x,p)j , J̃j = M
16: end if
17: end if

Algorithm 3 Social Action
1: Select weight λ
2: Select agents associated with λ and elements of the archive
Ag

3: Apply DE operator to selected agents and elements of the
archive and generate candidate solution u = (x,pc)

4: Run inner level on u

Algorithm 4 Inner level
1: Run local search from (x,pc) to find solution (x∗,p∗)j
2: if (x∗,p∗)j feasible then
3: Return (x∗,p∗)j , J̃j(p

∗,x∗)
4: else
5: Return (x∗,p∗)j = (x,p)j , J̃j = M
6: end if

altitude is assigned and the final vertical component of the
velocity has to be zero. The single objective optimal control
formulation of the problem and its analytical solutions for
either minimum time or maximum horizontal velocity can be
found in [13], while a numerical solution with DFET can be
found in [6].

In this paper, the problem is reformulated as follows, to
consider the two objectives simultaneously:

min
tf ,u

(J1 = tf , J2 = −vx(tf )) (16)

subject to the dynamic constraints:
ẋ =vx

v̇x =a cosu

ẏ =vy

v̇y =− g + a sinu

(17)



TABLE I
MACSOC SETTINGS

max fun eval 10000
pop size 10
ρ ini 1
F 0.9
CR 0.9

p social 1
max arch 10

max contr ratio 5

TABLE II
fmincon SETTINGS

max eval 100
tol con 1e-6

where g is the gravity acceleration, a the thrust acceleration,
x and y are the components of the position vector, vx and vy
the components of the velocity vector and u the control. The
dynamics is integrated from time t = 0 to time t = tf . The
boundary conditions are:

x(0) = 0; vx(0) = 0

y(0) = 0; vy(0) = 0

y(tf ) = h; vy(tf ) = 0

(18)

The parameters g, a and h were respectively set to 1.6 · 10−3,
4 ·10−3 and 10. Following [6], the DFET method was applied
splitting the time domain into 4 elements, with polynomials
of order 6 for each control and state variable. The control
angle was bounded between −π2 and π

2 , while total mission
time was bounded between 100 and 250. This gives a total
of 29 optimisation variables. Table I summarises the settings
of the optimiser: max fun eval the maximum number of
objective functions evaluation, pop size the number of agents
performing the search, ρ ini the initial radius of the local
neighbourhood, F and CR the standard parameters for the
Differential Evolution social actions, p social the ratio be-
tween agents performing only social actions and the total num-
ber of agents, max arch the number of solutions to be stored
in Ag , contr ratio contraction rate of the neighbourhood
radius, and max contr ratio the maximum number of times
ρj can contract before it is reset. Settings reported in Table
II instead refer to the parameters of fmincon: max con eval
is the maximum number of constraints evaluation (for each
call to the objective functions) and tol con is the threshold
under which the solution is considered to be feasible. All other
fmincon settings are left as default.

Algorithm 1 was run 30 times to collect some statistics on
its convergence behaviour (see Table III). The Generational
Distance (GD) and Inverse Generational Distance (IGD) were
used as accuracy metrics and were computed on a rescaled
front in the interval [0, 1]. For the Goddard’s rocket problem,
GD and IGD were computed using the analytical solution of
the minimum time problem for different maximum vx while
for the Orbit Rise case the cumulative front derived from 30
runs plus the maximum energy solutions for different times of

TABLE III
CONVERGENCE AND SPREADING STATISTICS FOR THE TWO PROBLEMS

Problem mean GD mean IGD
(variance) (variance)

Goddard 2.833e-2 2.9449e-2
(1.4232e-5) (1.5498e-5)

