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Abstract—With foresight into the state of the wireless channel,
a robot can make various optimization decisions with regards to
routing packets, planning mobility paths, or switching between
diverse radios. However, the process of predicting link quality
(LQ) is nontrivial due to the streaming and dynamic nature of
radio wave propagation, which is complicated by robot mobility.
Due to robot movement, the wireless propagation environment
can change considerably in terms of distance, obstacles, noise,
and interference. Therefore, LQ must be learned and regularly
updated while the robot is online. However, the existing fuzzy-
based models for assessing LQ are non-adaptable due to the
absence of any learning mechanism. To address this issue, we in-
troduce a fuzzy-based prediction model designed for the efficient
online and incremental learning of LQ. The unique approach
uses fuzzy logic to infer LQ based on the collective output from
a series of offset classifiers and their posterior probabilities.
In essence, the proposed model leverages machine learning for
extracting the underlying functional relationship between the
input and output variables, but deeper inferences are made from
the output of the learning algorithms using fuzzy logic. Wireless
link data from a real-world robot network was used to compare
the model with the traditional linear regression approach. The
results show statistically significant improvements in three out of
the six real-world indoor and outdoor environments where the
robot operated. Additionally, the novel approach offers a number
of other benefits, including the flexibility to use fuzzy logic for
model tuning, as well as the ability to make implementation
efficiencies in terms of parallelization and the conservation of
labeling resources.

I. INTRODUCTION

Robots typically transmit a steady stream of data, consisting
of sensor readings and video imagery, to other nodes, such
as an observation control unit [1]. The challenge is that
a robot transmitter is natively unaware of the link quality
(e.g., throughput) at the receiver without explicit feedback,
and without this information from the receiver, a robot may
inadvertently cause its wireless connectivity to degrade to
an insufficient quality as it moves. Unfortunately, having the
destination node consistently transmit feedback across the
wireless channel to the sender is relatively expensive in terms
of energy and frequency-channel utilization. A more efficient
alternative would be to have the sending robot perform LQ
prediction in lieu of the receiver providing explicit feedback
after every packet reception. In other words, the transmitting
robot would use a set of relatively inexpensive inputs, such as

received signal strength indicator (RSSI) from its radio, and
relate them to the desired target of LQ using machine learning.

With the ability to gain link-awareness in a cost-effective
manner, a robot can realistically exploit the knowledge in a
variety of ways. For instance, as a robot moves, it could make
LQ predictions and build a spatial mapping of its connectivity
area using the historical set of predictions and feedback
examples [2]. With a spatial awareness of LQ, a robot can plan
its movement in an attempt to optimize network connectivity
[3]. The concept of planning a mobility path that is favorable
for wireless connectivity is essential for robots serving as
mobile relays [4], or those collaborating and moving with team
members [5-7]. The ability to accurately foresee LQ prior to
each packet transmission can also be incorporated into the ad-
hoc networking protocols of robots, so that the most reliable
and efficient routes are selected for packet transmissions [8, 9].
Finally, predictions on LQ are essential for the timely handoff
between diverse radio systems, as described in [10, 11], where
backup directional radio systems are activated by robots based
on LQ to extend the range of communications.

Unfortunately, it is difficult for a robot to predict in advance
how well its impending transmission will be received at
the destination. One of the challenges is that there are few
low-cost metrics that can serve as predictors of LQ [12].
Furthermore, the metrics provided by the radio hardware tend
to fluctuate rapidly as a result of being directly related to
the effects of radio wave propagation [13]. The duration that
these physical-layer metrics remain stationary (i.e., the channel
coherence time) can be on the order of microseconds in some
mobile networks [14]. However, robots, like other higher-layer
applications, often cannot complete optimization adjustments
that quickly. As a result, the radio metrics must be statistically
related to LQ in a generalized fashion, and therefore, the met-
rics can be considered somewhat noisy. Another complication
is that LQ is dependent upon the characteristics of the radio
hardware (e.g., antenna gain, transmit power, etc.) and the
propagation environment (e.g., amount of noise, interference,
and shadowing characteristics) [15]. Therefore, concept drift
or a deviation in the statistical relationship between the input
metrics and the output LQ indicator can occur whenever these
environmental factors change considerably.



