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Abstract—With the help of the cooperative co-evolution, 
differential evolution (DE) has been applied successfully from 
low-dimensional problems to large scale optimization. In this 
paper, we propose a preferred learning cooperative coevolution 
DE algorithm (LDECC-DG) which focuses on the basic optimizer 
for large scale optimization using cooperative coevolution. The 
proposed LDECC-DG builds on the differential evolution with 
cooperative coevolution and differential grouping (DECC-DG) 
algorithm which possesses an accurate grouping method and an 
effective basic optimizer method for large scale optimization. A 
novel DE algorithm called preferred learning based adaptive DE 
(LDE) is designed as a basic optimization algorithm for large 
scale problems and the control parameters in LDE are selected 
according to the self-adaptive strategy which corresponds to the 
preferred learning strategy. We show that how the LDE can 
improve the performance of Cooperative Co-evolution 
framework on account of its effectiveness. In order to evaluate 
the performance of LDECC-DG for large-scale global 
optimization, we carried out numerous computational studies on 
the CEC 2010 benchmark functions. The results show 
advantages of the LDECC-DG in both solution quality and 
convergence rate compared to other algorithms. 

Keywords—Large scale optimization; Cooperative co-evolution; 
Preferred learning adaptive strategy; Differential evolution 

I. INTRODUCTION 
Evolutionary optimization has shown a great advantage on 

many global numerical optimization problems for many years 
[1]. However, in science and engineering domain, most 
evolutionary algorithms (EAs) are often fail to find good near 
optimal solutions because of the huge number of decision 
variables, which called “curse of dimensionality”. Therefore, 
many approaches have been introduced to EAs for solving 
large scale optimization. One of these approaches is called 
divide-and-conquer strategy [2]. The original large-scale 
problem will be decomposed into a set number of smaller and 
simpler subproblems, which is more operable and easier to 
optimize [3]. Then we can obtain the solution by cooperating 
with each subcomponent optimized solution. The techniques 
of decomposition have been verified in many classical 
optimization algorithms [4]-[7]. 

The cooperative co-evolutionary genetic algorithm (CCGA) 
is proposed by Potter and De Jong [8]. We can obtain an 
overall solution by cooperatively coevolving each 

subpopulation in lower dimensionality. The performance of 
the algorithm in dealing with large scale problems 
significantly depends on decomposition strategy and 
deteriorates rapidly when meets the nonseparable functions. 
Generally speaking, designing CCEAs which is able to tackle 
large-scale optimization (more than 100) in particular 
nonseparable problems is a necessary direction of the research. 

Differential evolution (DE) is an efficient algorithm and 
DE is outstanding in comparison to PSO and EAs on the 
majority of the numerical benchmark problems [9]. Yang et al. 
[4] attempt to apply DE to cooperative coevolution (CC) 
model in the early stage and differential evolution with 
cooperative coevolution and random grouping (DECCG) was 
developed. Although DECCG was tested on functions of up to 
1000 dimensions, the decomposition strategy of random 
grouping still has space to improve. Then the multilevel 
cooperative coevolution (MLCC) [10] was proposed by Yang 
et al., in which improved DECCG from the perspective of 
framework. An automatic way of decomposing called 
differential grouping was developed by Omidvar et al. [5] that 
designed CC model from the way of decomposition. The 
proposed algorithm DECC-DG has been evaluated using 
CEC’2010 benchmark functions and it has shown the 
superiority among other algorithms by increasing the accuracy 
of grouping interacting variables. However, the algorithms 
above did not improve CC model by designing subproblems 
optimization algorithm for large scale optimization. 

This paper introduces a preferred learning based adaptive 
differential evolution algorithm (LDE) for cooperative 
coevolution, which enhances the performance of large scale 
optimization particularly for nonseparable functions via the 
design of novel subcomponent optimization. The proposed 
LDECC-DG builds on the success of DECC-DG, it adopts a 
preferred learning and adaptive strategy to help scaling up 
DE’s performance for solving problems with a large number 
of decision variables. The main work of this paper is 
embodied in the following aspects. 