Orbit 5.9444e-2 4.387e-2
(1.96243e-4) (1.6173e-4)
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Fig. 1. Non dominated solutions of 30 different runs for the Goddard problem.
Crosses indicate solutions for which trajectories, velocities and control law
over time are also plotted. Circles indicate the objective values corresponding
to the analytic solutions with the same time as the solutions marked with
crosses

transfer was used as the reference front. Figure 1 shows the
cumulative front from all 30 runs, along with 4 representative
solutions (marked with crosses) and the analytic solutions
with the same ascent time of the representative solutions
(marked with circles). The crosses and circles are perfectly
overlapping. The trajectories and time histories of the controls
and velocities for the 4 representative solutions are plotted in
figures 2 and 3 to 6 along with the single objective numerical
solution and the analytic solution for the same ascent times.
The solution obtained with the proposed approach is very
close to both the numerical single objective and the analytic
solutions. The discontinuities in the control laws are due to
the discretisation scheme and to tolerance on the optimality
of the solutions.

B. Maximum Energy Orbit Rise

The original maximum energy orbit rise formulation and
some solution strategies can be found in [14] and [6]. In this
case, a spacecraft is orbiting around a celestial body, and it is
required to increase its total energy by changing its altitude and
velocity. The only control variable is again the thrusting angle,
and the only other force affecting the spacecraft is gravity (in
this case it is considered variable with altitude). The multi-
objective extension, proposed in this paper, maximises the final
energy and minimises the manoeuvre time:

min
tf ,u

(
J1 = tf , J2 = −

(
v2r(tf ) + v2t (tf )

)
2

+
1

r(tf )

)
(19)



x[LU]
-20 0 20 40 60 80 100 120

y[
L

U
]

-2

0

2

4

6

8

10

12

Trajectory 1
Trajectory 2
Trajectory 3
Trajectory 4

Fig. 2. Trajectories corresponding to the 4 selected points on the Pareto front

t[TU]
0 20 40 60 80 100 120

ve
lo

ci
ty

[L
U

/T
U

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
v

x
v

y
v

x
(analytic)

v
y
(analytic)

(a) Time history for the velocities

t[TU]
0 50 100 150 200 250

u[
ra

d]

-3

-2

-1

0

1

2

3 u
u(analytic)

(b) Time history for the controls

Fig. 3. Time history for velocities and controls, point 1 on the Pareto front

subject to the dynamic constraints:

ṙ =vr

v̇r =
v2t
r
− 1

r2
+ a cosu

θ̇ =
vt
r

v̇t =− vtvr
r

+ a sinu

(20)
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Fig. 4. Time history of velocities and controls, point 2 on the Pareto front

where r and θ are the polar coordinates of the spacecraft, vr
and vt are the radial and transversal velocities, and a is the
magnitude of the control acceleration. In this work, a = 1e−2.
The boundary conditions are:


r(0) = 1.1; vr(0) = 0

θ(0) = 0; vt(0) =
1√
1.1

(21)

Following [6], the time domain was subdivided into 30 ele-
ments of order 1 for each state and control variable. Control
angles were bound between −π and π, while total mission
time was bounded between 20 and 80. In total there are 61
optimisation variables. The transcribed problem was then opti-
mised with MACSoc, with the same settings as in the previous
case. The non dominated Pareto front of the combined 30 runs
is reported in figure 7, while the GD and IGD are reported in
Table III. In this case, we plot the comparison of 4 trajectories,
and the corresponding control laws in figures 8 and 9 to 12
where one can see that the MACSoc control laws (dashed line
in figures 9 to 12) closely follows the analytical solution for
each tf (continuous line in the same figures).
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Fig. 5. Time history of velocities and controls, point 3 on the Pareto front

VI. CONCLUSION

The paper proposed a novel memetic approach for the
solution of multi-objective optimal control problems called
MACSoc. The results on two standard optimal control prob-
lems with known control laws demonstrated that MACSoc
can reliably converge to the Pareto front with good accuracy,
good spreading of the solutions and a relatively low number
of function evaluations. Further work is required to improve
the treatment of infeasible solutions. The simple rejection
mechanism is effective in the cases treated in this paper but can
prevent progression towards the Pareto front in more complex
problems with more difficult constraints.
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