Because the wireless channel is dynamic in mobile net-
works, a robot must learn the dependencies between the input
features and the target variable while operating online. Further-
more, the robot must incrementally update its prediction model
over time in order to mitigate the effects of concept drift.
To meet these objectives, this paper presents a fuzzy-based
prediction model capability of adaptation through supervised
learning and batch-style retraining. The model uses a series of
classifiers to statistically relate the inputs at the sender to an
indicator of LQ measured at the receiver. The fuzzy framework
is incorporated through the strategic labeling perspective of
these classifiers, and the way the collective outputs from
the classifiers are interpreted in a fuzzy manner to infer a
continuous (i.e., non-discrete) measure of LQ.

The fuzzy-based prediction model is unique and offers
several advantages. Similar to other fuzzy-based systems, the
model is relatively straightforward to modify in terms of
tuning or incorporating domain knowledge because its infer-
ence mechanism is based on human reasoning and described
linguistically. However, unlike the existing fuzzy-based LQ
models, the architecture presented in this paper is adaptable
because of its internal classifiers and supervised learning
framework. Another advantage is that the task of learning from
examples is divided among a series of binary classifiers, which
can be programmed to execute concurrently in order to gain
speedup. The speed and efficiency of the prediction model is
an important aspect given the streaming nature of LQ and the
resource constraints of most robots.

Another novelty of the proposed model is its batch-style
learning format, which contrasts with the existing LQ predic-
tion models that make tuning adjustments based on individual
samples. Learning in batches can reduce labeling costs and
improve model stability. In terms of overhead reduction, the
energy and network costs of labeling is not insignificant,
and therefore, the knowledge provided by a particular sample
should be leveraged as long as possible until it should be
eventually forgotten due to concept drift. On the other hand,
the existing models are memoryless systems because they
dispose of any sample knowledge immediately after the model
is tuned with it [16], and this intuitively seems wasteful
given the cost of labeling. As for model stability, the wireless
channel can produce samples that are outliers due to the effects
of deep fading [14]. Consequently, prediction adjustments
based on single samples, such as those that have undergone
deep fades, can have adverse effects on model accuracy. To
mitigate this issue, the proposed model learns in batches so
that changes are based on a statistical generalization over
multiple samples.

The precise makeup of a batch-style framework that adap-
tively samples the environment and incrementally presents new
samples to the proposed model is left for future work. Instead,
the primary purpose of this paper is to take the preliminary
step of detailing the fuzzy-based machine learning method and
to evaluate its accuracy in an offline manner using real-world
datasets. These datasets, which were extracted from an actual
robot network, are available online to facilitate further research

in the field.
The remainder of the paper is organized as follows. Section

II provides an overview of the related work. Subsequently,
the proposed fuzzy-based model is described in Section III.
In Section IV, the model is evaluated using real datasets
from a mobile ad-hoc network. Finally, Section V provides
concluding remarks and future work proposals.

II. RELATED WORK

A. Fuzzy-based Methods for Predicting LQ

Empirical studies have concluded that LQ cannot be ac-
curately assessed using a single input metric [12, 15], and
therefore, multiple metrics should be considered to improve
accuracy. Fuzzy logic has been leveraged in some works for
combining multiple inputs to estimate LQ in wireless sensor
networks (WSNs) [17-19]. However, these fuzzy-based models
quantify LQ using fuzzy sets that were configured offline
based on prior experimentation. Furthermore, the fuzzy sets of
these designs remain static while the system is online under
the assumption that the overlapping regions of the fuzzy sets
will cope with any unexpected variations in the input metrics.

In the domain of fuzzy control [20], there exist adaptive
models that perform system identification and tracking. How-
ever, the control paradigm is inappropriate for LQ prediction
given that most applications have little or no control over the
input features. Outside of the controls domain, there exists
fuzzy systems that can learn from their environment. However,
these fuzzy-based learners are generally intended to automate
the process of fuzzy rule-generation through mechanisms such
as neural networks [21]. In contrast, this work is focused on
adapting to concept drift by learning the mapping relationships
(i.e., fuzzy memberships) relating the inputs variables to the
target output.

The closest resemblance to the proposed approach outside
the domain of LQ estimation is fuzzy cluster analysis [22].
Both methods share the fundamental concept of assigning
levels of certainty to class memberships using posterior prob-
abilities, but the problem domain, as well as the execution
details, are different as will become more evident in Section
III.