 A powerful DE algorithm (LDE) which adopts 
preferred learning and self-adaptive strategies is 
proposed for large scale optimization using cooperative 
coevolution framework and analyzes why LDE is a 
good optimizer for subproblems.  



 It is proofed in this paper that LDE can help 
coevolutionary optimization significantly. In fact, our 
new algorithm (LDECC-DG) is capable of tackling 
nonseparable problems with up to 1000 dimensions. 

The rest of this paper is organized as follows. Section II 
gives a brief review of the related work on cooperative 
coevolution, differential grouping and classical differential 
evolution. Section III presents the proposed LDE and analyzes 
its effectiveness for solving large scale optimization. In 
Section IV, the experiments on our new algorithm LDECC-
DG have been carried out. The performance of the LDE is 
compared to five state-of-the-art algorithms. Then the 
effectiveness of LDECC-DG is investigated by comparing 
with other two algorithms. Finally, Section V summarizes and 
concludes the paper. 

II. RELATED WORK 

A. Cooperative Coevolution 
Cooperative coevolution (CC) is a general framework 

based on decomposition strategy for large and complex 
problems. Potter and Jong [8] first applied CC into genetic 
algorithm for function optimization called CCGA, where the 
algorithm was tested on six test functions of up to 30 
dimensions. But the CC framework was not used in higher 
dimensional problems. Recently, the framework of using CC 
in optimization has appeared which incorporated several 
algorithms such as evolutionary programming [11], evolution 
strategies [12], DE [4], [5], [7], and PSO [6].  

The core idea of CC is to decompose a complicated high-
dimensional problem into some low-dimensional 
subcomponents that easy to manage. It evolves these 
subcomponents in a cooperative way by cycles which include 
one complete process of evolution for all subcomponents 
within a fit value of fitness evaluations (FEs). We obtain the 
optimal solution by coadapting over all subcomponents. The 
size of each subproblem was determined by the capacity of 
DEs. However, there is some weakness exist in the CC 
algorithms for optimization. One is the nonseparable problems 
significantly decided by decomposition strategies and it did 
not perform well when variables were interdependent. Second, 
it is unknown that whether the optimizer is suitable for the 
entire CC framework or not. 

B. Differential Grouping 
Because of the qualities of CC algorithms were seriously 

relied on decomposition methods. Many researches have been 
studied on developing decomposition strategies. More recently, 
the grouping using an automatic decomposition strategy is 
incorporated on a CC framework. Linkage method such as 
random grouping was proposed by Yang et al. [4], it is 
designed to change grouping structures dynamically and 
increase the possibility of interacting variables into a set of 
subcomponents. Ideally, we should form the subcomponents 
according to some evidence which can identify interacting 
decision variables. Differential grouping [5] is an effective 
way to identify interdependence between two decision 
variables and group interactive variables together accurately 
via Theorem 1.  

Theorem 1: 

   Define 
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(1) refers to when given by an interval δ, the forward 
difference off with respect to variable xp. 

Let )(xf  be an additively separable function. 
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then xp and xq are nonseparable. 

During the grouping stage the ith and jth dimensions are 
examined by grouping function (2) which derived from 
Theorem 1, and then the subcomponents are formed 
accordingly.  
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In the optimization stage, the optimizer should exploit the 
provided grouping information and subcomponents are 
optimized in a round-robin fashion for a predetermined FEs. 
Consequently, more computational resources will be allocated 
for subcomponent with a higher contribution to the global 
fitness. However, the interdependencies between the 
subcomponents should keep to a minimum for the 
requirements of effective estimation. Actually, differential 
grouping can guarantee great accuracy which the interacting 
variables are placed within the same subcomponents for the 
most of the benchmark functions [5]. 

C. Differential Evolution  
Differential evolution (DE) is a global optimization 

algorithm based on population evolution. Despite the 
simplicity of DE, it has the features of less greedy compared 
to other EAs algorithm which makes it fit to high-dimensional 
optimization.  

In this paper, DE is used to solve large scale optimization 
as a subcomponent optimizer which needs more exploration 
due to the large search space [7]. In addition, it also needs to 
maintain its ability of exploitation. Therefore, the main 
emphasis of our research is getting a good balance between 
exploration (solution quality) and exploitation (convergence 
rate) by choosing strategies and setting parameters [13]. 