B. Machine Learning Methods for Predicting LQ

Some works utilize machine learning algorithms based on
time series analysis for LQ prediction [23-26]. Liu et al. use a
weighted sum of ordered past observations of packet reception
ratio (PRR) to forecast its future value [23]. However, the
statistical mapping of two radio metrics to PRR was performed
offline. In another study, Farkas et al. employs pattern match-
ing via cross correlation of time series data to predict LQ [24,
25]. This approach would be difficult and resource-intensive
based on the wide variety of pattern possibilities. Another
work by Millan et al. uses time-series analysis, but the datasets
were extracted from a stationary network with arguably less
variation than mobile networks [26].

Caleffi and Paura employ neural networks to predict the
expected number of transmissions (ETX) to deliver the next



packet [27, 28]. The neural-based predictor showed promising
results in simulation. However, in a follow-up study with
Cacciapuoti et al., the performance of the neuron estimator was
inconclusive [27]. Another possible concern with the neural-
based approach would be its computational requirements com-
pared to other machine learning techniques [29].

The use of regression techniques in the form of supervised
learning have also been explored in a series of works [29-
34]. In [29, 31], a distributed protocol was designed to exploit
the mobility of nodes for gathering diverse training samples,
but the models were only trained once and not designed to be
incremental learners. Di Caro et al. developed an online learn-
ing framework that incrementally retrains its regression model
[30] using Locally Weighted Projection Regression (LWPR),
but the evaluations were based on datasets from a stationary
WSN. Wang et al. [34] evaluated the use of classifiers for
quantifying LQ into discrete categories such as ‘good’ or
‘bad’, but the system offers limited granularity. Liu and Cerpa
studied the use of machine learning for predicting the chances
of successful packet delivery over a short-term window [32,
33]. The works primarily differ in that the learning took place
offline in [33], while the model was updated online in [32].

In general, the aforementioned works utilized existing algo-
rithms, which are often available in online repositories such as
[35, 36]. The novelty of these works existed in the application
of different algorithms, features, or target variables within the
domain of LQ prediction. This paper differs in that it leverages
existing machine learning algorithms to develop an alternative
model that is based on fuzzy logic.

III. ARCHITECTURES OF THE FUZZY-BASED LEARNER

A. The Mamdani Variant of the ETF Model

Fuzzy systems generally perform a sequence of main sub-
processes, consisting of fuzzification, inference, and defuzzi-
fication, to generate crisp (i.e., continuous) outputs from mul-
tiple input variables [20]. Traditionally, the fuzzification step
is accomplished using triangular-shaped, Gaussian-shaped, or
other types of functions that are often setup using domain
knowledge and frequently remain static after configuration.
However, given the dynamic nature of the wireless channel,
membership functions need to be adaptable due to concept
drift. To incorporate adaptability, the proposed model leverages
a series of binary classifiers to assign the input samples into
fuzzy sets (i.e., linguistic values) with a level of certainty based
on the posterior probabilities of the classifiers. The classifiers
adapt their decision boundaries based on the new samples
incorporated into each new training batch.

The first version of the proposed model only modifies the
traditional step of fuzzification, where inputs are mapped
into fuzzy sets. Hence, the remaining logic of inference
and defuzzification using fuzzy sets, which is the trademark
of Mamdani systems, remains intact. The usual means of
fuzzification is replaced in the proposed model using a series
of binary classifiers that are diversely emplaced with respect
to the target variable as depicted in Fig. 1. The figure shows
a series of received signal strength indicator (RSSI) samples

plotted with respect to the target label of throughput potential
ratio (TPR). TPR is defined as

TPRi =
ri

max(r)
(1)

where ri is the data rate for the ith transmission and max(r)
is the highest data rate observed since link inception. TPR is
only measured and accurately known to the receiver, whereas
RSSI is readily available for sampling from the sender’s radio.