 The mutation operation is the most significant step to 
obtain a mutant individual vi,g as shown in (4). The capability 
of mutation operation decides the searching direction and the 
searching area. 
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where F is called the mutation factor (scale factor). Xr1,g, Xr2,g 
are considered as two random individuals which are different 
from mutation individuals. Xi,g refers to a parent individual. 

DE need to set a few control parameters: the population 
size NP, the mutation factor (scale factor) F, and the crossover 
probability crossover rate (CR). DE’s control parameters F 
and CR are very sensitive to its setting techniques. Self-
adaptive differential evolution with neighborhood search 
(SaNSDE) [14] is a novel DE with self-adapting F, CR and 
mutation strategy. In recent research of cooperative 
coevolution algorithm for large scale optimization, SaNSDE is 
widely used to be an optimizer [4], [5], [7] because of its 
better performance than other similar DEs. 

III. IMPROVERD DIFFERENTIAL EVOLUTION ALGORITHM 

A. Preferred Learning based Differential Evolution (LDE) 
In the mutation operator of DE, we usually use a three-

parameter notation DE/a/b to present the evolutionary 
operation [15]. “a” refers to the option of vectors and “b” 
denotes the number of mutation vectors in mutation operation. 
There are five widely used mutation operations DE/best/1, 
DE/rand/1, DE/current-to-best/1, DE/best/2, and DE/rand/2. 
These mutation strategies have their own base population 
vectors and members of difference population vectors. The 
DE/best/differ performs better in convergence rate. However, 
it is easy to premature convergence because the mutation 
operation effects on a local search space around the best 
individual. On the contrary, the DE/current/differ, because of 
the base vector is implemented as a target (current) individual 
who possesses a high diversity, it performs well in global 
search. As for the operator DE/current-to-best/1, it combines a 
current individual and a best individual as the basic individual 
and the difference individual respectively so that it does not 
achieve the best properties neither convergence or diversity. 
DE/rand/differ specializes in robustness with outstanding 
performance in the multimodal functions, especially at the 
later period of iteration [13]. 

All the above mutation operations only contain a single 
characteristic. But for large scale optimization, a good 
mutation operation means having both exploration (solution 
quality) and exploitation (convergence rate) [13]. For the 
purpose of obtaining a better performance may need a 
composite trial vector which integrates the information of 
diverse individuals and rapidity individuals. In addition, by 
incorporating a random element in the mutation operation is 
also essential for its effectiveness in dealing with multimodal 
functions [13]. As a result, many state-of-the-art DEs 
incorporate adaptive strategies or combination techniques to 
obtain the composite trial vector [16].  

Cheng and Jin [17] first introduced social learning to PSO 
and the results showed a promising performance in solving 
large scale problems. By considering the analysis above, this 
paper develop a composite vector from the perspective of the 
mutation operation by social learning mechanism. An imitator 
vector will learn from the better individual vector and the new 
mutation operation is shown as follows. 
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where Xbetter refers to the individuals better than the current 
individual. 
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   Fig.2 Main components of the proposed learning mechanism 

Similar to the classic DE, the proposed algorithm 
initializes a population containing NP individuals. During the 
stage of fitness evaluation, every individual get a fitness value 
according to the objective function. The population is then 
sorted with a decreasing order of the individual fitness values, 
for a given individual (except for the last or call it the best 
individual), it learns from the other better individuals 
randomly where the model individual is expresses as Xbetter, as 
shown in Fig.1. The process of the learning mechanism is 
shown in Fig.2. For instance the individual 1, can learn from 
the second individual to the NPth, while the individual 2 can 
learn from the range from 3 to NP. Similarly, the individual m 
have the number of the individuals to learn is m+1-NP.  

In the learning progress above, the mutation operation Vi,g 
incorporates both rapidity information and diversity 
information. In addition, the information of random is 
introduced by the self-adaptive strategy as the next section. 

B. The Adaptive Strategies for LDE 
Considering the analysis of advantages of using abundant 

information for evolving, we adopt self-adaptive strategy for to 
form composite trial vectors. As point out above, we introduce 
preferred learning strategy to obtain both convergence and 
diversity. In the adaptive strategies for LDE, we employ 
DE/rand/1 as shown in Eq.(6) to supply the random 
information.  

)(* ,3,2,1, grgrgrgi XXFXV  (6) 

It is proofed in [13] that DE/rand/1 is a robustness strategy 
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which is effective to the multimodal functions. Therefore LDE 
selects Eq.(6) along with preferred learning mutation 
operation Eq.(5) to enrich the information of population, and 
the new generated trial vector is shown below: 
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where p controls which mutation strategy to use. It adopts a 
learning strategy to employ different mutation operation for 
different evolution stages. The specific set of parameter p can 
be found in [14].  

Different parameter settings may influence its 
characteristics and different strategies adopted for each 
operation can obtain different searching features which is fit 
for different scales and problems [13], [18]. In addition, 
different distributions of mutation and control parameters 
determine the quality of exploration and exploitation. Tang et 
al [13] first attempted to set control parameters with an 
adaptive strategy called IDP setting method that accord with 
the differences between individual’s fitness values. They 
noticed that the individuals with better fitness values are more 
close to the global optimal, whereas individuals with worse 
values are far away from it. Based on the idea of IDP, our 
preferred learning strategy also adapt the setting of F and CR 
by the order of fitness values in Section III-A so that the 
solutions with good qualities are assigned with smaller values 
to execute local search. As a consequence, solutions with good 
qualities are assigned with small values to execute local search 
and those poor ones are assigned with larger values to jump out 
of the poor space for better exploration. Some more details of 
LDE using this principle are summarized as follows.    

Scale factor F setting: The individual xi is supposed to the 
ith most superior one. 

NP
iNPFi (9)  

NP
iNPCRi

(10) 

   

where the control parameter Fi and CRi associated with the 
target individual xi. Then we randomize the parameters with a 
Gaussian random number, which the mean is the original value 
and the standard deviation 0.1. The settings can be modified as: 

            )1.0,( iii FNF (11) 

             )1.0,( iii CRNCR             (12) 

The role of randomization is to maintain search efficiency 
when the control parameters are near their mean values, and 
the distant ones can develop the diversity of search. If the 
parameter value we extracted from the Gaussian distribution is 
beyond the range of (0,1), it will not exert an influence and a 
new value originated from Gaussian distribution will instead 
of it until the parameter value is within normal range. 

C. LDE under the CC Framework 

Having LDE as the basic optimizer for subproblems, it is 
explicit to design the LDE with cooperative coevolution, 
called LDECC-DG, by the following step of DECC-DG [5]. 
The pseudocode of LDECC-DG is shown in Algorithm 1. 

Algorithm 1: LDECCDG-DG (s, cycles, FEs) 
groups ← differential grouping  
pop (1:NP, 1:n)← random pop 
(best,best_val) ←evaluate (pop) 
for i=1 to cycles do 
 for j=1 to size (groups) do 
   indices ← groups [j] 
   subpop ← pop [:,indicies] 
   subpop ← LDE (best, subpop, FEs) 
    while  iter<itermax  //LDE algorithm 

   do 
      Arrange the current population individuals in 
      descending order of their fitness values.  

 for i=1 to NP  
   Randomly choose four different individuals xo,g ,  
   xr1,g , xr2,g, and xr3,g. 

       Set o=i when g gmax     To form the Fo for the individual xo,g as: 
   )1.0,/)(( NPoNPNF io  

   To form mutant vector Vi,g via the self-adaptive  
   strategy  as: 
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     end for 
     for i=1 to NP 

   Generate )1.0,/)(( NPiNPNCR ii  
       for the target individual xi,g. Generate trial vector  
       ui,g via binomial Crossover as follow:  

   for j=1 to D 
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       end for 
     end for 
      Evaluate the trial vector ui,g 
       for i=1 to NP 

      ,
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end for  

     iter=iter+1 
  end while 
pop [:, indicies] ←subpop 
(best, best_val) ← evaluate (pop) 
 end for 
end for 



IV. EXPERIMENTIAL STUDIES 

In this section, we first verify the performance of LDE 
compared to several state-of-art DE algorithms, and 
demonstrate why LDE is fitter for large scale optimization 
using cooperative coevolution. Then we compare LDECC-DG 
with DECC-DG and DECC-G on large scale global 
benchmark functions.  