The collection of classifiers, indicated by the three horizon-
tal and colored lines in Fig. 1, forms a type of ensemble. As a
result, the overall approach is referred to as the ensemble-to-
fuzzy (ETF) model. It is worth noting that the use of multiple
classifiers within the ETF model does not meet the usual
definition of an ensemble. Traditionally, the term ensemble
refers to a diverse and independent set of predictive models
that operate on the same training data, and the results of
which are then combined in some fashion to generate a
collective prediction that is consistently more accurate than
any individual model [36]. On the other hand, the ensemble
used in the ETF model consists of classifiers that use the same
learning algorithm, but they operate on different class labels
due to their unique placement on the target universe.

The first step in setting up the ETF model is to divide
the target universe into the desired number of equally-spaced
regions or fuzzy sets. Each fuzzy set is then logically assigned
a linguistic value. As shown on the left side of Fig. 1, the
sample space was classified into four different fuzzy sets that
correspond to linguistic throughput potential ratio (TPR) levels
of ‘high’ (H), ‘moderate high’ (MH), ‘moderate low’ (ML),
and ‘low’ (L). The number of binary classifiers needed to make
the fuzzy distinctions is one less than the number of selected
fuzzy sets.

Once the labeling boundaries of the fuzzy sets have been
established, training examples must be collected and assigned
unique class labels for each individual classifier. As indicated
in Fig. 1, each classifier within the ensemble labels a sample
with a binary ‘1’ if the example resides above its target
threshold; otherwise, a binary ‘0’ would be assigned. After
labeling sufficient examples, the classifiers are trained using
the same type of supervised learning algorithm, but each
classifier uses its own set of independent labels.

1. Define linguistic values

and label boundaries

High (H)

Moderate 

High (MH)

Moderate 

Low (ML) 

Low (L)

2. Label data, train classifiers,

and make predictions

3. Concatenate

ensemble output

0  0  0

0  0  1

0  1  0

0  1  1

1  0  0

1  0  1

1  1  0

1  1  1

4. Assign fuzzy

membership based on 

logic and posterior 

probabilities

L and ML

H and MH

.

.

.

Fig. 1. Steps for adaptable fuzzification using binary classifiers.



After training, the ensemble can proceed to assign fuzzy
memberships to any unlabeled sample it is presented. The
process starts by concatenating together the classification
decisions from each classifier. The concatenated output forms
a discrete set of binary combinations as indicated in Fig.
1. Together, the outputs identify the two most appropriate
fuzzy sets to which a sample belongs. Fuzzy reasoning and
if-then logic are used to establish these assignments based
on the level of agreement exhibited within the ensemble. For
instance, in the case of an ensemble output of ‘000’, all of the
classifiers agree that the sample primarily belongs to the fuzzy
set of ‘low’ (L), but in the essence of fuzzy logic, the sample
may also partially belong with a degree of less than 0.5 to
the neighboring (i.e., secondary) fuzzy set of ‘moderate low’
(ML). In this example case of ‘000’, the precise membership
levels to each neighboring fuzzy set would be assigned using
the posterior probabilities from the bottom classifier because it
divides the two fuzzy sets where the sample should logically
reside.

Table I specifies the fuzzy membership assignments for
every possible ensemble output of Fig. 1. The input variable,
x, in the posterior probabilities of P (0|x) and P (1|x) in Table
I is annotated as a single variable for this section, but the input
variable should be treated as a vector of features, x, in the next
section. For any particular case in Table I, a sample is only
assigned membership into two fuzzy sets. Furthermore, only
a single classifier performs membership assignments using
its P (0|x) and P (1|x), and therefore, the sum of the fuzzy
memberships is one. Fuzzy sets not listed for a particular case
in Table I are set to zero.

Besides the straightforward cases of ‘000’ and ‘111’, the
other possibilities outlined in Table I require some additional
consideration before selecting the two most appropriate fuzzy
sets. For instance, sub-nested if-then logic shown in Table I
is used in the cases of ‘001’ and ‘011’ in order to identify

TABLE I
FUZZIFICATION LOGIC USED IN THE ETF METHOD

Ensemble Output
Fuzzy Set Assignments

Top-Middle-Bottom

0-0-0 L = Pbottom(0|x),ML = Pbottom(1|x)

0-0-1

if Pbottom(1|x) > Pmiddle(0|x), then
ML = Pmid(0|x),MH = Pmid(1|x)

else
ML = Pbottom(1|x), L = Pbottom(0|x)

0-1-0 ML = Pmid(0|x),MH = Pmid(1|x)

0-1-1

if Pmiddle(1|x) > Ptop(0|x), then
MH = Ptop(0|x), H = Ptop(1|x)

else
MH = Pmid(1|x),ML = Pmid(0|x)

1-0-0 ML = Pbottom(1|x), L = Pbottom(0|x)
1-0-1 ML = Pmid(0|x),MH = Pmid(1|x)
1-1-0 MH = Ptop(0|x), H = Ptop(1|x)
1-1-1 MH = Ptop(0|x), H = Ptop(1|x)

the most-fitting secondary fuzzy set for a given sample. As
an example, consider the ensemble output of ‘011’; in this
case, the classifiers agree that the sample primarily belongs to
the ‘moderate high’ (MH) fuzzy set. However, it is unclear
whether the secondary fuzzy set should be ‘high’ (H) or
‘moderate low’ (ML) because the sample may, in actuality,
lie either toward the top or middle classifier boundary. To
make this determination, the two nearest classifiers are ranked
with regard to their posterior probabilities. Specifically, in this
example case, if the middle classifier is more confident about
its primary classification than the top classifier, then it logically
implies that the sample resides closer to the top boundary
and the ‘high’ (H) fuzzy set; otherwise, it implies the sample
resides more toward the middle boundary and the ‘moderate
high’ (MH) fuzzy set. Finally, there are some cases, such as
‘010’ and ‘101’, where there is no adjacent agreement between
the classifiers and majority-rule logic does not make sense. In
the event of these rare cases, the best option is to make the
fuzzy assignment decision using the middle classifier and to
assign the sample into the two moderate fuzzy sets as shown
in Table I.

Once each feature has been fuzzified using the above
approach, the traditional fuzzy steps of inference and defuzzi-
fication would commence in order to generate a non-discrete
prediction. The fuzzy-based structure of the proposed model
easily allows for tuning of the output to potentially improve
accuracy. For instance, one possibility could consist of adding
more fuzzy sets by introducing more classifiers within the
ensemble. This approach could lead to more fidelity in sample
fuzzification and ultimately better accuracy. Additionally, the
rule-base logic outlined in Table I could be modified based on
domain knowledge.

B. The Tagaki-Sugeno Variant of the ETF Model

Normally in fuzzy logic, input variables are fuzzified inde-
pendently. Likewise, the Mamdani version of the ETF model
processes the inputs individually, which requires the mainte-
nance of multiple ensembles. A more streamlined approach
would be allow the classifiers in the ETF model to operate on
a vector of features during classification; this approach would
only require a single ensemble. Therefore, the ith training
example, 〈xi, yi〉, in the modified version of the ETF model
would consist of a combined feature vector xi and a single
target label, yi.

Another challenge with traditional Mamdani fuzzy architec-
tures is the so-called combinatorial explosion problem [38]. As
the number of inputs and fuzzy sets increase, the system and
its rule base become more complex. The modified version of
the ETF model does not inherit this problem because the steps
of inference and defuzzification are also performed using the
ensemble output.

Similar to the previous version of the ETF architecture, the
binary predictions from each classifier are concatenated and
then processed through rule-base (i.e., if-then) logic. However,
instead of only using the posterior probabilities to infer to
fuzzy set memberships, this version of the ETF directly infers



a crisp output based on the ensemble output. This modified
version is said to be inspired by the fuzzy architecture of
Tagaki-Sugeno (T-S) because an algebraic expression is used
to describe the consequent of the ensemble output.

The example in Fig. 2 was created to assist with the
explanation of the T-S variant. The figure only shows the
target universe and omits any particular input universe because
the feature space is assumed to be multidimensional. The
concatenated output of the ensemble in the figure example
is shown to be ‘001’. Based on this ensemble output, the
classifiers agree that the sample primarily belongs somewhere
in the ‘moderate low’ fuzzy set. Thus, the sample originates
in the center or midpoint of that particular fuzzy set. However,
in reality, the sample may lie somewhere above or below
the midpoint. Therefore, in order to more accurately predict
a value for that sample, the posterior probabilities of select
classifiers are leveraged as indicated in Fig. 2. Using logic
similar to that of Table I, the sample may be assigned a value
slightly lower or higher than the midpoint depending upon a
ranking of posterior probabilities.