A. Effects Evaluation of LDE 
It is obviously that a large scale problem will be 

decomposed into low-dimensional subproblems under the CC 
framework. Therefore, an effective optimizer need to have 
better performance on medium dimensional (not more than a 
hundred) problems, meanwhile the computing time of each 
optimizer should not be too long. In this section, we 
demonstrate the LDE is provided with both advantages above 
by some empirical evidence. Table I shows the five state-of-
the-art DE algorithms [14], [20]-[23] and a particle swarm 
optimization (PSO) [24] we used for empirical studies. We 
compared these algorithms with LDE on 25 test functions 
proposed in the CEC’05 special session on real-parameter 
optimization [25] by a statistical conclusion using 30 
independent runs. A two-tailed t-test was used to investigate if 
there is a difference between LDE and other six algorithms. If 
the p-value is smaller than level 0.05, we will reject the null 
hypothesis. The p-value is set to 0.05 in our experiment. “+/-” 
means LDE has “better/poorer” performance with significant 
difference and “=” represents there is no difference between 
the two algorithms from the aspect of the significance level. 
We can obtain the statistical results on Table II.  

TABLE I.  DESCRIPTION OF COMPARISON ALGORITHMS 

Algorithms Description 

SaDE Self-adaptive Differential Evolution 

CoDE Differential Evolution with Composite Trial Vector 
Generation Strategies and Control Parameters 

jDE Self-adapting Control parameters in Differential Evolution 

JADE Adaptive Differential Evolution with Optional External 
Archive 

SaNSDE Self-adaptive Differential Evolution with Neighborhood 
Search 

CLPSO Comprehensive Learning Particle Swarm optimization 

 
TABLE II.  STATISTICAL COMPARISON RESULTS OF LDE 

Algorithms 

Dimensions of the Benchmark Functions Average 
Time for 

Each 
Function 10D 30D 50D 

+   =   - +   =   - +  =  - 50D/s 

SaDE 6  16  3 8  14  3 7  16  2 528.01 

CoDE 6  14  5 9  11  5 6  18  1 332.82 

jDE 12  10  3 11  12  3 7  16  2 750 

JADE 5  14  6 4   15  6 6  14  5 650.04 

SaNSDE  5  17  3 8   14  3 9  13  4 363.97 

CLPSO 11  12  2 12  10  3 13  10  2 223.44 

From the Table II, we can see the advantage of LDE among 
the other algorithms and its average computation time for each 
function on 50D only 354.62s. Then we choose several 
algorithms with better performance (CoDE, JADE and 
SaNSDE) as candidates to further compare the performance 
with LDE. Four typical functions f2, f6 f10, and f13 are chosen 
to further illustrate the performance of LDE. As shown in 
Figs.3, for the choosing functions up to 50 dimension, JADE 
seems to obtain better results. However, LDE performs steadily 
on the same function with different dimensions or in other 
words it can maintain better performance on the higher 
dimension. In addition, the time-consuming of JADE is nearly 
twice to LDE. Consider about comprehensive factors above 
(performance and time-consuming), LDE is more suitable for 
cooperative coevolution framework as an optimizer. 

B. Parameter Settings for LDECC-DG Evaluation 
For purpose of testing the performance of LDECC-DG, we 

choose the CEC’2010 special session on large-scale global 
optimization [19]. A set of 20 benchmark test functions is 
classified into five groups as Table II. 

As for the population size we used 50 as DECC-DG [5]. 
All of the experimental results are recorded base on 25 
independent runs. The maximum number of fitness was set to 
3e+06 as suggested in [5]. When we executed grouping 
operation, the value of ϵ was set to 10-3. For this research, n and 
m were set to 1000 and 50, respectively. The t-test experiment 
setting is the same as Section IV-A. 