Table II formalizes the membership assignments for the
remaining output possibilities of the T-S variant, assuming the
ensemble consists of three classifiers as shown in Fig. 2. The
outputs annotated with an asterisk correspond to significant
disagreement within the ensemble and would rarely, if ever,
occur. Regardless, if any of these rare cases occur, the rule
base logic conservatively assigns the sample to the middle
fuzzy sets of MH and ML.

The primary and secondary fuzzy set assignments outlined
in Table II are transformed into an output prediction that is
crisp (i.e., continuous) in nature using the following algebraic
equation

ycrisp = mj ±
1

n
µk (2)

where mj is the target midpoint value associated with the
primary fuzzy set, j, and µk is the level of membership to
secondary fuzzy set, k. The constant n is the number of fuzzy
sets used to divide the target universe, and it is responsible for
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Fig. 2. An example to illustrate the inference mechanism used in Takagi-
Sugeno ETF architecture.

TABLE II
FUZZY SET ASSIGNMENTS OF T-S VARIANT

Ensemble
Output

Primary
Fuzzy Set

Secondary Fuzzy Set

Top-Mid-Bot (sets mj ) (µk)

0-0-0 L ML = Pbot(1|x)
0-0-1 ML if Pbot(1|x) > Pmid(0|x) then

MH = Pmid(1|x)
else
L = Pbot(0|x)

0-1-0* L ML = Pbot(1|x)
0-1-1 MH if Pmid(1|x) > Ptop(0|x) then

H = Ptop(1|x)
else
ML = Pmid(0|x)

1-0-0* ML MH = Pmid(1|x)
1-0-1* ML MH = Pmid(1|x)
1-1-0* MH ML = Pmid(0|x)
1-1-1 H MH = Ptop(0|x)

bounding the maximum amount of shift the predicted output
can assume away from the midpoint, mj . Furthermore, the
final output prediction is restricted to the extreme boundaries
of primary fuzzy set based on the 1/n term and the fact that
the membership to the secondary set, µk, will always be less
than 0.5. The assignment of plus (+) or minus (-) sign in
the above equation corresponds to whether the shift from the
midpoint value is higher or lower, respectively, and the sign
is determined by the rules established within the if-then logic.

IV. REAL-WORLD VALIDATION: LEARNING LINK
QUALITY IN A ROBOT NETWORK

A. Experimental Setup of the Robot Networks

The proposed model was evaluated in an offline manner
using a series of real-world datasets from a robot network
that operated in different environments. The setup of each
experiment was similar to the photograph shown in Fig. 3,
where the robot was tele-operated by a laptop observation
control unit (OCU) over an IEEE 802.11 ad hoc connection.
With the exception of the indoor experiment, the robot started
near the OCU and was commanded to move farther away in
a linear fashion until the wireless link eventually failed. This
route of travel was selected in order to force the robot to collect
measurements ranging from very good to very poor LQ.

During the duration of each experiment, the robot trans-
mitted a picture image, along with sensor data, approximately
every 1.5 seconds to the OCU based on the imaging speed
of the camera and other factors. The typical payload of each
packet ranged from about 60 kilobytes up to 1 megabyte
depending upon the size of the picture image. Each packet
was transmitted via Transmission Control Protocol (TCP).
Immediately prior to each transmission, the robot sampled
a vector of LQ features; these features included the radio
hardware metrics of RSSI and signal quality (SQ) extracted
from the Linux /proc filesystem, the statistic known as the



Fig. 3. Picture showing the robot and OCU collecting LQ data along the
sidewalk of a residential neighborhood.

expected number of transmissions (ETX) formed using bi-
directional probes which were transmitted every second [39],
and the distance to the OCU calculated using global posi-
tioning system (GPS) coordinates. The OCU recorded the
throughput of each packet it received and then transformed the
target variable into a throughput potential ratio (TPR), which
was defined in (1).

A total of six experiments were conducted at various loca-
tions, including inside and outside of a residential building, a
community park, and a recreational track, as listed in Table
III. At some locations, the line-of-sight (LOS) between the
radio antennas was temporarily obstructed, and therefore, these
datasets are labeled with NLOS for non-line-of-sight. All of
the datasets are available online at [40] to easily facilitate
future work. In addition, the same online location [40] includes
charts showing the characteristics of the features with respect
to TPR, as well as videos showing the data collection process
using the robot and OCU.

B. Classifier and Feature Selection for the ETF Model

Before evaluating the ETF model, a preliminary step is to
identify the optimal performing classifier algorithm for the
application. The following classifiers were evaluated during

TABLE III
DESCRIPTION OF SAMPLE COLLECTION SITES

Dataset
Name

Sample
Size

Description

Residential
(Outdoor)

400 Robot moved along sidewalk sur-
rounded by homes

Residential
(Indoor)

429 Robot and OCU on separate floors of
residential building

Park
(LOS)

415 Robot moved through parking lot free
of obstacles

Park
(NLOS)

377 An automobile was placed between
robot and OCU for portion of dataset

Track
(LOS)

417 Robot moved along side of track with
homes on side

Track
(NLOS)

161 A box was placed over robot for a
portion of dataset

the selection process: Naı̈ve Bayes, Support Vector Machine
(SVM), and Logistic Regression. The open-source repository
of machine learning algorithms known as scikit-learn [35] was
used during the classifier testing, as well as for the ensemble
employed in the ETF model.

Cross validation (CV) results revealed that the SVM and
Logistic Regression algorithms both outperformed the Naı̈ve
Bayes and had similar accuracies. However, the speed tests on
the robotic platform, which used an ARM 700 MHz processor
[41], revealed that the logistic regression algorithm was able
to train its prediction model significantly faster than the SVM
(i.e., nearly 400 ms faster for a training set of 400 samples).
Based on these results, logistic regression was selected as the
classifier algorithm to be used in further testing of the ETF.

Recursive feature elimination (RFE) was used to evaluate
the value of each feature in terms of aiding the predictive
model. The two radio hardware metrics of SQ and RSSI were
closely matched and ranked the first and second most infor-
mative, respectively. Distance ranked third and ETX followed.
All features were retained in further tested based on each of
them occasionally proving to be the most informative during
RFE testing, and only marginal training and prediction time
differences were noted between the three and four feature
options.

C. Comparing Accuracy of ETF to Linear Regression

The complete ETF system produces an output that is
continuous in nature, similar to a regression-style learning
algorithm. Therefore, the predictive accuracy of ETF was
compared to the most commonly employed regression method,
linear regression (LR) [37]. The algorithm implementation of
LR was drawn from scikit-learn [35].

In terms of the ETF model, the T-S variant was used during
the evaluations based on its improved scalability over the
Mamdani version detailed in Section III. Both ETF and LR
were evaluated using the aforementioned datasets and 10-fold
CV. For each individual test case, ETF and LR generated LQ
predictions in a pairwise fashion. The mean absolute error
(MAE) from each prediction within every fold was recorded
in a list for each algorithm.

The list of MAEs produced by each algorithm was then
compared statistically after all 10 folds were complete. Box-
plots were initially used, as shown in Fig. 4, to visually inspect
some of the key statistical attributes about the errors generated
by each algorithm. The boxplots show the median value of
the ETF model to be lower on three of the six datasets.
Furthermore, the upper whiskers of the ETF model are shown
to be lower on four of the experiments. Additionally, the two
different models produced roughly the same error statistics
on the residential datasets based on the medians and quartile
edges of the boxes being nearly the same. Finally, Fig. 4 shows
that linear regression algorithm produced the most extreme
outliers on five of the six different datasets.

To more precisely quantify the mean difference (µd) be-
tween the models, paired t-tests were performed using the
pairwise MAEs from all of the datasets. The results of the
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Fig. 4. Boxplots comparing the mean absolute error generated by the ETF
and LR algorithms during 10-fold CV testing of various datasets.

paired t-tests on each dataset are displayed in Table IV. As
the table indicates, the null hypothesis (i.e., µd = 0) was
rejected on four of the datasets, meaning that the predictive
accuracies of the models were statistically different on four of
the datasets. On three of the four datasets that were statistically
different, the ETF model proved to be slightly more accurate.
On the other hand, the accuracy of the two algorithms did not
prove statistically different on two datasets.