TABLE III.  DESCRIPTION OF CEC’2010 BENCHMARK 
FUNCTIONS 

f1-f3 Separable functions 
f4-f8 Single-group m-nonseparable functions 

f9-f13 
m
n

2
-group m-nonseparable functions  

f14-f18 
m
n -group m-nonseparable functions 

f19-f20 nonseparable functions 
a. n refers to dimensionality of the problem and m refers to the number of variables in each 

nonseparable subcomponent. 

C. Results on CEC’2010 Benchmark Functions 
In this section, we evaluate the performance of LDECC-

DG through comparing it with two state-of-the-art Cooperative 
Co-evolution DE algorithms for large scale optimization. One 
of the comparing algorithms DECC-DG uses SaNSDE as a 
subcomponent optimizer with Differential Grouping which is 
the same as LDECC-DG and the other DECC-G is similar to 
DECC-DG except that it adopts the random grouping strategy. 

As shown in Table IV, we can discover that LDECC-DG 
performed significantly better than the other two algorithms. 
The performance of DECC-DG and LDECC-DG outperformed 
DECC-G on most nonseparable functions as the grouping 
accuracy enhanced. On closer inspection, we can see that 
LDECC-DG achieved better results than DECC-DG on 
nonseparable functions f5, f7, f8, f9, f10, f11, f12, f13, f15, f17, 
f18 and f20. What is noteworthy is that LDECC-DG is even 
worse than DECC-G on f13, f18 and f20 although it has 



already modified the performance of them dramatically 
compared to DECC-DG.  

We choose the 12 functions with better performance to 
further understand the entire search process. Fig. 4 shows the 
convergence processes of these functions and it demonstrates 
that LDECC-DG not only achieved the best results, but also 
has faster convergence. Therefore, we can confirm that LDE is 
significantly effective as an optimizer for cooperative co-
evolution. In particular, for those functions which superior 
individuals are closer to the global solution such as schwefel’s 
problem 1.2 (f7, f12 and f17) and rosenbrock’s function (f13, 
f18 and f20), the preferred learning mutation operation and 
adaptive strategies of LDE may help the algorithm to explore 
the optimal area rapidly and accurately without the restriction 
of grouping strategy. 
TABLE IV.  COMPARISION BETWEEN LDECC-DG, DECC-DG 
AND DECC-G ON THE CEC’2010 BECHMARK FUNCTIONS. 

unctions DECC-G DECC-DG LDECC-DG p-value 
f1 mean 1.41E-09 2.99E+06 4.20E+01 2.37E-31 