In summary, the ETF model was shown to generally out-
perform LR on the given datasets. For instance, the mean
prediction error calculated across all six datasets was roughly
10% for LR and 9% for ETF. Furthermore, the LR model
failed to surpass the ETF model by more than a percentage
point on any of the given datasets. Whereas, the ETF model
surpassed LR by a mean of up to 2.5% on two of the
datasets [e.g., see Table IV for Park (LOS) and Track (NLOS)]
and more than 1% on another [e.g., see Table IV Track
(LOS)]. It is worth noting that pushing the average error much
lower than 10%, as the ETF model did, is a significantly
difficult task. Generally speaking, it is common that machine
learning algorithms to achieve 90% accuracy on a wide range
of applications [37], but exceeding that accuracy becomes
exponentially more challenging.

TABLE IV
ACCURACY DIFFERENCES BASED ON PAIRED T-TESTS

Dataset Null Hypothesis Confidence Interval
µd = 0 at 5% Signif. (LR - ETF)

Residential (Outdoor) Not Rejected -0.0051< µd <0.0019

Residential (Indoor) Rejected -0.0071< µd <-0.0007

Park (LOS) Rejected 0.0132< µd <0.0244

Park (NLOS) Not Rejected -0.0047< µd <0.0036

Track (LOS) Rejected 0.0064< µd <0.0144

Track (NLOS) Rejected 0.0080< µd <0.0269

TABLE V
TRAINING AND PREDICTION SPEEDS OF THE ETF MODEL

Portion of Algorithm Time (ms)
Training ETF (1 Classifier) 29.33
Training ETF (3 Classifiers) 89.00
Training LR 13.93

Prediction ETF (1 Classifier) 3.85
Prediction ETF (3 Classifiers) 11.72
Prediction LR 2.82

D. Evaluating Model Implementation Efficiency

The training and prediction speed of the ETF model was
evaluated on the robot’s 700 MHz single-core ARM processor
[41]. In order to baseline the execution times, the speed of
LR was also evaluated. The execution time averages of Table
V were calculated using every training and prediction event
of the 10-fold CV testing for the outdoor residential dataset.
The prediction algorithms were implemented in Python using
scikit-learn [35].

As shown in Table V, the ETF model was evaluated in
terms of the training and prediction speed of one classifier,
as well as the sequential execution of the complete ensemble
of three classifiers. The purpose the distinction was to show
the potential speedup of the model if the individual classifiers
were programmed to execute in parallel across a multicore
system. The table also shows that the ETF model requires
more computational time than LR, but as mentioned in Section
I, the fuzzy interface of the ETF method offers a series of ad-
vantages in terms of its intuitiveness and flexibility for tuning.
Furthermore, it should be noted that LR is one of the most
lightweight, yet effective prediction models [37]; therefore,
most other prediction models incur additional computations
beyond LR.

As expected, the process of training the model is more
computationally-intense than prediction. However, given the
batch learning framework, retraining events would transpire
less frequently than generating predictions. In summary, Table
V demonstrates that both training and prediction tasks of the
ETF model can be feasibly executed online using the afore-
mentioned robot, given the camera speed and the approximate
1.5 second window between transmissions.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a fuzzy-based machine learning
method for predicting LQ in robot networks. We evaluated
our approach by comparing the model’s prediction results
with those of traditional linear regression. The results show
statistically significant improvement on the majority of the
experiments conducted using a real robot in a variety of
environments. The datasets from these robot experiments are
available online to the community for further research. A
significant advantage of the proposed model is that it offers
enhanced flexibility in terms of model tuning or adding domain
knowledge because of its overarching fuzzy design.



There are several opportunities for future work related to the
ETF model. The next evolution of this work is to evaluate the
ETF model in an online setting, where samples are presented
to the model in a streaming fashion. The evaluation presented
in this paper used nearly complete datasets, consisting of
examples ranging from good to poor LQ. However, in a
streaming environment, training examples are not presented all
at once, and it would be interested to evaluate the robustness
of the ETF under these conditions. Furthermore, evaluating
the ETF in a stream-based setting would also allow for an
investigation into the efficiency of its batch-style model when
compared to single-instance learners. Finally, it would be
insightful to apply the ETF model to other domains outside
of LQ prediction, and whether the flexibility of its fuzzy
framework can be leveraged to outperform existing methods
in other problem areas.
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