std 9.24E-10 1.87E+06 1.10E+00  
f2 mean 4.85E+02 4.22E+03 5.77E+03 6.23E-11 

std 1.84E+01 1.93E+02 2.60E+02  
f3 mean 2.40E+01 1.08E+01 1.78E+01 3.84E-26 

std 1.80E+00 4.28E-01 1.37E-02  
f4 mean 6.08E+12 5.59E+11 4.35E+12 1.72E-14 

std 5.92E+11 1.63E+11 7.46E+12  
f5 mean 2.95E+08 6.91E+07 6.80E+07+ 1.56E-03 

std 4.56E+07 8.45E+06 6.01E+06  
f6 mean 4.18E+06 1.64E+01 1.80E+01= 1.03E-01 

std 1.44E+06 1.10E+00 2.03E+01  
f7 mean 9.21E+05 6.01E+04 2.26E+03+ 1.17E-03 

std 1.89E+04 2.77E+04 4.05E+03  
f8 mean 8.39E+07 6.53E+07 3.81E+07= 2.36E-01 

std 3.36E+07 4.77E+06 2.97E+05  
f9 mean 1.60E+08 6.67E+08 2.61E+08+ 1.00E-11 

std 1.32E+07 1.86E+08 2.83E+07  
f10 mean 8.83E+03 7.64E+03 6.90E+03+ 3.94E-15 

std 4.72E+02 2.74E+02 1.53E+02  
f11 mean 2.71E+01 3.26E+01 2.64E+01+ 7.04E-18 

std 4.43E+00 1.17E+00 2.12E+00  
f12 mean 3.42E+04 2.30E+04 1.72E+02++ 4.16E-19 

std 7.51E+03 6.97E+03 2.44E+02  
f13 mean 5.74E+03 3.03E+07 3.25E+05 2.44E-17 

std 2.52E+03 8.54E+06 1.60E+05  
f14 mean 4.74E+08 2.22E+07 1.85E+08 3.74E-31 

std 2.50E+07 2.14E+06 5.63E+06  
f15 mean 6.42E+03 3.44E+03 2.51E+03+ 3.86E-08 

std 2.91E+03 1.20E+02 1.84E+02  
f16 mean 1.01E+02 2.00E+01 1.03E+01+ 1.99E-13 

std 1.10E+01 1.39E+00 1.02E+00  
f17 mean 3.27E+05 1.32E+04 4.32E+03+ 1.30E-26 

std 4.59E+03 2.28E+00 2.18E+02  
f18 mean 3.32E+07 7.31E+10 3.20E+08 5.26E-11 

std 8.88E+06 2.38E+09 1.36E+07  
f19 mean 1.86E+06 1.35E+06 1.83E+06 1.54E-24 

std 2.63E+05 9.54E+04 1.24E+05  
f20 mean 3.54E+05 1.24E+09 1.27E+07 3.31E-18 

std 5.20E+04 5.10E+08 1.40E+07      
+/-/= 11/7/2        

b.  “++” represents LDECC-DG performs much better than DECC-DG. 

For some functions such as the rotated function, the 
superior individuals are not always around the global solution 
[13]. We also can obtain good performance because of the 

adaptive strategies in LDE. With the randomization of F and 
CR, the search process has potential on both effectiveness and 
efficiency. As a consequence, some rotated functions such as 
f5, f6, f10, f11, f15 and f16 tested in LDECC-DG are not 
inferior to DECC-DG and even achieve better performance. 
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Fig.3. 25 averaged function error values of four DEs on f2, f6, f10 and f13 of 
10, 30 and 50 dimensions. 
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Fig.4. The evolution convergence plot with the mean best values on f5, f7, f8, f9, f10, f11, f12, f13, f15, f17, f18 and f20, where the results were originated from 
the average of 25 independent runs.



V. CONCLUSIONS 
This paper proposes a novel differential algorithm for large 

scale optimization problems. For subproblem optimization, it is 
a promising way to use LDE which adopts preferred learning 
adaptive strategies. Some theoretical and experimental analyses 
were given to demonstrate how such strategies can help LDE 
to enhance the ability of exploration. With the help of LDE, we 
proposed a new CC optimization algorithm, LDECC-DG, for 
large scale problems. Extensive quantities experimental studies 
were carried out to evaluate the performance of LDECC-DG 
on CEC’2010 benchmark functions. 

In order to further understand the performance of LDECC-
DG, we first demonstrated why LDE is more competitive to 
other variants of DE as a basic optimizer. Then SaNSDE was 
compared with LDE by using cooperative coevolution for large 
scale optimization. The comparison was realized by comparing 
our whole algorithm LDECC-DG with DECC-DG and DECC-
G. The experimental results showed that LDE can greatly 
improve the performance of LDECC-DG and it was more 
effective than other two algorithms. It also revealed that 
LDECC-DG was more competitive on high-dimensional 
nonseparable functions especially it covered the shortage of 
schwefel’s problem 1.2 and rosenbrock’s function through the 
valid exploration ability provided by preferred-learning 
mutation operation and adaptive strategies compared to DECC-
DG. The convergence plots which describe the evolution 
process of the benchmark functions also support the 
correctness of our point. Furthermore, all the results confirmed 
our analysis that LDE is a more competitive optimizer for 
cooperative coevolution and LDECC-DG is very effective and 
efficient in tackling large scale optimization problems with 
dimensions up to 1000. 

In the future, we will focus on the intelligence grouping 
methods with the tendency of automation in order to coordinate 
the subcomponent optimization for obtaining the better 
performance. We also would like to try applying LDECC-DG 
to process industry optimization such as optimization of crude 
oil distillation units, in order to ascertain its true potential as a 
valuable optimization technique for real-world optimization.  
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